
COMPSCI 527 — Homework 5
Due on November 19, 2015

Work on this assignment either alone or in pairs. You may work with different partners on different assignments, but you can
only have up to one partner for any one assignment. You may not talk about this assignment with others until all of you have
handed in their work. See Mechanics→Homework on the class web page for details on the homework policy.

Hand in your work as explained in the instructions for homework 1 (of course, change hw1 to hw5).

There is not very much to do for this assignment, but you will need to read and understand code. Also, some questions are somewhat
open-ended. Be clear and detailed but also concise in your answers.

1. After downloading the code that comes with this assignment and making the code directory your MATLAB workspace directory,
type

TrackingExperiments

to the MATLAB prompt. The program will load eight images, run three different versions of a feature tracker on the same six image
feature points, and show three groups of three images each. The first group runs the Lucas-Kanade tracker, which is Newton’s method
with a particular way of approximating the Hessian of the SSD (Sum of Squared Differences) error function.

(a) Look at Figures 1, 2, and 3. Of the six points being tracked, some are tracked well, some are lost during tracking, and some are
tracked but do not correspond to fixed points in the world. State which point is in which of these three categories. For points in
the last two categories, explain briefly and clearly in what way and for what reason the results are not satisfactory. Assume that
the goal of tracking is to follow points in the world for use in reconstruction.

(b) The cell array sN returned in file TrackingExperiments is available in the MATLAB workspace after running this script.
This cell array has size 7×6, and has one row for every interval between consecutive frames (1-2, 2-3, ..., 7-8) and one column per
feature point in the initial frame. Entry, say, sN{1, 3} shows some information about the result of tracking feature 3 between
frames 1 and 2. Specifically, the field iteration shows the number of the last iteration. Field current is a point data
structure that shows the state of search that was current when the search terminated for that frame. A point has four fields: x is
the value of the displacement d in that iteration, y is the value of the SSD function at x, and the fields g and H are the gradient
and Hessian at that point in time. The fields first and previous in sN{1, 3} are also point data structures, but refer to
the initial and previous value, rather than the current one. So you can find the Hessian of the SSD function in the last iteration for
feature 3 between frames 1 and 2 as sN{1, 3}.current.H.

Use the MATLAB function cond and svd or eig to find the condition number cond(H) and smaller singular value σmin(H)
of the Hessian H for all features in the last frame in which all features are present. State what frame that is, and make an
understandable table with the required information. Approximate to two decimals.

(c) Do the values of either cond(H) or σmin(H) tell you that something is wrong with some of the features? Which values, what do
they tell you, and why? Explain.

(d) Report the number of function evaluations (evaluations of the function ssd in file ssdCost.m) used by each of the three
minimization methods.

(e) Are there any differences in the results across the three methods? Also consider resolution in your answer.

(f) The scene did not move while the images were taken. Can you guess in what direction the camera moved, and why can you tell?

2. All three experiments in TrackingExperiments are run by the function experiment, which in turn calls track, which calls
minimize. The only thing that changes between the three experiments, other than the number of the first figure in which to display
results, is the first argument to experiment, which is respectively set to Newton, descent, or grid. Each of these three variables
contains a method data structure. A method describes how the generic function in minimize is to behave. This function initializes
the state of a search (we encountered state structures earlier) and iterates by making a method.move until convergence, or until
a function cost.OK determines that the current state is unacceptable, or until a function method.done determines that the search has
converged.

Each of the three functions NewtonMethod, descentMethod, or gridMethod returns a different method. Every method
must have a name field (a printable string with the method’s name); a move field that is a handle to a function that performs the basic
move during search; an order field that states how many derivatives are needed for that method (0 if only the value is needed, 1
if the gradient is needed, 2 if the Hessian is needed); a done field that is a handle to a function that returns true iff convergence
has occurred, a maxIteration field that contains the maximum number of iterations allowed, and a boolean verbose field that
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determines whether to print out messages during execution of the search for a minimum. In addition, a method structure can contain
any field that is needed for specific methods.

We covered all three search methods in class, including the gridMethod, which just tries all possible values on a fixed grid of given
pitch and returns the position and value of the smallest cost it finds. We covered descentMethod in the context of back-propagation,
and the method provided with this assignment uses no momentum. We covered Newton’s method for the Lucas-Kanade tracker.

The ssdCost function makes a cost object, which contains a handle cost.f to the ssd function itself; a function handle
cost.OK to a function that determines if a value encountered during search is OK; plus any parameters that either cost.f or cost.OK
need to run (images, position pos of the feature in image I , window size winsize). Study in particular the functions ssd and OK in
file ssdCost.m. Note that ssd takes an order argument. If order is 0, then the point returned by ssd contains only x and y.
If order is 1, then ssd also places the gradient g into the point, and if order is 2, then ssd also places the Hessian H into the
point. Newton’s method is oder 2, gradient descent is order 1, and grid search is order 0.

Read the functions NewtonMethod, descentMethod, gridMethod, and ssdCost to understand how these functions are
implemented, and look at minimize to see how they are called. This way of programming separates relatively cleanly1 the general
structure of a minimization search (implemented in minimize) from the specifics of the method and cost, at the expense of a slight
degree of inefficiency.

(a) Write expressions for the gradient g and Hessian H of the following “banana” function:

f(x) = (a− x1)2 + b(x2 − x21)2

where a and b are parameters.

(b) At which point x∗ does the “banana” function reach its minimum value, and what is the value f(x∗) of the function at the
minimum?

(c) We know where the minimum of the “banana” function is, but we pretend we do not, and look for it by numerical minimization.
Mimic the TrackingEperiments to create a new script BananaExperiments.m that tries the three methods above—
Newton’s method, gradient descent, and grid search—to minimize the “banana” function. Your task is to complete the file
bananaCost.m, which already contains some code to get you started, uncomment the code that is commented out in the script
file BananaExperiments.m, and replace the NaN on line 31 of this script with the appropriate vector from your previous
answer.

PROGRAMMING NOTE. The code for function banana needs to be partially vectorized, just as that for function ssd in
ssdCost.m in problem 1 is. For ssd, partial vectorization means that when the input argument order is zero, the input
argument d can be a 2× nd array, rather than a single 2× 1 column vector. In that case, the function ssd returns a point where
field x is all of d and field y is a vector of length nd with all the SSD costs at d(:, 1), ..., d(:, nd). This feature is convenient
when plotting the SSD cost for a set of points, in which case the function ssd can be called just once. This code is only partially
vectorized, because when order is greater than 0 vectorization is not implemented (so gradient and Hessian are not vectorized).

Your code for banana needs to be partially vectorized because the function gridResidual relies on this feature. Try not to
use explicit for loops in banana.

[Hint: There is no constraint on cost here, so the OK function is trivial.]

Hand in your code for bananaCost, as well as a printout of the figure resulting from running the complete
BananaExperiments. Do not cut-and-paste code, but rather use the VerbatimInput command. For instance,

\VerbatimInput[fontsize=\small,fontshape=n,xleftmargin=15mm]{bananaCost.m}

(d) The number of function evaluations for each method is shown in the legend of the figure you produced in your previous answer.
Did any of the methods fail to converge in the maximum number of iterations allowed? If so, which method, and how many
iterations?

(e) Which method took fewest iterations? How many iterations?

(f) Are individual iterations for each method equally expensive? If not, which is most expensive, and which is least?

(g) Explain why the path taken by grid search looks the way it looks.

(h) What would you need to do for grid search to achieve an accuracy similar to that achieved by the better of the other two methods?
How expensive would that change be? Does the increase in expense depend on the dimensionality of the search space (which is 2
in the example)?

1Object-Oriented Programming (OOP) would make the separation even cleaner, but is avoided here because few students know the MATLAB flavor of OOP.
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