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If standard Cartesian coordinates are used, a rigid transformation takes the form1

X′ = R(X− t)

and the equations of perspective projection are of the following form:

x1 = f
X1

X3
and x2 = f

X2

X3
.

When describing the geometry of images taken from different viewpoints, one typically transforms the
world coordinates of a point X through a rigid transformation to obtain the coordinates X′ of that point
in the camera reference frame D. The world reference frame is often attached to the first camera, and
is therefore called C. The new point is then projected to the image plane to obtain camera coordinates2

y′ = [y′1, y
′
2]
T , and this point in turn is converted to image coordinates η′ = [η′1, η

′
2]
T through another affine

transformation

η′ =

[
s′1 0
0 s′2

]
y′ + c′0

as we saw in a previous note. In the equation above, s′1, s
′
2, c

′
0 are the internal parameters of the camera D.

Combining these transformations can get messy, and forces one to spell out formulas for individual
coordinates:

η′1 = s′1f
′ i

T (X− t)

kT (X− t)
+ c′01 and η′2 = s′2f

′ j
T (X− t)

kT (X− t)
+ c′02 .

In this expression, iT , jT , kT are the three rows of R.
This notational complication derives from the summation in affine transformations and from the division

in the projection equations. Notation becomes simpler if one uses homogeneous coordinates, in which
an additional dimension is added to every vector. It turns out that homogeneous coordinates also help
accommodate points at infinity seamlessly.

Homogeneous Coordinates

In two dimensions, a point is determined by three homogeneous coordinates:

x =

 x1
x2
x3


1We are now starting to talk about multiple cameras, so we reserve different letters of the alphabet to quantities that relate to

different cameras. Because of this, we now use subscripts to denote dimensions: x1, x2, x3 instead of x, y, z.
2Observe that X, X′ are coordinates of the same point in two different reference frames, while x and y′ are coordinates of two

different points in two different reference frames.
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which correspond to the point

e(x) =

 x1
x3

x2
x3


in Euclidean coordinates. Homogeneous coordinates are not unique: the same point e(x) is represented by
any vector of the form  αx1

αx2
αx3


where α is a nonzero constant, because α cancels when fractions are taken to compute the Euclidean vector
e(x).

For the correspondence above to be well defined, x3 must be nonzero. The definition of homogeneous
coordinates weakens this requirement by asking only that homogeneous coordinates not be zero simulta-
neously. So [0, 0, 0]T is not a valid vector of homogeneous coordinates, but x0 = [a, b, 0]T is, as long as a
and b are not both zero. Since the transformation e(x) is then undefined, the point x0 above does not repre-
sent a Euclidean point, that is, a point that is defined in Euclidean geometry. To understand the significance
of this point, consider the vector of homogeneous coordinates

xc =

 a
b
c


with nonzero c. Then,

e(xc) =

 a
c

b
c

 .
As c varies, the point with Euclidean coordinates e(xc)—or homogeneous coordinates xc—moves along
the line from the origin through e(x1) = [a, b]T . So changing the last homogeneous coordinate scales the
point. Because of this, that coordinate is called the scaling factor. If c tends to zero, the point moves further
and further from the origin and in either direction, depending on the sign of c. One can therefore identify
x0 as the point at infinity on that line. Euclidean coordinates have no way to give that point a name, but
homogeneous coordinates do.

This is a fundamental distinction, and one can create a whole new geometry—called projective geome-
try—based on it. The Euclidean plane augmented with all the points at infinity is called the projective plane
P2 and its points are called projective points. A projective point at infinity, [a, b, 0]T with (a, b) 6= (0, 0),
can be usefully used to represent the direction of the half-line through the origin and Euclidean point [a, b]T .
The set of all points at infinity on P2 is called the line at infinity.

Of course, there is also a projective space P3 of all the projective points with homogeneous coordinates

X =


X1

X2

X3

X4

 with (X1, X2, X3, X4) 6= (0, 0, 0, 0) .
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When X4 6= 0, this point corresponds to the Euclidean point

e(X) =


X1
X4

X2
X4

X3
X4

 .
Similar considerations hold for P3 as do for P2, and the set of all points at infinity on P3 is called the plane
at infinity.

Projection Equations in Homogeneous Coordinates

For us, the main advantage of using homogeneous coordinates is that both affine transformations and pro-
jections become linear. Specifically, let the standard reference frame for a camera C be a right-handed
Cartesian frame with its origin at the center of projection of C, its positive X3 axis pointing towards the
scene along the optical axis of the lens, and its positive X1 axis pointing to the right3 along the rows of the
camera sensor. As a consequence, the positive X2 axis points downwards along the columns of the sensor.

Then, let X and X′ denote the homogeneous coordinates of the same 3D point P in the standard refer-
ence frames of two cameras C and D. We attach the world reference system to C, so un-primed coordinates
refer to C and are also world coordinates. Let

X′ ∼ GX where G ∼
[
R −Rt
0T 1

]
(1)

be the rigid transformation between the two reference systems. In the expression for G above, the column
vector 0 contains three zeros, and the 3× 3 matrix R represents a rotation, so that

RTR = RRT = I3 and det(R) = 1 . (2)

The rows ofR are the unit vectors along the positive axes ofD in the reference frame of C. The 3×1 vector
t contains the coordinates of the center of projection of D in the reference frame of C, so that the vector of
Euclidean coordinates of the center of projection of C in the reference frame of D is

s′ = −Rt (3)

as was shown in a previous note. Then, the key relationships can be expressed as follows in homogeneous
coordinates.4

X′ ∼ GX where X,X′ ∈ P3 and G ∼
[
R −Rt
0T3 1

]
x ∼ ΠX and y′ ∼ ΠX′ where x,y′ ∈ P2 , Π ∼

[
I3 0

]
ξ ∼ KsKfx and η′ ∼ K ′

sK
′
fy

′ where ξ,η′ ∈ P2 , Ks ∼
[
S c0
0T2 1

]
, K ′

s ∼
[
S′ c′0
0T2 1

]
,

Kf =

 f 0 0
0 f 0
0 0 1

 and K ′
f =

 f ′ 0 0
0 f ′ 0
0 0 1

 .

3When the camera is upside-up and viewed from behind it, as when looking through its viewfinder.
4With arguable inconsistency of notation, we use K and K′ to denote possibly different camera calibration matrices, rather than

using different letters, such as K and L. On the other hand, a camera calibration matrix is always expressed in its own reference
system, so this causes no problems.
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In these expressions, 0k is a column vector of k zeros, I3 is the 3× 3 identity, and

S =

[
s1 0
0 s2

]
, S′ =

[
s′1 0
0 s′2

]
.

If image coordinates ξ, η′ are in pixels and world and image coordinates X,X′,x,y′ are, say, in millimeters,
then s1, s2, s′1, s

′
2 are in pixels per millimeter and f , f ′ are in millimeters.

The symbol ‘∼’ represents projective equality: two vectors X, Y for which

X ∼ Y

represent the same point in projective space, but are merely proportional, rather than equal, to each other as
vectors:

X ∼ Y ⇔ X = αY for some α 6= 0 .

With these definitions, the relationships between world point P and its image points ξ and η′ can be ex-
pressed concisely in matrix form as follows:

ξ = PX and η′ = P ′X where P = KsKfΠ and P ′ = K ′
sK

′
fΠG .

The matrices P , P ′, Π, K, K ′ are all 3 × 4. The matrices P , P ′ are called projection matrices, the matrix
Π is called the canonical projection matrix, and the matrices Kf , K ′

f , Ks, K ′
s are called internal camera

calibration matrices.

The Canonical Camera

Perhaps the subtlest of the equations above concerns canonical projection, x ∼ ΠX, so here it is again,
spelled out with all its coordinates:

 x1
x2
x3

 ∼
 1 0 0 0

0 1 0 0
0 0 1 0



X1

X2

X3

X4

 .

This equation eliminates the scaling constant X4 altogether, consistently with the fact that all points in P3

on the line through the origin and the point with Euclidean coordinates [X1, X2, X3]
T project onto the same

image point, because the origin is the center of projection. It then reinterprets x3 = X3 to be the scaling
factor of x ∈ P2. So all points with Euclidean coordinates

e(X) =


X1
X4

X2
X4

X3
X4

 ∈ R3

as well as the projective point 
X1

X2

X3

0
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project to image point

e(x) =

 x1
x3

x2
x3

 =

 X1
X3

X2
X3

 .
A point in P3 with X3 = 0 is a point on the (projective) plane through the center of projection and parallel
to the image plane. Appropriately, it projects to point at infinity X1

X2

0


on the image plane P . If one introduces a transformation from Euclidean to homogeneous coordinates

h(x) =

[
x
1

]
,

then the equation x ∼ ΠX can also be written as follows for Euclidean points:

x ∼ h(e(X))

(check this!), but not for points at infinity.
The coordinates x and y′ are called canonical image coordinates, and the reference system in which they

are measured is called the canonical reference system. The canonical projection is the projection matrix P
that would be obtained when Ks = Kf = I3, the 3 × 3 identity matrix. Because of this, the canonical
coordinates x and y′ can be viewed as the homogeneous coordinates of image points taken with a canonical
camera that has a focal distance of 1, and for which image coordinates are measured relative to the principal
point.

We point out a convenient coincidence regarding coordinates of image points in the canonical reference
system. In this system, the third Euclidean coordinate of an image point is 1—the canonical focal distance.
Because of this, the canonical coordinates x, y′ can be viewed in two different ways: They are either vectors
of homogeneous coordinates for the two-dimensional image point, or vectors of Euclidean coordinates of the
three-dimensional vectors from the center of projection to the image point. In other words, in the canonical
reference frame the distinction between homogeneous coordinates and Euclidean coordinates is mainly in
the eyes of the beholder.
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