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When not given in the main text, proofs are in Appendix A.

1 Matrices and Vectors

A (real) matrix of size m× n is an array of mn real numbers arranged in m rows and n columns:

A =

 a11 · · · a1n
...

...
am1 · · · amn

 .

The n×m matrix AT obtained by exchanging rows and columns of A is called the transpose of A. A matrix
A is said to be symmetric if A = AT .

The sum of two matrices of equal size is the matrix of the entry-by-entry sums, and the scalar product
of a real number a and an m× n matrix A is the m× n matrix of all the entries of A, each multiplied by a.
The difference of two matrices of equal size A and B is

A−B = A+ (−1)B .

The product of an m× p matrix A and a p× n matrix B is an m× n matrix C with entries

cij =

p∑
k=1

aikbkj .

The matrix  v1
...
vn


is called a column vector, and the matrix [

v1 · · · vn
]

is called a row vector. Column vectors are denoted by lowercase bold symbols, say a. The corresponding
row vector (that is, the row vector with the same entries in the same order) is aT .

All algebraic operations on vectors are inherited from the corresponding matrix operations, when de-
fined. In addition, the inner product of two n-dimensional vectors

a = (a1, . . . , an) and b = (b1, . . . , bn)
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is the real number equal to the matrix product aTb. It is easy to verify that this is also equal to bTa. Two
vectors that have a zero inner product are said to be orthogonal.

The norm of a vector a is
‖a‖ =

√
aTa .

A unit vector is a vector with norm one.
The outer product of an m dimensional vector a with an n-dimensional vector b is the m × n matrix

abT .

2 Vector Spaces

Given n vectors a1, . . . ,an and n real numbers x1, . . . , xn, the vector

b =

n∑
j=1

xjaj (1)

is said to be a linear combination of a1, . . . ,an with coefficients x1, . . . , xn.
The vectors a1, . . . ,an are linearly dependent if they admit the null vector as a nonzero linear combina-

tion. In other words, they are linearly dependent if there is a set of coefficients x1, . . . , xn, not all of which
are zero, such that

n∑
j=1

xjaj = 0 . (2)

For later reference, it is useful to rewrite the last two equalities in a different form. Equation (1) is the same
as

Ax = b (3)

and equation (2) is the same as
Ax = 0 (4)

where

A =
[
a1 · · · an

]
, x =

 x1
...
xn

 , b =

 b1
...
bm

 .

If you are not convinced of these equivalences, take the time to write out the components of each expression
for a small example. This is important. Make sure that you are comfortable with this.

Thus, the columns of a matrix A are dependent if there is a nonzero solution to the homogeneous system
(4). Vectors that are not dependent are independent.

Theorem 2.1. The vectors a1, . . . ,an are linearly dependent iff1 at least one of them is a linear combination
of the others.

Even more specifically:

Corollary 2.2. If n nonzero vectors a1, . . . ,an are linearly dependent then at least one of them is a linear
combination of the ones that precede it.

1“iff” means “if and only if.”
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A set a1, . . . ,an is said to be a basis for a set B of vectors if the aj are linearly independent and every
vector in B can be written as a linear combination of them. B is said to be a vector space if it contains all
the linear combinations of its basis vectors. In particular, this implies that every linear space contains the
zero vector. The basis vectors are said to span the vector space.

Theorem 2.3. Given a vector b in the vector space B and a basis a1, . . . ,an for B, the coefficients
x1, . . . , xn such that

b =
n∑

j=1

xjaj

are uniquely determined.

The previous theorem is a very important result. An equivalent formulation is the following:

If the columns a1, . . . ,an of A are linearly independent and the system Ax = b admits a
solution, then the solution is unique.

Pause for a minute to verify that this formulation is equivalent.

Theorem 2.4. Two different bases for the same vector space B have the same number of vectors.

A consequence of this theorem is that any basis for Rm has m vectors. In fact, the basis of elementary
vectors

ej = jth column of the m×m identity matrix

is clearly a basis for Rm, since any vector

b =

 b1
...
bm


can be written as

b =
m∑
j=1

bjej

and the ej are clearly independent. Since this elementary basis has m vectors, theorem 2.4 implies that any
other basis for Rm has m vectors.

Another consequence of theorem 2.4 is that n vectors of dimension m < n are bound to be dependent,
since any basis for Rm can only have m vectors.

Since all bases for a space have the same number of vectors, it makes sense to define the dimension of a
space as the number of vectors in any of its bases.

3 Linear Transformations

Linear transformations map spaces into spaces. It is important to understand exactly what is being mapped
into what in order to determine whether a linear system has solutions, and if so how many. This section
introduces the notion of orthogonality between spaces, defines the null space and range of a matrix, and its
rank. In the process, we also introduce a useful procedure (Gram-Schmidt) for orthonormalizing a set of
linearly independent vectors.
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Two vector spaces A and B are said to be orthogonal to one another when every vector in A is orthogonal
to every vector in B. If vector space A is a subspace of Rm for some m, then the orthogonal complement
of A is the set of all vectors in Rm that are orthogonal to all the vectors in A.

Notice that complement and orthogonal complement are very different notions. For instance, the com-
plement of the xy plane in R3 is all of R3 except the xy plane, while the orthogonal complement of the xy
plane is the z axis.

Theorem 3.1. Any basis a1, . . . ,an for a subspace A of Rm can be extended into a basis for Rm by adding
m− n vectors an+1, . . . ,am.

The following is called the Gram-Schmidt theorem.

Theorem 3.2. Given n vectors a1, . . . ,an, the following construction

r = 0
for j = 1 to n

a′j = aj −
∑r

l=1(q
T
l aj)ql

if ‖a′j‖ 6= 0

r = r + 1

qr =
a′
j

‖a′
j‖

end
end

yields a set of orthonormal 2 vectors q1 . . . ,qr that span the same space as a1, . . . ,an.

The Gram-Schmidt theorem is a useful procedure in its own right. It also leads to a simple proof for the
following result.

Theorem 3.3. If A is a subspace of Rm and A⊥ is the orthogonal complement of A in Rm, then

dim(A) + dim(A⊥) = m .

We can now start to talk about matrices in terms of the subspaces associated with them. The null space
null(A) of an m × n matrix A is the space of all n-dimensional vectors that are orthogonal to the rows of
A. The range of A is the space of all m-dimensional vectors that are generated by the columns of A. Thus,
x ∈ null(A) iff Ax = 0, and b ∈ range(A) iff Ax = b for some x. This can be restated into the following
immediate but very important statement:

Theorem 3.4. The matrix A transforms a vector x in its null space into the zero vector, and an arbitrary
vector x into a vector in range(A).

The spaces orthogonal to null(A) and range(A) occur frequently enough to deserve names of their own.
The space range(A)⊥ is called the left nullspace of the matrix, and null(A)⊥ is called the rowspace of A.

2Orthonormal means orthogonal and with unit norm.
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A frequently used synonym for “range” is column space. It should be obvious from the meaning of these
spaces that

null(A)⊥ = range(AT )

range(A)⊥ = null(AT )

where AT is the transpose of A, defined as the matrix obtained by exchanging the rows of A with its
columns.

In summary, four spaces are associated with an m× n matrix A:

range(A);
null(A);
range(A)⊥ = leftnull(A);
null(A)⊥ = rowspace(A) .

In order to count solutions to a linear system, it is important to establish how the dimensions of these
spaces relate to each other. From theorem 3.3, if null(A) has dimension h, then the space generated by the
rows of A has dimension r = n − h, that is, A has n − h linearly independent rows. It is not obvious that
the space generated by the columns of A has also dimension r = n− h. Even more strongly, the following
theorem holds:

Theorem 3.5. The matrix A establishes a one-to-one mapping between rowspace(A) and range(A).

Thus, the two linear vector spaces rowspace(A) and range(A) are isomorphic to each other, and therefore
have equal dimension. In summary, if we define

r = dim(range(A))
h = dim(null(A))

then theorems 3.3 and 3.5 yield the following:

dim(leftnull(A)) = dim(range(A)⊥) = m− r
dim(rowspace(A)) = dim(null(A)⊥) = n− h = r .

This also implies the following result:

Corollary 3.6. The number r of linearly independent columns of any m×n matrix A is equal to the number
of its independent rows.

As a result, we can define the rank of A to be equivalently the number of linearly independent columns
or of linearly independent rows of A:

r = rank(A) = dim(range(A)) = n− dim(null(A)) = n− h .

Note that if Ax = b, then for any vector y ∈ null(A) we also have A(x + y) = Ax + Ay = Ax
because Ay = 0. Therefore, the matrix A maps vectors in Rn that differ only by a vector in null(A) to the
same point. Since rowspace(A) is isomorphic to range(A), it is then convenient to take each point xr of
rowspace(A) as a representative of the affine space

A(xr) = xr + null(A)

5



R m 

1-1 

null(A) 

ro
ws

pa
ce

 (
A)

 

left null(A) 

range(A) 

R n 

x r 

Figure 1: An m× n matrix A maps all of Rn to range(A) (top arrow), and null(A) to zero (bottom arrow).
The row space and range of A are isomorphic to each other (i.e., in 1-1 correspondence), and for each point
xr ∈ rowspace(A) there is an affine space xr + null(A) of dimension h = dim(null(A)) = n − rank(A)
that maps (dotted arrow) to the single point Axr.

of points that all map to the single point Axr. The sum in the expression above means that the single vector
xr is added to every vector of the linear space null(A) to produce the affine space A(xr).

The foregoing discussion allows forming the picture of a linear mapping shown in figure 1.
As a brief aside, the picture of the isomorphism between the two linear spaces rowspace(A) and range(A)

can be made stronger by observing that A also transforms any basis for rowspace(A) into a basis for
range(A). This is not immediately obvious, since if v1, . . . ,vr are a basis for rowspace(A) then Av1, . . . , Avr

might conceivably be dependent, or fail to span all of range(A). However, this is not so:

Theorem 3.7. If the vectors v1, . . . ,vr are a basis for rowspace(A), then the vectors Av1, . . . , Avr are a
basis for range(A).
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A Proofs

Theorem 2.1

The vectors a1, . . . ,an are linearly dependent iff3 at least one of them is a linear combination of the others.

Proof. In one direction, dependency means that there is a nonzero vector x such that

n∑
j=1

xjaj = 0 .

Let xk be nonzero for some k. We have

n∑
j=1

xjaj = xkak +

n∑
j=1, j 6=k

xjaj = 0

so that

ak = −
n∑

j=1, j 6=k

xj
xk

aj (5)

as desired. The converse is proven similarly: if

ak =
n∑

j=1, j 6=k

xjaj

for some k, then
n∑

j=1

xjaj = 0

by letting xk = −1 (so that x is nonzero).

Corollary 2.2

If n nonzero vectors a1, . . . ,an are linearly dependent then at least one of them is a linear combination of
the ones that precede it.

Proof. Let k be the last of the nonzero xj in the proof of theorem 2.1. Then xj = 0 for j > k in (5), which
then becomes

ak =
n∑

j<k

xj
xk

aj

as desired.
3“iff” means “if and only if.”
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Theorem 2.3

Given a vector b in the vector space B and a basis a1, . . . ,an for B, the coefficients x1, . . . , xn such that

b =

n∑
j=1

xjaj

are uniquely determined.

Proof. Let

b =
n∑

j=1

x′jaj .

Then,

0 = b− b =

n∑
j=1

xjaj −
n∑

j=1

x′jaj =

n∑
j=1

(xj − x′j)aj

but because the aj are linearly independent, this is possible only when xj − x′j = 0 for every j.

Theorem 2.4

Two different bases for the same vector space B have the same number of vectors.

Proof. Let a1, . . . ,an and a′1, . . . ,a
′
n′ be two different bases for B. Then each a′j is in B (why?), and can

therefore be written as a linear combination of a1, . . . ,an. Consequently, the vectors of the set

G = a′1,a1, . . . ,an

must be linearly dependent. We call a set of vectors that contains a basis for B a generating set for B. Thus,
G is a generating set for B.

The rest of the proof now proceeds as follows: we keep removing a vectors from G and replacing them
with a′ vectors in such a way as to keep G a generating set for B. Then we show that we cannot run out of
a vectors before we run out of a′ vectors, which proves that n ≥ n′. We then switch the roles of a and a′

vectors to conclude that n′ ≥ n. This proves that n = n′.
From corollary 2.2, one of the vectors in G is a linear combination of those preceding it. This vector

cannot be a′1, since it has no other vectors preceding it. So it must be one of the aj vectors. Removing the
latter keeps G a generating set, since the removed vector depends on the others. Now we can add a′2 to G,
writing it right after a′1:

G = a′1,a
′
2, . . . .

G is still a generating set for B.
Let us continue this procedure until we run out of either a vectors to remove or a′ vectors to add. The a

vectors cannot run out first. Suppose in fact per absurdum that G is now made only of a′ vectors, and that
there are still left-over a′ vectors that have not been put into G. Since the a′s form a basis, they are mutually
linearly independent. Since B is a vector space, all the a′s are in B. But then G cannot be a generating set,
since the vectors in it cannot generate the left-over a′s, which are independent of those in G. This is absurd,
because at every step we have made sure that G remains a generating set. Consequently, we must run out of
a′s first (or simultaneously with the last a). That is, n ≥ n′.

Now we can repeat the whole procedure with the roles of a vectors and a′ vectors exchanged. This
shows that n′ ≥ n, and the two results together imply that n = n′.
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Theorem 3.1

Any basis a1, . . . ,an for a subspace A of Rm can be extended into a basis for Rm by adding m−n vectors
an+1, . . . ,am.

Proof. If n = m we are done. If n < m, the given basis cannot generate all of Rm, so there must be a
vector, call it an+1, that is linearly independent of a1, . . . ,an. This argument can be repeated until the basis
spans all of Rm, that is, until m = n.

Theorem 3.2

Given n vectors a1, . . . ,an, the following construction

r = 0
for j = 1 to n

a′j = aj −
∑r

l=1(q
T
l aj)ql

if ‖a′j‖ 6= 0

r = r + 1

qr =
a′
j

‖a′
j‖

end
end

yields a set of orthonormal 4 vectors q1 . . . ,qr that span the same space as a1, . . . ,an.

Proof. We first prove by induction on r that the vectors qr are mutually orthonormal. If r = 1, there is little
to prove. The normalization in the above procedure ensures that q1 has unit norm. Let us now assume that
the procedure above has been performed a number j−1 of times sufficient to find r−1 vectors q1, . . . ,qr−1,
and that these vectors are orthonormal (the inductive assumption). Then for any i < r we have

qT
i a
′
j = qT

i aj −
r−1∑
l=1

(qT
l aj)q

T
i ql = 0

because the term qT
i aj cancels the i-th term (qT

i aj)q
T
i qi of the sum (remember that qT

i qi = 1), and the
remaining inner products of the form qT

i ql are zero by the inductive assumption. Because of the explicit
normalization step qr = a′j/‖a′j‖, the vector qr, if computed, has unit norm, and because qT

i a
′
j = 0, it

follows that qr is orthogonal to all its predecessors, qT
i qr = 0 for i = 1, . . . , r − 1.

Finally, we notice that the vectors qj span the same space as the ajs, because the former are linear
combinations of the latter, are orthonormal (and therefore independent), and equal in number to the number
of linearly independent vectors in a1, . . . ,an.

Theorem 3.3

If A is a subspace of Rm and A⊥ is the orthogonal complement of A in Rm, then

dim(A) + dim(A⊥) = m .

4Orthonormal means orthogonal and with unit norm.
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Proof. Let a1, . . . ,an be a basis for A. Extend this basis to a basis a1, . . . ,am for Rm (theorem 3.1).
Orthonormalize this basis by the Gram-Schmidt procedure (theorem 3.2) to obtain q1, . . . ,qm. By con-
struction, q1, . . . ,qn span A. Because the new basis is orthonormal, all vectors generated by qn+1, . . . ,qm

are orthogonal to all vectors generated by q1, . . . ,qn, so there is a space of dimension at least m− n that is
orthogonal to A. On the other hand, the dimension of this orthogonal space cannot exceed m− n, because
otherwise we would have more than m vectors in a basis for Rm. Thus, the dimension of the orthogonal
space A⊥ is exactly m− n, as promised.

Theorem 3.5

The matrix A establishes a one-to-one mapping between rowspace(A) and range(A).

Proof. This statement means that A maps different elements x ∈ rowspace(A) into different elements
b = Ax ∈ range(A). Let then r1 and r2 be two different vectors in rowspace(A). We need to show that
Ar1 and Ar2 are different as well.

Since r1 and r2 are different linear combinations of the vectors in any given basis for the row space,
their difference d = r1 − r2 is a nonzero linear combination of the basis vectors of the row space. As a
consequence, d is nonzero and orthogonal to all vectors in null(A), and therefore Ad is nonzero. Then,

0 6= Ad = A(r1 − r2) = Ar1 −Ar2 ,

so that
Ar1 6= Ar2 .

Theorem 3.7

If the vectors v1, . . . ,vr are a basis for rowspace(A), then the vectors Av1, . . . , Avr are a basis for
range(A).

Proof. First, the r vectors Av1, . . . , Avr generate the range of A. In fact, given an arbitrary vector b ∈
range(A), there must be a linear combination of the columns of A that is equal to b. In symbols, there is an
n-tuple x such that Ax = b. Let vr+1, . . . ,vn be a basis for null(A), so that v1, . . . ,vn is a basis for Rn.
Then,

x =
n∑

j=1

cjvj .

Thus,

b = Ax = A
n∑

j=1

cjvj =
n∑

j=1

cjAvj =
r∑

j=1

cjAvj

since vr+1, . . . ,vn span null(A), so that Avj = 0 for j = r + 1, . . . , n. This proves that the r vectors
Av1, . . . , Avr generate range(A).

Second, we prove that these vectors are linearly independent. Suppose, per absurdum, that they are not.
Then there exist numbers x1, . . . , xr, not all zero, such that

r∑
j=1

xjAvj = 0
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so that

A
r∑

j=1

xjvj = 0 .

But then the vector
∑r

j=1 xjvj is in the null space of A. Since the vectors vr+1, . . . ,vn are a basis for
null(A), there must exist coefficients xr+1, . . . , xn such that

r∑
j=1

xjvj =
n∑

j=r+1

xjvj ,

in conflict with the assumption that the vectors v1, . . . ,vn are linearly independent.
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