
The Eight-Point Algorithm

Carlo Tomasi

This note describes a method for computing estimates of the rigid transformation G and estimates
of the coordinates of a set of n points P1, . . . ,Pn in the two camera reference frames from the n pairs
(x1,y

′
1), . . . (xn,y

′
n) of noisy measurements of their corresponding images. The transformation G is called

camera motion, and the point coordinates Xi, X′i of the world points in the two reference systems are collec-
tively called the scene structure. This classic method is called the eight-point algorithm and is was invented
by Hugh Christopher Longuet-Higgins in 1981 [3].

The points xi and y′i are in the canonical reference system of each camera, so their third coordinate is
equal to 1. As such, they can be viewed as either the Euclidean coordinates of 3D points, or as homogeneous
coordinates of 2D image points. However, we use Euclidean coordinates for other 3D points to describe the
eight-point algorithm—a method devised before homogeneous coordinates became pervasive in computer
vision. Nowadays, this algorithm is typically embedded in code that uses homogeneous coordinates every-
where else, for notational convenience. We also resort to homogeneous coordinates in Appendix B where
we discuss triangulation, that is, the calculation of X, X′ from the image points and G.

Since cameras fundamentally measure angles, both structure and motion can be estimated only up to a
common nonzero multiplicative scale factor. The resulting degree of freedom is eliminated by assuming that

‖s′‖ = ‖t‖ = 1 . (1)

An initial version of the method described below appeared in 1981 [3] and is often called the eight-point
algorithm, because it requires a minimum of n = 8 pairs of corresponding image points.

The epipolar constraint described in a previous note can be rewritten in the following form:

aTη = 0 where a = x⊗ y′ =

 x1 y
′

x2 y
′

x3 y
′

 (2)

is the Kronecker product1 of x =
[
x1 x2 x3

]T and y′, and

η = E(:) =
[
e11 e21 e31 e12 e22 e32 e13 e23 e33

]T
is the stack of entries in E read by columns. Equation (2) can be replicated n times, one per image point
pair, to yield a linear system

Aη = 0 where A =
[
a1 · · · an

]T
1More generally, the Kronecker product of two matrices B and C where B is m× n is defined as follows:

B ⊗ C =

 b11C . . . b1nC
...

...
bm1C . . . bmnC

 .

1



is an n × 9 matrix. The homogeneous nature of this system reflects the fact that translation t and therefore
the essential matrix E are defined up to a nonzero multiplicative scale factor. As we know from a previous
note, to prevent the trivial solution η = 0 and at the same time solve the system above in the least-squares
sense to account for measurement inaccuracies, one computes

η = arg min
‖η‖=1

‖Aη‖ = v9 where A = UAΣAV
T
A

is the Singular Value Decomposition (SVD) of A and v9 is the last column of VA. The resulting vector η is
then reshaped into an estimate E of the essential matrix.2

As we know, the essential matrix has rank 2 and equal singular values. However, the solution just found
may not satisfy these constraints exactly, because it comes from noisy data. It should come to no surprise
that the best approximation of E that does satisfy these constraints can be computed by first computing the
SVD of E and then forcing the singular values to be equal to (1, 1, 0):

E = UΣV T and then E ← U

 1 0 0
0 1 0
0 0 0

V T .

We also know that the null space of E is the one-dimensional space spanned by t, which also spans the null
space of the skew matrix [t]×. So an estimate of t is

t1,2 = ±v3

where v3 is the last column of V . The ambiguity in the sign of t will be resolved later.
Given t, one can construct the skew matrix [t]×, and then estimateR by solving the following Procrustes

problem [1]:
E ≈ R [t]× . (3)

where the approximation is in the Frobenius norm. That is,

R = arg min
R
‖E −R [t]×‖F =

√∑
i,j

d2ij where D = [dij ] = E −R [t]× .

Appendix A shows3 that if E and [t]× were full rank, the solution to problem (3) would be

R = Qdet(Q) where Q = UCV
T
C and C = UCΣCV

T
C

is the SVD of the 3× 3 matrix
C = E [t]T× ,

and where the multiplication by det(Q) ensures that the resulting orthogonal matrix is a rotation. This
multiplication is allowed, because if E is an essential matrix then so is −E.

However, the two matricesE and [t]× have rank 2, and their third singular vectors (both left and right)—
equal to the unit translation vectors s′ and t from the discussion above—are defined up to a sign. Because
of this, the Procrustes problem has two solutions:

R1,2 = W1,2 det(W1,2) where W1,2 = α1β
T
1 +α2β

T
2 ± s′tT

2As we found out in a previous note, the two nonzero singular values of the essential matrix are equal to each other, and the
matrix Ẽ that satisfies this constraint and is closest to E in the Frobenius norm is Ẽ = Udiag([1, 1, 0])V T where E = UΣV T is
the SVD of E. However, the singular values of Ẽ are not needed in the computation that follows, so this correction is unnecessary.

3Let A = E and B = [t]× in that proof, so that p = n = 3.

2



where
UB =

[
α1 α2 −s′

]
, VB =

[
β1 β2 t

]
.

The minus sign for t comes from equation
s′ = −Rt

found in an earlier note for the transformation from the second camera frame back to the first. Combining
the twofold ambiguity in t with that in R yields four solutions, each corresponding to a different essential
matrix:

(t, R1) , (−t, R2) , (t, R2) , (−t, R1) .

Appendix B shows that only one of these solutions places all reconstructed world points in front of
both cameras. The correct solution can then be identified by computing structure for all four cases by
triangulation, and choosing the one solution that enforces structure to be in front of both cameras. Allowing
for reconstruction errors, a safer approach is to chose the solution with a majority of points in front of the
camera. Appendix B shows the details of this calculation and Figures 1 and 2 list the complete MATLAB

code for 3D reconstruction with two cameras.

References

[1] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996.

[2] R. I. Hartley. Chirality. International Journal of Computer Vision, 26(1):41–61, 1998.

[3] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature,
293:133–135, September 1981.

3



function [G, X, Y] = longuetHiggins(x, y)

% Number of point correspondences
n = size(x, 2);

if size(y, 2) ˜= n
error('The number of points in the two images must be the same');

end

% Set up matrix A such that A*E(:) = 0, where E is the essential matrix.
% This system encodes the epipolar constraint
A = zeros(n, 9);
for i = 1:n

A(i,:) = kron(x(:,i),y(:,i))';
end

if rank(A) < 8
error('Measurement matrix rank deficient')

end;

% The singular vector corresponding to the smallest singular value of A
% is the arg min_{norm(e) = 1} A * e, and is the LSE estimate of E(:)
[˜, ˜, V] = svd(A);
E = reshape(V(:,9), 3, 3);

% The two possible translation vectors are t and -t, where t is a unit
% vector in the null space of E
[˜, ˜, VE] = svd(E);
t = VE(:, 3);

% Two rotation matrix choices are found by solving the Procrustes problem
% for the rows of E and skew(t), and allowing for the ambiguity resulting
% from the sign of the null-space vectors (both E and skew(t) are rank 2).
% These two choices are independent of the sign of t, because both E and -E
% are essential matrices
tx = skew(t);
[UR, ˜, VR] = svd(E * tx);
R1 = UR * VR';
R1 = R1 * det(R1);
UR(:, 3) = -UR(:, 3);
R2 = UR * VR';
R2 = R2 * det(R2);

% Combine the two sign options for t with the two choices for R
t = [t, t, -t, -t];
R = cat(3, R1, R2, R1, R2);

% Pick the combination of t and R that yields the greatest number of
% positive depth (Z) values in the structure results in the frames of
% reference of both cameras. Ideally, all depth values should be positive
npd = zeros(4, 1);
X = zeros(4, n, 4);
Y = zeros(4, n, 4);
for k = 1:4

G = [R(:, :, k), -R(:, :, k) * t(:, k); 0 0 0 1];
[X(:, :, k), Y(:, :, k)] = triangulate(x, y, G);
npd(k) = sum(X(3, :, k) > 0 & Y(3, :, k) > 0);

end
[˜, best] = max(npd);
G = [R(:, :, best), -R(:, :, best) * t(:, best); 0 0 0 1];
X = X(:, :, best);
Y = Y(:, :, best);

Figure 1: Main function of the MATLAB code for 3D reconstruction with two cameras.

4



function [X, Y] = triangulate(x, y, G)

n = size(x, 2);

Pi = [eye(3), zeros(3, 1)];
Phi = Pi * G;

X = zeros(4, n);

for i=1:n
A = [x(1, i) * Pi(3, :) - Pi(1, :);

x(2, i) * Pi(3, :) - Pi(2, :);
y(1, i) * Phi(3, :) - Phi(1, :);
y(2, i) * Phi(3, :) - Phi(2, :)];

[˜, ˜, v] = svd(A);
X(:, i) = v(:,4);

end

Y = G * X;

% Normalize fourth coordinate
X = homogeneous(euclidean(X));
Y = homogeneous(euclidean(Y));

function T = skew(t)

T = [0 -t(3) t(2); t(3) 0 -t(1); -t(2) t(1) 0];

function h = homogeneous(e)

h = [e; ones(1, size(e, 2))];

function e = euclidean(h)

w = h(end, :);
d = size(h, 1) - 1;
e = h(1:d, :);

nz = w ˜= 0;
e(:, nz) = h(1:d, nz) ./ (ones(d, 1) * w(nz));

Figure 2: Auxiliary MATLAB functions for 3D reconstruction with two cameras.

5



Appendix A: Solving the Procrustes Problem

This proof is adapted from a classical text on matrix computations [1], and applies to any two matrices A
and B of size p× n that encode two sets of n data points in p dimensions.

Theorem .1. Let corresponding columns of the two matricesA,B ∈ Rp×n encode n pairs of corresponding
points in Rp with p ≤ n. The following algorithm finds an orthogonal matrix Q ∈ Rp×p that minimizes the
Frobenius norm of ‖A−QB‖F .

C = ABT

[U,Σ, V ] = svd(C)

Q = UV T

Proof. The trace tr(C) of a matrixC is the sum of its diagonal entries, and from the definition of Frobenius
norm of a matrix C,

‖C‖2F =
∑
i,j

c2ij = tr(CCT ) .

Then,
‖A−QB‖2F = tr[(A−QB)(A−QB)T ] = tr(AAT ) + tr(BBT )− 2 tr(ABTQT )

where we used the fact that Q is orthogonal and that the trace of the sum of several matrices is the sum of
their traces.

The first two terms in the right-hand side of the equation above do not depend on Q, so minimizing
‖A−QB‖2F is the same as maximizing tr(ABTQT ). If

ABT = UΣV T

is the SVD of ABT , then we want to find the maximum of

tr(UΣV TQT ) = tr(UΣV TQTUUT ) = tr(UΣZUT ) where Z = V TQTU

is an orthogonal matrix. It is easy to verify that the trace is a commutative operator, so that

tr(UΣZUT ) = tr(ΣZUTU) = tr(ΣZ) =

p∑
i=1

σizii .

Since Z is the product of orthogonal matrices, it is itself orthogonal. The rows of orthogonal matrices have
unit norm, so no entry in an orthogonal matrix can have magnitude greater than 1. So the sum in the last
term above is maximized when

z11 = . . . = zpp = 1 ,

which occurs when Z is the p× p identity matrix Ip. So one solution is achieved when

Z = Ip that is, V TQTU = Ip or QT = V UT .

The last equation was obtained by multiplying the previous one by V on the left and by UT on the right.
Thus,

Q = UV T

6



as promised.
If the matrix C is full rank (so that both A and B are full rank), then this is the only solution. Otherwise,

this is just a solution, because some of the σi are zero, so the corresponding values zii do not matter. The
case in which rank(C) = p − 1 is both simple and relevant to the eight-point algorithm. In that case, the
null space of C has dimension 1, so the only ambiguity in U and V that pertains to the last singular value is
the sign of its last singular vectors up and vp. Changing the sign of both vectors leaves the product UV T

unaltered, because

UV T =
[
u1 . . . up

] [
v1 . . . vp

]T
=

p∑
i=1

uiv
T
i .

So if UV T is one solution, then the other one is[
u1 . . . −up

] [
v1 . . . vp

]T
which is the same as [

u1 . . . up

] [
v1 . . . −vp

]T
.

∆

Appendix B: Resolving the Sign Ambiguity

Because of the sign ambiguity in s′ and t, the Procrustes problem has two solutions:

R1,2 = W1,2 det(W1,2) where W1,2 = α1β
T
1 +α2β

T
2 ± s′tT

where
UB =

[
α1 α2 −s′

]
, VB =

[
β1 β2 t

]
.

Equivalently, if UB and VB are first replaced by their rotation versions UB det(UB) and VB det(VB) (so
that their determinants are equal to 1), we have

R1 = α1β
T
1 +α2β

T
2 − s′tT and R2 = −α1β

T
1 −α2β

T
2 − s′tT . (4)

These equations reveal that R1 and R2 relate to each other through a 180-degree rotation of either camera
reference frame around the baseline. To see this, write the transformation between these two frames of
reference as a transformation from frame 1 to the world frame composed with one from world frame to
frame 2:

R2R
T
1 = (−α1β

T
1 −α2β

T
2 − s′tT )(β1α

T
1 + β2α

T
2 − s′tT ) = −α1α

T
1 −α2α

T
2 + s′(s′)T ,

and this rotation maps α1 to −α1, α2 to −α2, and s (or t) to itself, as promised.
The transformation between the first and the last of the four solutions above places camera 2 on the

opposite side of camera 1 along the baseline.4 This transformation can equivalently described as leaving the
cameras where they are, pointing in the same way, but replacing all structure vectors Xi and X′i by their
opposites−Xi and−X′i. This transformation is said to change the chirality of structure in the literature [2],

4Of course, the same transformation can be described as a displacement of camera 1 relative to camera 2.

7



P

XC

ZC

C

XD

ZD

D

P

XC

ZC

C XD’

ZD’

D’

XD

ZD

D XC

ZC

C

P

XC

ZC

CXD’

ZD’

D’

P

Figure 3: The fourfold ambiguity of reconstruction corresponds to the two ways to pick the sign of t (left or
right diagrams) and the two ways to choose the rotation matrix R (top or bottom diagrams). A circle with a
cross (a dot) denotes a Y axis pointing into (out of) the page. Only the arrangement in the top right has the
scene structure (represented by the single point P and its two projection rays) in front of both cameras. [To
keep the figure uncluttered we use X,Y, Z instead of X1, X2, X3.]

because superposing the original structure with the transformed one requires a change of handedness of the
reference system (that is, a mirror flip). This transformation has the effect of placing the scene behind the
two cameras if it is in front of them to begin with. With some abuse of terminology, a change of chirality
in computer vision means merely changing whether structure is in front or behind a camera. In this sense,
structure has two values of chirality, one per camera. A 180-degree rotation around the baseline—obtained
by replacing R1 with R2 or vice versa—changes chirality once more, but only for the camera being rotated.

The four motion solutions given earlier correspond to using top right, top left, bottom right, and bottom
left camera pairs in Figure 3, in this order. The two top pairs in the figure are said to form a twisted pair,
and so are the two bottom pairs.

Only one of these solutions puts the scene points in front of both cameras. So the correct solution
can be identified by computing structure for all four cases by triangulation, and choosing the one solution
that enforces most of the structure solution (allowing for a few reconstruction errors) to be in front of both

8



cameras:

kTXe
i > 0 and kT (X′)ei > 0 for i = 1, . . . , n where kT =

[
0 0 1

]
and where Xe

i and (X′)ei are the Euclidean coordinates corresponding to homogeneous coordinates Xi and
X′i.

Since only the sign of the structure components is needed, a simple triangulation method will do. The
projection equation for each point X can be written as follows:

αx = ΠX and βy′ = Φ′X where Φ′ = ΠG

and vectors x and y′ can be normalized so their third components x3 and y′3 are equal to 1. We use the
canonical projection matrix in these equations because x and y′ are the canonical coordinates of the image
points. If we have the image coordinates ξ and η′, we need to compute their canonical versions as

x = K−1ξ and y′ = (K ′)−1η′

where K and K ′ are the two camera calibration matrices. These equations can then be spelled out into their
separate rows as follows:

αx1 = πT
1 X , αx2 = πT

2 X , α = πT
3 X , βy′1 = (ϕ′1)

TX , βy′2 = (ϕ′2)
TX , β = (ϕ′3)

TX .

The expressions for α and β given by the third and sixth equation above can be replaced into the other
equations to obtain the following 4× 4 homogeneous linear system in X:

HX =
[
x1π3 − π1 , x2π3 − π2 , y′1ϕ

′
3 −ϕ′1 , y′2ϕ3 −ϕ′2

]T
X = 0 .

The solution X is the last right singular vector of H , and the coordinates X′ of the same point in the other
camera can be found through the rigid transformation

X′ ∼ GX where G ∼
[
R −R t

0T 1

]
.

9


