
Rigid Geometric Transformations

Carlo Tomasi

This note is a quick refresher of the geometry of rigid transformations in three-dimensional space, ex-
pressed in Cartesian coordinates.

1 Cartesian Coordinates

Let us assume the notions of the distance between two points and the angle between lines to be known from
geometry. The law of cosines is also stated without proof1: if a, b, c are the sides of a triangle and the angle
between a and b is θ, then

c2 = a2 + b2 − 2ab cos θ .

The special case for θ = π/2 radians is known as Pythagoras’ theorem.
The definitions that follow focus on three-dimensional space. Two-dimensional geometry can be derived

as a special case when the third coordinate of every point is set to zero.
A Cartesian reference system for three-dimensional space is a point in space called the origin and three

mutually perpendicular, directed lines though the origin called the axes. The order in which the axes are
listed is fixed, and is part of the definition of the reference system. The plane that contains the second and
third axis is the first reference plane. The plane that contains the third and first axis is the second reference
plane. The plane that contains the first and second axis is the third reference plane.

It is customary to mark the axis directions by specifying a point on each axis and at unit distance from
the origin. These points are called the unit points of the system, and the positive direction of an axis is from
the origin towards the axis’ unit point. A Cartesian reference system is right-handed if the smallest rotation
that brings the first unit point to the second is counterclockwise when viewed from the third unit point. The
system is left-handed otherwise.

The Cartesian coordinates of a point in three-dimensional space are the signed distances of the point
from the first, second, and third reference plane, in this order, and collected into a vector. The sign for
coordinate i is positive if the point is in the half-space (delimited by the i-th reference plane) that contains the
positive half of the i-th reference axis. It follows that the Cartesian coordinates of the origin are o = (0, 0, 0),
those of the unit points are the vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), and the vector
p = (x, y, z) of coordinates of an arbitrary point in space can also be written as follows:

p = xe1 + ye2 + ze3 .

The point p can be reached from the origin by the following polygonal path:

o , xe1 , xe1 + ye2 , p .

1A proof based on trigonometry is straightforward but tedious, and a useful exercise.
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Each segment of the path is followed by a right-angle turn, so Pythagoras’ theorem can be applied twice to
yield the distance of p from the origin:

d(o,p) =
√
x2 + y2 + z2 .

From the definition of norm of a vector we see that

d(o,p) = ‖p‖ .

So the norm of the vector of coordinates of a point is the distance of the point from the origin. A vector is
often drawn as an arrow pointing from the origin to the point whose coordinates are the components of the
vector. Then, the result above shows that the length of that arrow is the norm of the vector. Because of this,
the words “length” and “norm” are often used interchangeably.

2 Orthogonality

The law of cosines yields a geometric interpretation of the inner product of two vectors a and b:

Theorem 2.1.
aTb = ‖a‖ ‖b‖ cos θ (1)

where θ is the acute angle between the two arrows that represent a and b geometrically.

So the inner product of two vectors is the product of the lengths of the two arrows that represent them
and of the cosine of the angle between them. See the appendix for a proof.

Setting θ = π/2 in the result above yields another important corollary:

Corollary 2.2. The arrows that represent two vectors a and b are mutually perpendicular if an only if the
two vectors are orthogonal:

aTb = 0 .

Because of this result, the words “perpendicular” and “orthogonal” are often used interchangeably.

3 Orthogonal Projection

Given two vectors a and b, the orthogonal projection of a onto b is the vector p that represents the point p
on the line through b that is nearest to the endpoint of a. See Figure 1.

Theorem 3.1. The orthogonal projection of a onto b is the vector

p = Pba

where Pb is the following square, symmetric matrix:

Pb =
bbT

bTb
.

The signed magnitude of the orthogonal projection is

p =
bTa

‖b‖
= ‖p‖ sign(bTa) .
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Figure 1: The vector from the origin to point p is the orthogonal projection of a onto b. The line from the
endpoint of a to p is orthogonal to b.

From the definition of orthogonal projection we also see the following fact.

Corollary 3.2. The coordinates of a point in space are the signed magnitudes of the orthogonal projections
of the vector of coordinates of the point onto the three unit vectors that define the coordinate axes.

This result is trivial in the basic Cartesian reference frame with unit points e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1). If p = (x, y, z), then obviously

e1p = x , e2p = y , e3p = z .

The result becomes less trivial in Cartesian reference systems where the axes have different orientations, as
we will see soon.

4 Cross Product

The cross product of two 3-dimensional vectors a = (a1, a2, a3) and b = (b1, b2, b3) is the 3-dimensional
vector

c = a× b = (a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1) .

The following geometric interpretation is proven in the Appendix:

Theorem 4.1. The cross product of two three-dimensional vectors a and b is a vector c orthogonal to both
a and b, oriented so that the triple a, b, c is right-handed, and with magnitude

‖c‖ = ‖a× b‖ = ‖a‖ ‖b‖ sin θ

where θ is the acute angle between a and b.

From its expression, we see that the magnitude of a× b is the area of a rectangle with sides a and b.
Suppose that we need to compute cross products of the form a × p where a is a fixed vector but p

changes. It is then convenient to write the cross product as the product of a matrix a× that depends on a and
of p. Spelling out the definition of the cross product yields the following anti-symmetric matrix:

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .
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The triple product of three-dimensional vectors a, b, c is defined as follows:

aT (b× c) = a1(b2c3 − b3c2) + a2(b1c3 − b3c1) + a3(b1c2 − b2c1) .

It is immediate to verify that

aT (b× c) = bT (c× a) = cT (a× b) = −aT (c× b) = −cT (b× a) = −bT (a× c) .

Again, from its expression, we see that the triple product of vectors a, b, c is, up to a sign, the volume of
a parallelepiped with edges a, b, c: the cross product p = b × c is a vector orthogonal to the plane of b
and c, and with magnitude equal to the base area of the parallelepiped. The inner product of p and a is
the magnitude of p times that of a times the cosine of the angle between them, that is, the base area of the
parallelepiped times its height (or the negative of its height). This gives the volume of the solid, up to a sign.
The sign is positive if the three vectors form a right-handed triple. See Figure 2.

a

b

c

θ

Figure 2: Up to a sign, the triple product of the vectors a, b, c is the volume of the parallelepiped with edges
a, b, c.

5 Rotation

A rotation is a transformation between two Cartesian references systems C and C ′ of equal origin and
handedness. Let e1, e2, e3 be the unit points of C, and i, j, k the unit points of C ′. Then a point with
coordinates p = (x, y, z) in C can be reached from the common origin o to the two systems by a polygonal
path with the following four vertices:

o , a = x′i , b = x′i+ y′j , p = x′i+ y′j+ z′k .

The steps of this path are along the axes of C ′. The numbers x′, y′, z′ are the magnitudes of the steps,
and also the coordinates of the point in C ′. These step sizes are the signed magnitudes of the orthogonal
projections of the point onto i, j, k, and from Theorem 3.1 we see that

x′ = iTp , y′ = jTp , z′ = kTp

because the vectors i, j, k have unit norm. These three equations can be packaged into a single matrix
equation that expresses the vector p′ = (x′, y′, z′) as a function of p:

p′ = Rp where R =

 iT

jT

kT
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where the 3× 3 matrix R is called a rotation matrix.
A rotation is a reversible transformation, and therefore the matrixRmust have an inverse, another matrix

that transforms back from C ′ to C. The proof of the following fact is given in the Appendix.

Theorem 5.1. The inverse of a rotation matrix is its transpose:

RTR = RRT = I .

Note that RT , being the inverse of R, is also a transformation between two Cartesian systems with the
same origin and handedness, so RT is a rotation matrix as well, and its rows must be mutually orthogonal
unit vectors. Since the rows of RT are the columns of R, we conclude that both the rows and columns of a
rotation matrix are unit norm and orthogonal. This makes intuitive sense: just as the rows of R are the unit
vectors of C ′ expressed in C, so its columns (the rows of the inverse transformation RT ) are the unit vectors
of C expressed in C ′.

The equations in Theorem 5.1 characterize combinations of rotations and possible inversions. An inver-
sion (also known as a mirror flip) is a transformation that changes the direction of some of the axes. This is
represented by a matrix of the form

S =

 s1 0 0
0 s2 0
0 0 s3


where s1, s2 s3 are equal to either 1 or −1, and there is either one or three negative elements. It is easy to
see that

STS = SST = I .

If there were zero or two negative elements, then S would be a rotation matrix, because the flip of two axes
can be achieved by a rotation. For instance, flipping the x and y axes can be achieved by a 180-degree
rotation around the z axis. No rotation can achieve the flip of an odd number of axes.

The determinant of a 3×3 matrix is the triple product of its rows. Direct manipulation shows that this is
the same as the triple product of its columns. It is immediate to see that the determinant of a rotation matrix
is 1:

det(R) = iT (j× k) = iT i = 1

because
i× j = k , j× k = i , k× i = j .

These equalities can be verified by the geometric interpretation of the cross product: each of the three vectors
i, j, k is orthogonal to the other two, and its magnitude is equal to 1. The order of the vectors in the equalities
above preserves handedness.

It is even easier to see that the determinant of an inversion matrix S is equal to −1. Thus, the following
conclusion can be drawn.

A matrix R is a rotation if and only if RTR = RRT = I and det(R) = 1.
A diagonal matrix S is an inversion if and only if STS = SST = I and det(S) = −1.

Note that in particular the identity matrix I is a rotation, and −I is an inversion.
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Geometric Interpretation of Orthogonality The orthogonality result

R−1 = RT

is very simple, and yet was derived in the Appendix through a comparatively lengthy sequence of algebraic
steps. This Section reviews orthogonality of rotation matrices from a geometric point of view, and derives
the result above by simpler means. The rows of the rotation matrix

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

 iT

jT

kT

 =

 i1 i2 i3
j1 j2 j3
k1 k2 k3


are the unit vectors of the rotated (“new”) reference system, expressed in the original (“old”) reference
system. This means that its entry rij is the signed magnitude of the orthogonal projection of the i-th new
unit vector onto the j-th old unit vector. For instance,

r12 = iTe2 and r31 = kTe1 .

However, the signed magnitude of the orthogonal projection of a unit vector onto another unit vector is
simply the cosine of the angle between them:

rij = cosαij

where αij is the angle between the i-th axis in the new system and the j-th axis in the old.
Thus, the entries of a rotation matrix are direction cosines: they are all cosines of well-defined angles.

This result also tells us that signed orthogonal projection magnitude is symmetric for unit vectors: For
instance, the signed magnitude of the orthogonal projection of i onto e2 is the same as the signed magnitude
of the orthogonal projection of e2 onto i.

This symmetry is the deep reason for orthogonality: when we want to go from the “new” system i, j, k
back to the “old” system e1, e2, e3 through the inverse matrixR−1, we seek to express the latter unit vectors
in the system of the former, that is, we seek the signed magnitudes of the orthogonal projections of each
“old” unit vector onto each of the “new” unit vectors. Because of symmetry, these orthogonal projections
are already available in the matrix R, just in a different arrangement: what we want in the rows of R−1 can
be found in the columns of R. Voilà:

R−1 = RT .

6 Coordinate Transformation

Two right-handed, Cartesian systems of reference C and C ′ can differ by a translation of the origin from o
to t and a rotation of the axes from unit points e1, e2, e3 to unit points i, j, k. Suppose that the origin of
frame C is first translated to point t (as expressed in C) and then the resulting frame is rotated by R (see
Figure 3). Given a point with coordinates p = (x, y, z) in C, the coordinates p′ = (x′, y′, z′) of the same
point in C ′ are then

p′ = R(p− t) (2)

The translation is applied first, to yield the new coordinates p − t in an intermediate frame C”. This does
not change the directions of the coordinate axes, so the rotation in C and in C” is expressed by the same
rotation R, which is applied thereafter.
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The inverse transformation applies the inverse operations in reverse order:

p = RTp′ + t . (3)

This can also be verified algebraically from equation (2): multiplying both sides by RT from the left yields

RTp′ = RTR(p− t) = p− t

and adding t to both sides yields equation (3).

p

t

p-t

o

i

j

k

e1

e2

e3

Figure 3: Transformation between two reference systems.

The transformations (2) and (3) are said to be rigid, in that they preserve distances. They are also
sometimes referred to as special Euclidean, where the attribute “special” refers to the fact that mirror flips
are not included—i.e., the determinant of R is 1, rather than 1 in magnitude.
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A Proofs

Theorem 2.1

aTb = ‖a‖ ‖b‖ cos θ (4)

where θ is the acute angle between the two arrows that represent a and b geometrically.

Proof. Consider a triangle with sides

a = ‖a‖ , b = ‖b‖ , c = ‖b− a‖

and with an angle θ between a and b. Then the law of cosines yields

‖b− a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ .

From the definition of norm we then obtain

‖a‖2 + ‖b‖2 − 2aTb = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ .

Canceling equal terms and dividing by −2 yields the desired result.

Theorem 3.1

The orthogonal projection of a onto b is the vector

p = Pba

where Pb is the following square, symmetric matrix:

Pb =
bbT

bTb
.

The signed magnitude of the orthogonal projection is

p =
bTa

‖b‖
= ‖p‖ sign(bTa) .

Proof. To prove this, observe that since by definition point p is on the line through b, the orthogonal pro-
jection vector p has the form p = xb, where x is some real number. From elementary geometry, the line
between p and the endpoint of a is shortest when it is perpendicular to b:

bT (a− xb) = 0

which yields

x =
bTa

bTb

so that

p = xb = bx =
bbT

bTb
a
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as advertised. The magnitude of p can be computed as follows. First, observe that

P 2
b =

bbT

bTb

bbT

bTb
=

bbTbbT

(bTb)2
=

bbT

bTb
= Pb

so that the orthogonal-projection matrix2 Pb is idempotent:

P 2
b = Pb .

This means that applying the matrix once or multiple times has the same effect. Then,

‖p‖2 = pTp = aTP T
b Pba = aTPbPba = aTPba = aT

bbT

bTb
a =

(bTa)2

bTb

which, once the sign of bta is taken into account, yields the promised expression for the signed magnitude
of p.

Theorem 4.1

The cross product of two three-dimensional vectors a and b is a vector c orthogonal to both a and b,
oriented so that the triple a, b, c is right-handed, and with magnitude

‖c‖ = ‖a× b‖ = ‖a‖ ‖b‖ sin θ

where θ is the acute angle between a and b.

Proof. That the cross product c of a and b is orthogonal to both a and b can be checked directly:

cTa = (a2b3 − a3b2)a1 + (a3b1 − a1b3)a2 + (a1b2 − a2b1)a3 = 0

cTb = (a2b3 − a3b2)b1 + (a3b1 − a1b3)b2 + (a1b2 − a2b1)b3 = 0

(verify that all terms do indeed cancel). We also have

(aTb)2 + ‖a× b‖2 = ‖a‖2 ‖b‖2

as can be shown by straightforward manipulation:

(aTb)2 = (a1b1 + a2b2 + a3b3) (a1b1 + a2b2 + a3b3)

= a21b
2
1 + a1b1a2b2 + a1b1a3b3

+a22b
2
2 + a1b1a2b2 + a2b2a3b3

+a23b
2
3 + a1b1a3b3 + a2b2a3b3

= a21b
2
1 + a22b

2
2 + a23b

2
3 + 2a1b1a2b2 + 2a2b2a3b3 + 2a1b1a3b3

and

‖a× b‖2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a22b
2
3 + a23b

2
2 − 2a2b2a3b3

+a21b
2
3 + a23b

2
1 − 2a1b1a3b3

+a21b
2
2 + a22b

2
1 − 2a1b1a2b2

= a21b
2
2 + a22b

2
1 + a22b

2
3 + a23b

2
2 + a21b

2
3 + a23b

2
1

−2a1b1a2b2 − 2a2b3a2b2 − 2a1b1a3b3
2The matrix that describes orthogonal projection is not an orthogonal matrix. It could not possibly be, since it is rank-deficient.
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so that

(aTb)2 + ‖a× b‖2 = a21b
2
1 + a21b

2
2 + a21b

2
3 + a22b

2
1 + a22b

2
2 + a22b

2
3 + a23b

2
1 + a23b

2
2 + a23b

2
3

but also
‖a‖2 ‖b‖2 = a21b

2
1 + a21b

2
2 + a21b

2
3 + a22b

2
1 + a22b

2
2 + a22b

2
3 + a23b

2
1 + a23b

2
2 + a23b

2
3

so that
(aTb)2 + ‖a× b‖2 = ‖a‖2 ‖b‖2 (5)

as desired. The result on the magnitude is a consequence of equation (5). From this equation we obtain

‖a× b‖2 = ‖a‖2 ‖b‖2 − (aTb)2 = ‖a‖2 ‖b‖2 − ‖a‖2 ‖b‖2 cos2 θ = ‖a‖2 ‖b‖2 sin2 θ

or
‖a× b‖ = ±‖a‖ ‖b‖ sin θ .

Since the angle θ is acute (from equation (4)), all quantities in the last equation are nonnegative, so that the
− sign yields an impossible equation. This yields the promised result.

Theorem 5.1

The inverse of a rotation matrix is its transpose:

RTR = RRT = I .

Proof. When we rotated p through R we obtained a vector p′ of coordinates in C ′. We then look for a new
matrix R−1 that applied to p′ gives back the original vector p:

p′ = Rp → p = R−1p′

that is,
p = R−1Rp .

Since this is to hold for any vector p, we need to find R−1 such that

R−1R = I =

 1 0 0
0 1 0
0 0 1

 .

The matrix I is called the identity matrix, and the matrix R−1 is the left inverse of R. However, even a right
inverse, that is, a matrix Q such that

RQ = I

will do. This is because for any square matrix A, if the matrixB is the right inverse of A, that is, if AB = I ,
then B is also the left inverse:

BA = I .

The proof is a single line: suppose that the left inverse is a matrix C, so that CA = I . Then

C = CI = C(AB) = (CA)B = IB = B ,
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which forces us to conclude that B and C are the same matrix. So we can drop “left” or “right” and merely
say inverse.

The inverse R−1 of the rotation matrix R is more easily found by looking for a right inverse. The three
vectors i, j, k that make up the rows of R have unit norm,

iT i = jT j = kTk = 1 ,

and are mutually orthogonal:
iT j = jTk = kT i = 0 .

Because of this,

RRT =

 iT

jT

kT

 [ i j k
]
=

 iT i iT j iTk
jT i jT j jTk
kT i kT j kTk

 =

 1 0 0
0 1 0
0 0 1


as promised.
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