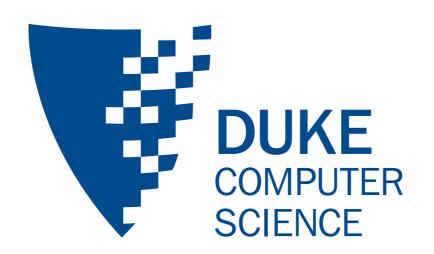
Decision Making for Robots and Autonomous Systems

Fall 2015



George Konidaris gdk@cs.duke.edu

Hierarchical RL

RL typically solves a single problem monolithically.

Hierarchical RL:

- Create and use higher-level macro-actions.
- Problem now contains subproblems.
- Each subproblem is also an RL problem.

Options Framework: theoretical basis for skill acquisition, learning and planning using higher-level actions (options).

The Options Framework

Basic idea:

Define a temporally extended action as a policy.

A (Markov) option o is a policy unit:

- Initiation set
- A termination probability $\beta_o: S \to [0,1]$
- A policy

$$I_o: S \to \{0, 1\}$$

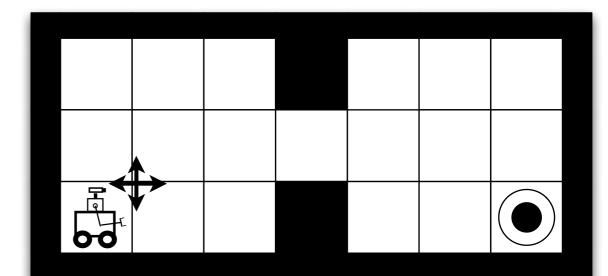
$$\beta_o: S \to [0,1]$$

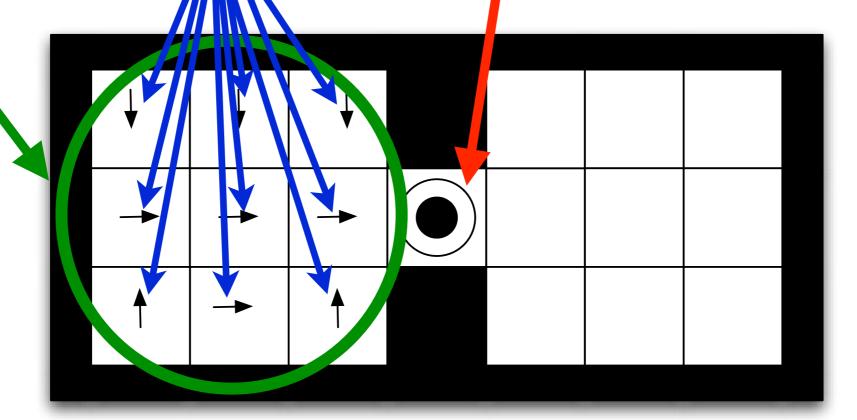
$$\pi_o: S \times A \to [0,1]$$

More Intuitively

An option o is a policy unit:

- Initiation set
- Termination condition
- Option policy



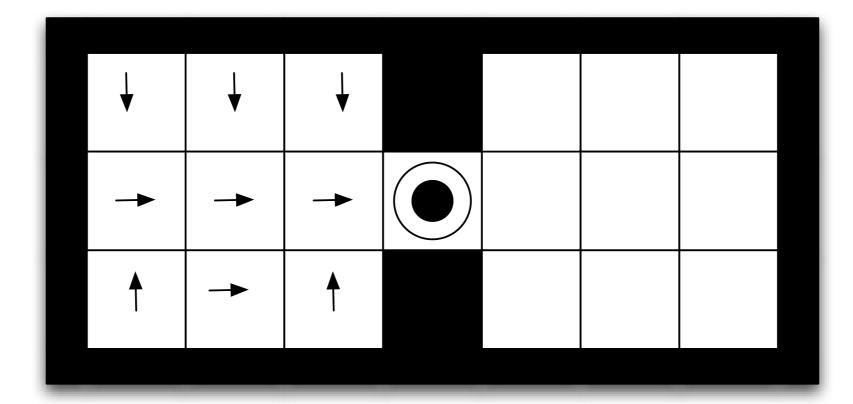


Notes

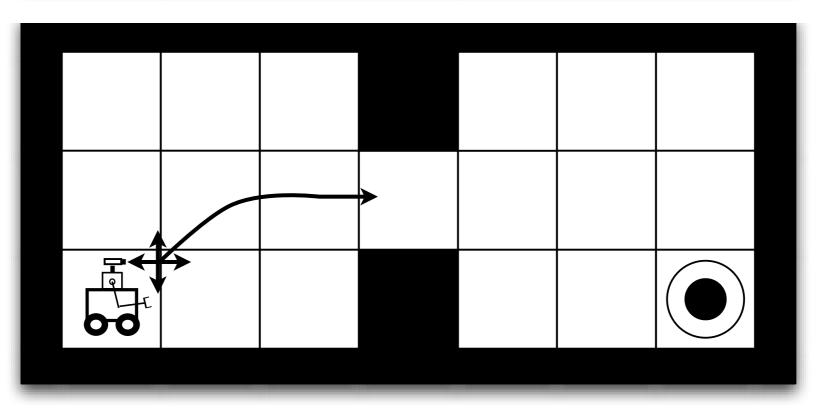
- Given R_o , learning π_o is just another (episodic) RL problem.
- Typically only need to define π_o over I_o .
- Equally, π_o could be any policy (generically, a program).

Options as Actions

Option



Problem



SMDPs

The resulting problem is a Semi-(Markov Decision Process). This consists of:

• S

O

 \bullet P(s',t|o,s)

• R(s', s, t)

 \bullet γ

Set of states

Set of options

Transition model

Reward function

Discount factor (per step)

In this case:

- All times are integers.
- "Semi" here means transitions can last t timesteps.
- Transition and reward function involve time taken for option to execute.

So:

Original problem: MDP.

MDP + Options = SMDP.

Options framework allows us to both express a low-level policy, and plan and learn using the higher-level SMDP.

Additionally, the ability to:

- Create new options.
- Update option policies.
- Do off-policy learning using, or for, them.
- Interrupt them ...

puts us "between MDPs and semi-MDPs".

What are Skills For?

Lots of things!

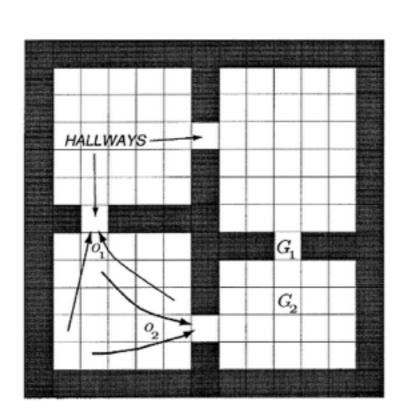
A few salient points:

- Rewiring.
- Transfer.
- Skill-Specific Abstractions.

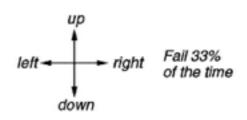
Rewiring

Adding an option changes the connectivity of the MDP. This affects:

- Learning and Planning.
- Exploration.
- State-visit distribution.
- Diameter of problem.



4 stochastic primitive actions



8 multi-step options (to each room's 2 hallways)

Transfer

Use experience gained while solving one problem to improve performance in another.

Skill transfer:

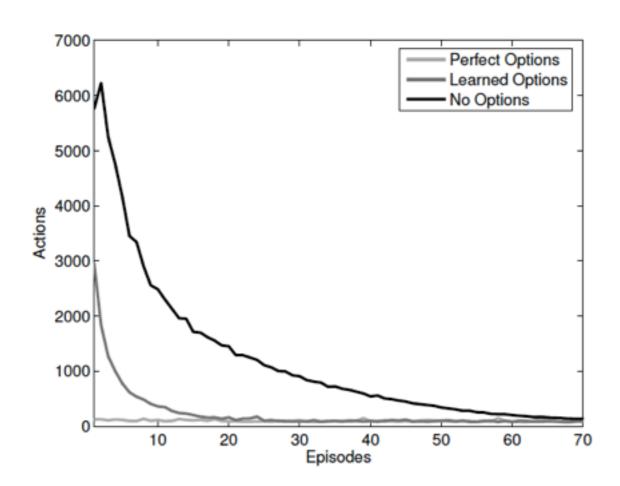
- Use options as mechanism for transfer.
- Transfer components of solution.
- Can drastically improve performance
- ... even if it takes a lot of effort to learn them.

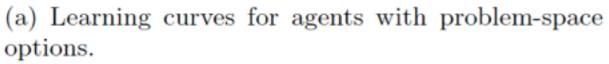
General principle: subtasks recur.

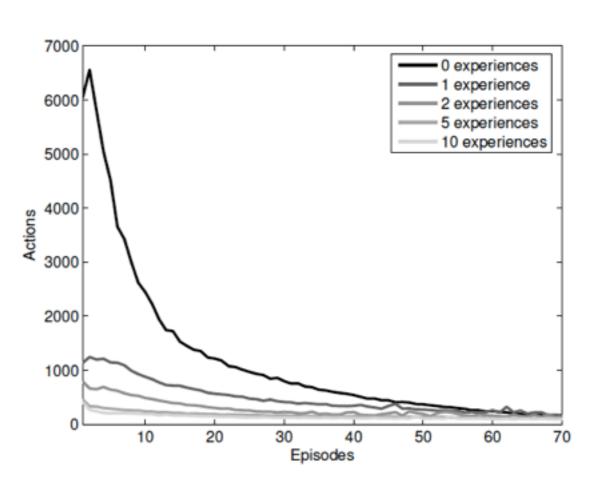
Example

Tasks drawn from parametrized family.

- Common features present.
- Options defined using only common features.







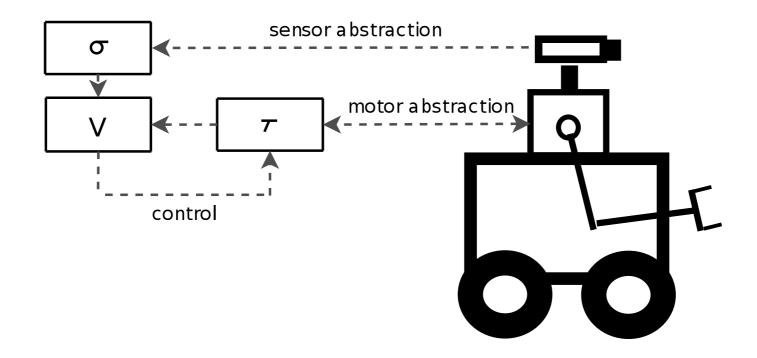
(b) Learning curves for agents with agent-space options, with varying numbers of training experiences.

(Konidaris and Barto, IJCAI 2007)

Skill-Specific Abstractions

Common approach to solving hard problems:

Use an abstraction!



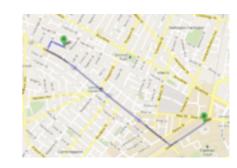
But

 Many high-dimensional problems really are highdimensional if you try to solve them monolithically

Skill-Specific Abstractions

Options provide an alternative approach:

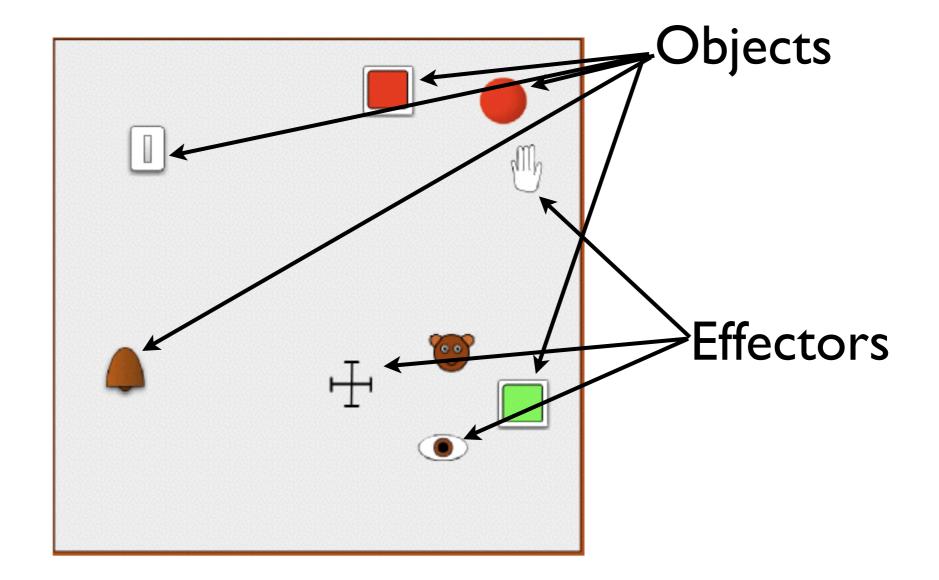
- Split high-dimensional problem into subproblems ...
- ... such that each one supports a solution using an abstraction.



Working hypothesis: behavior is piecewise low-dimensional.

The Continuous Playroom

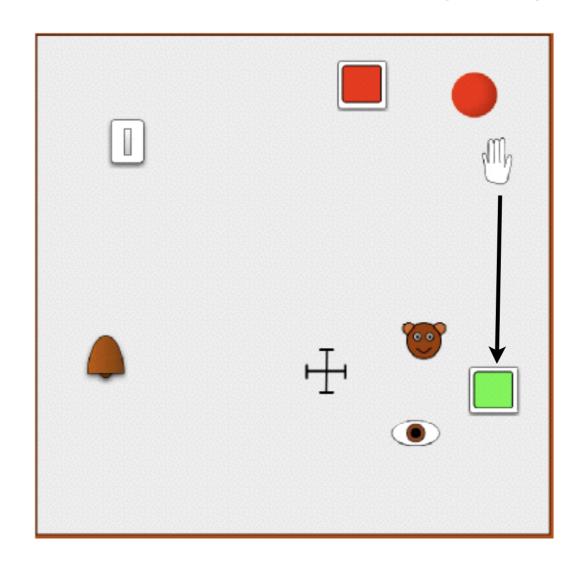
The Continuous Playroom



Randomly re-arranged between episodes. 120 state features.

The Continuous Playroom

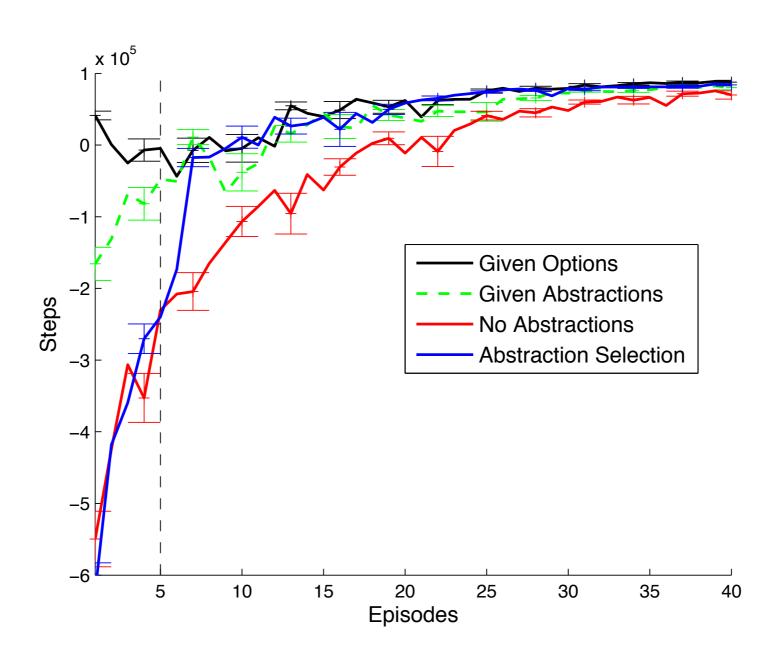
Skills: placing each effector over an object (allow interaction)



Available abstractions:

x and y differences for each object-effector pair.

Experiments



Skill Discovery

Discover options autonomously, through interaction with an environment.

- Typically subgoal options.
- This means that we must determine β_o .
- Sometimes also R_o .

The question then becomes:

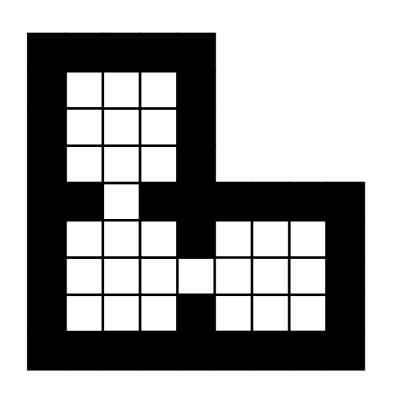
• Which states are good subgoals?

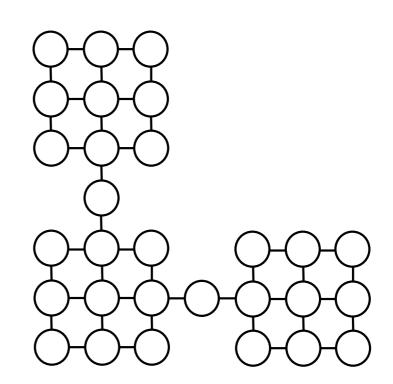
There are several ways to answer this.

Betweenness Centrality

Consider an MDP as a graph.

- States are vertices.
- Edges indicate possible transition between two states.





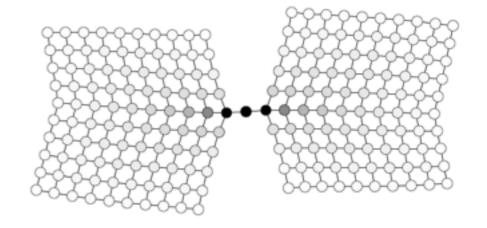
Further, let us assume a task distribution over start states and goal pairs:

$$\bullet P_T(s,e)$$

Betweenness Centrality

We can define the betweenness centrality of a vertex (state) as:

$$\sum_{s,e} \frac{\sigma_{se}(v)}{\sigma_{se}} w_{se}$$

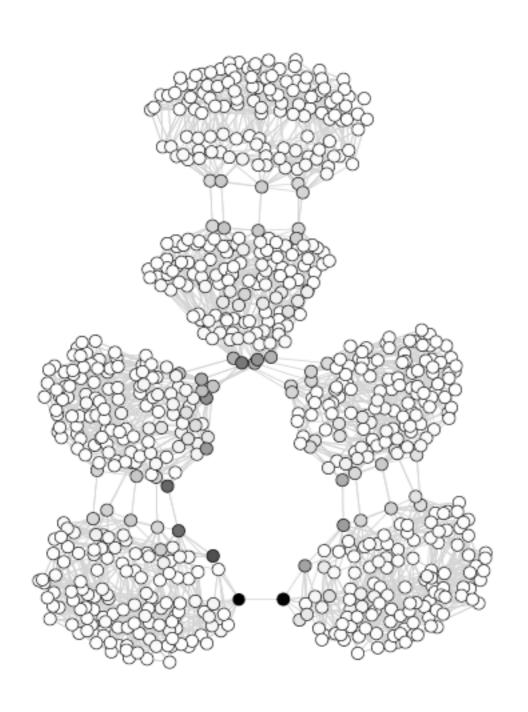


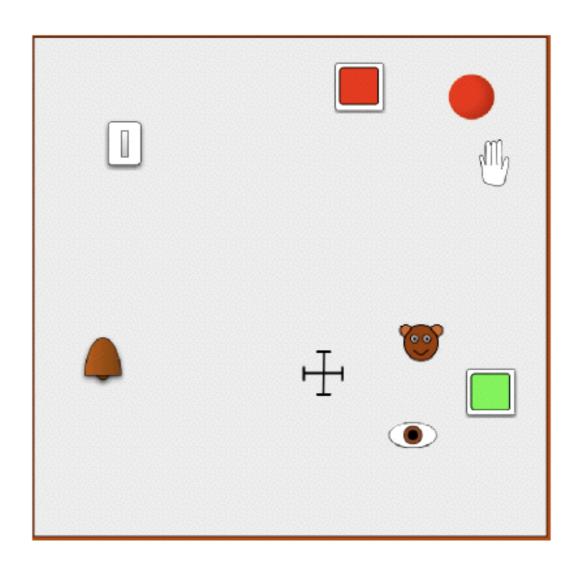
This indicates it probability of being on a shortest path from s to e; if we define:

- Shortest path as optimal solution.
- $w_{se} = P_T(s, e)$

... then we get something sensible for RL.

Betwenness Centrality





Betweenness Centrality

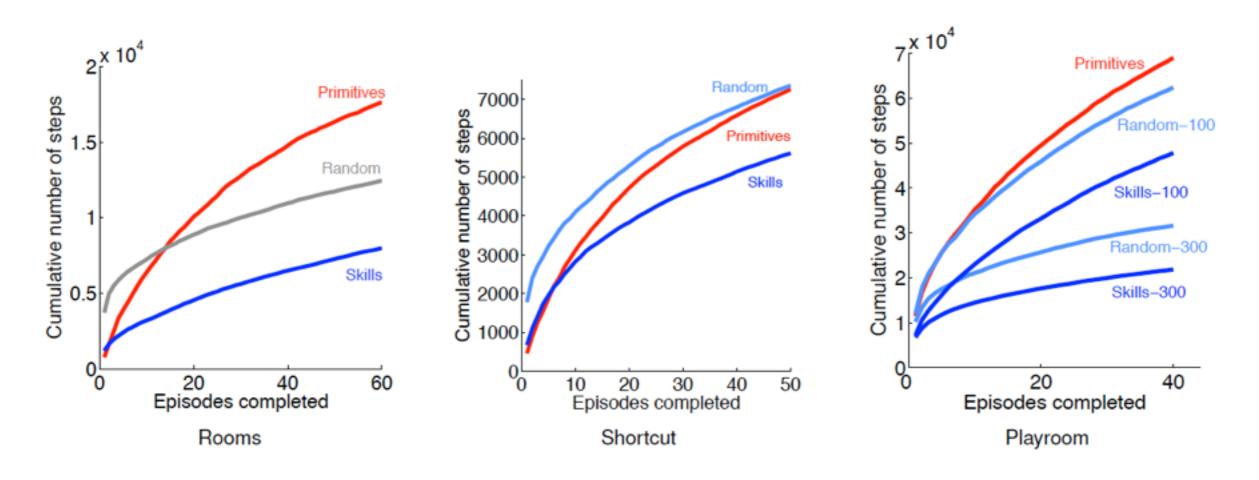


Figure 3: Learning performance in Rooms, Shortcut, and Playroom.

Betweenness Centrality

Of course:

- Knowing the MDP is cheating.
- So is knowing the distribution of problems.
- But can use this as the basis for approximation.

Continuous State Spaces

Continuous state spaces are more challenging:

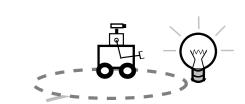
- Need a goal region, not a state.
- Cannot assume $I_o = S$

For episodic tasks:

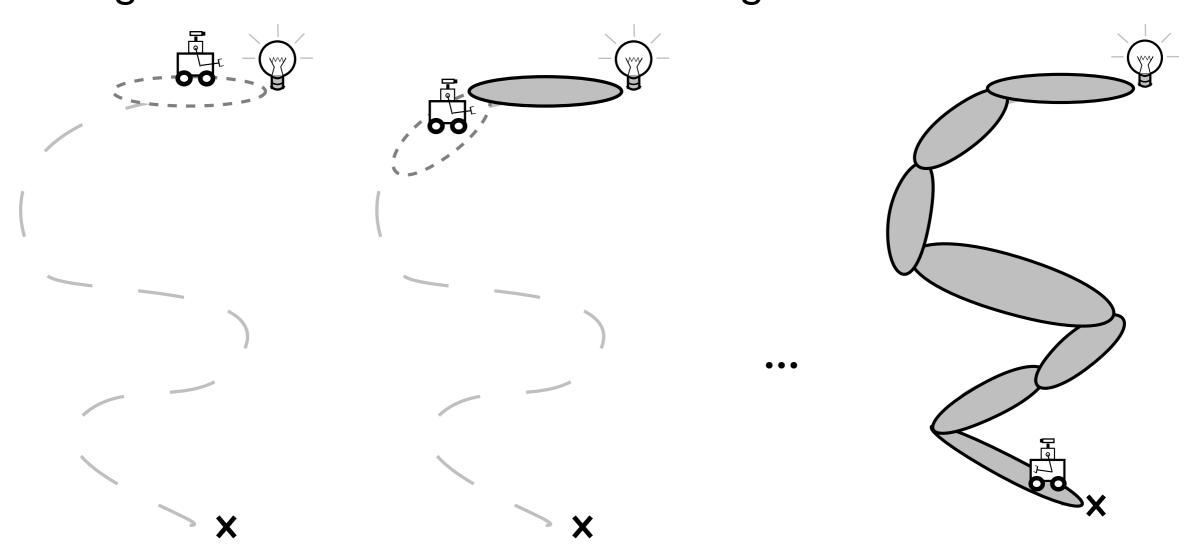
- End-of-episode is a good target.
- Can we generate more?

The point of executing a skill is either to:

- Get to a solution
- Get to another skill that might lead to a solution

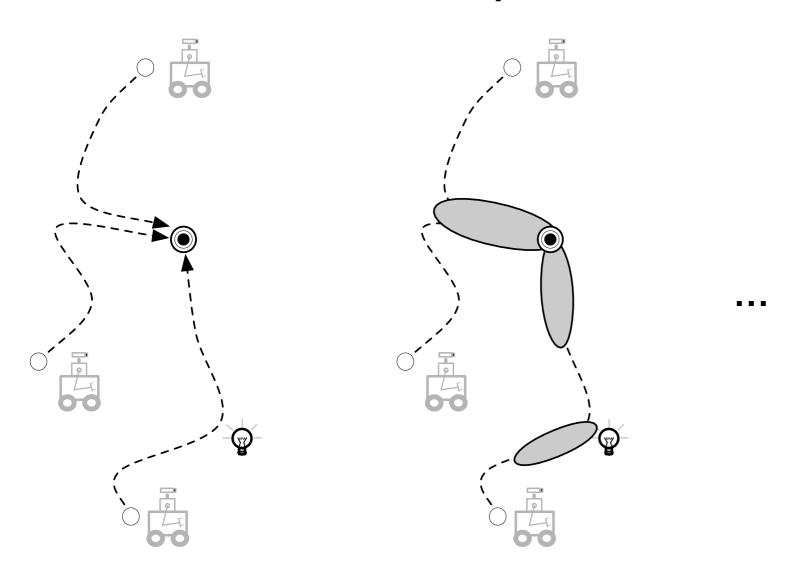


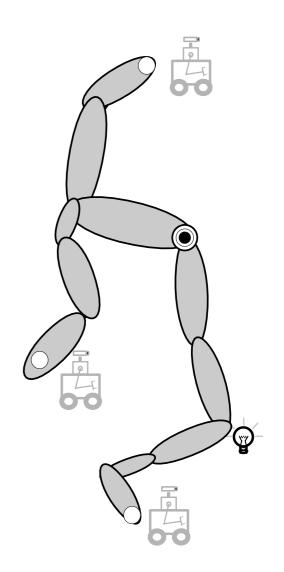
Simple rule: when creating a new skill to reach a target event, make entering that skill's initiation set a new target event.



(Konidaris and Barto, NIPS 2009)

Problems are not usually that clean.





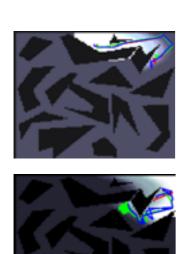
Skill goal is a region, not a state.

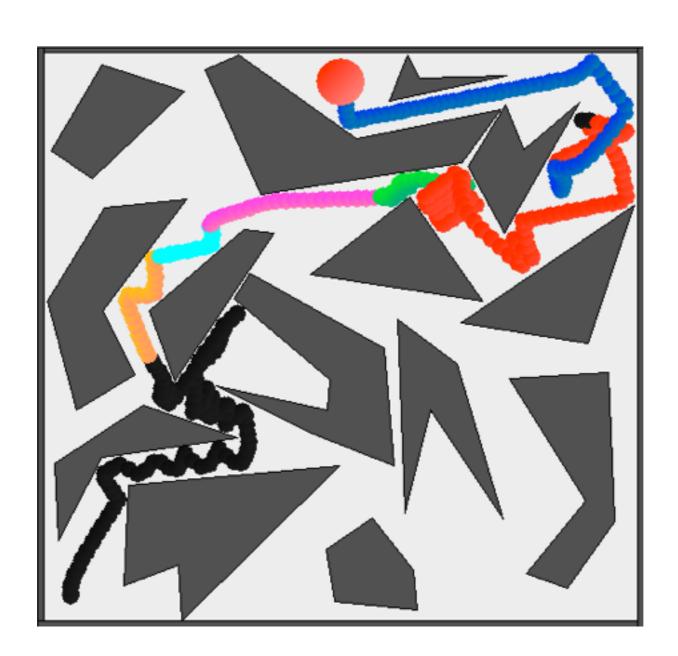
Initiation set learned using classifier.

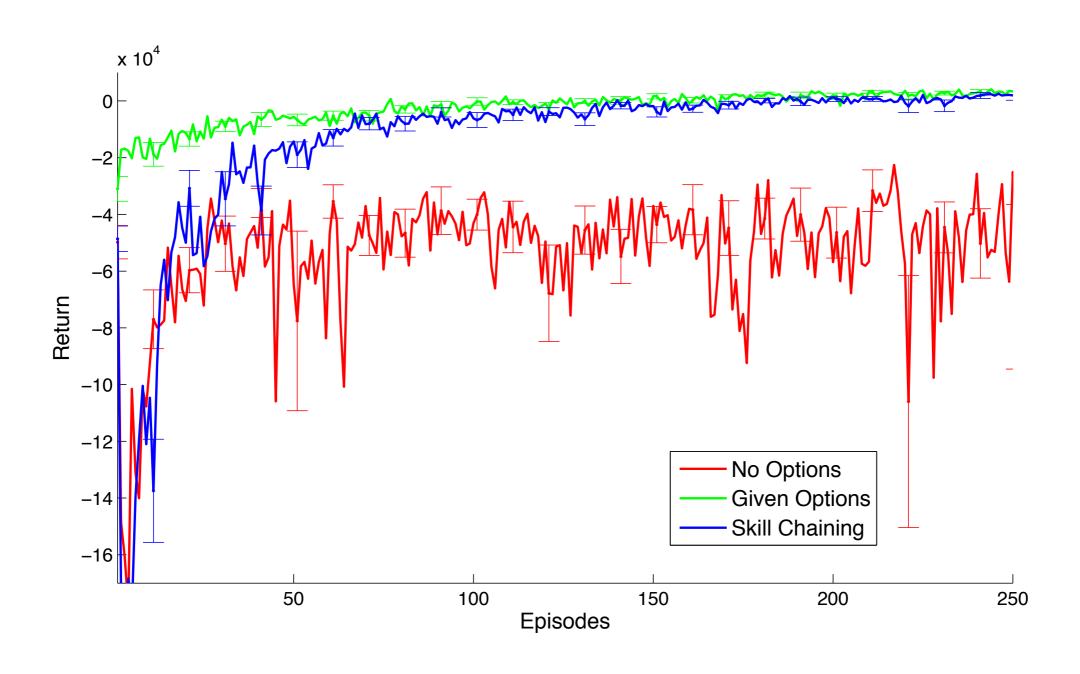
- Execute and fail: ____
- Execute and succeed:

Can include other target events:

- Domain knowledge
- Other heuristics
- Still need to chain to overcome limited range

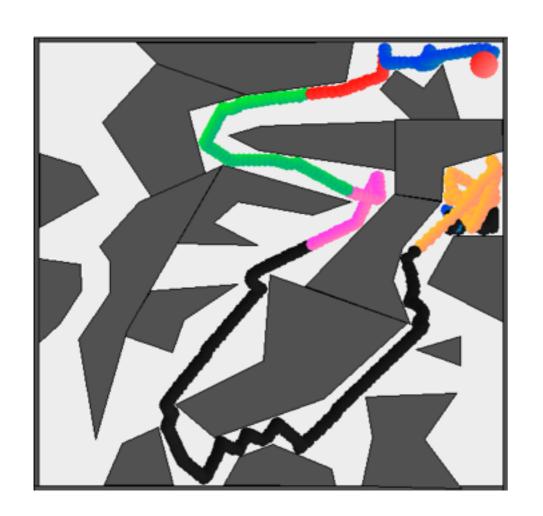


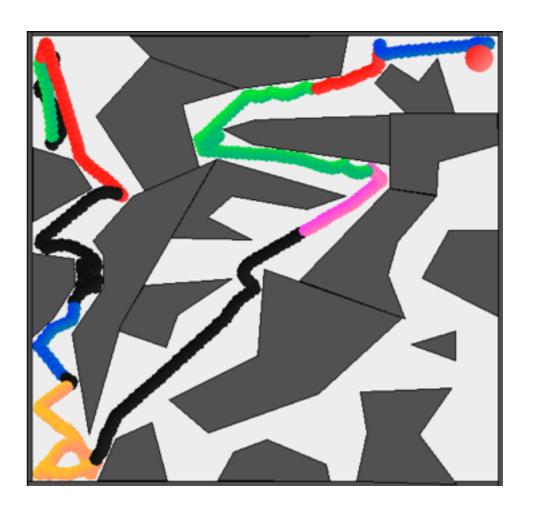




Skill Chaining: Results

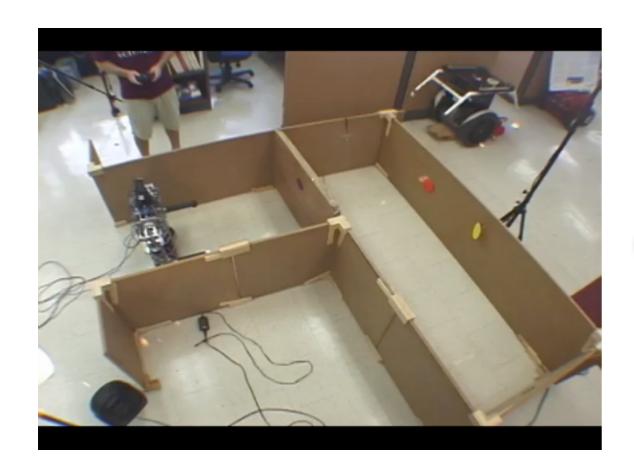
An example with multiple start positions.





Scaling Up

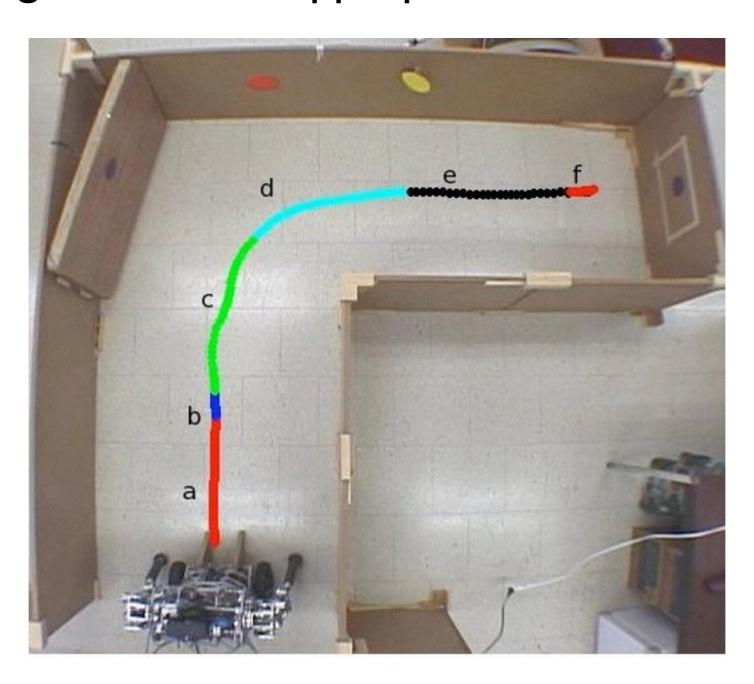
Combine skill chaining with skill-specific abstractions.



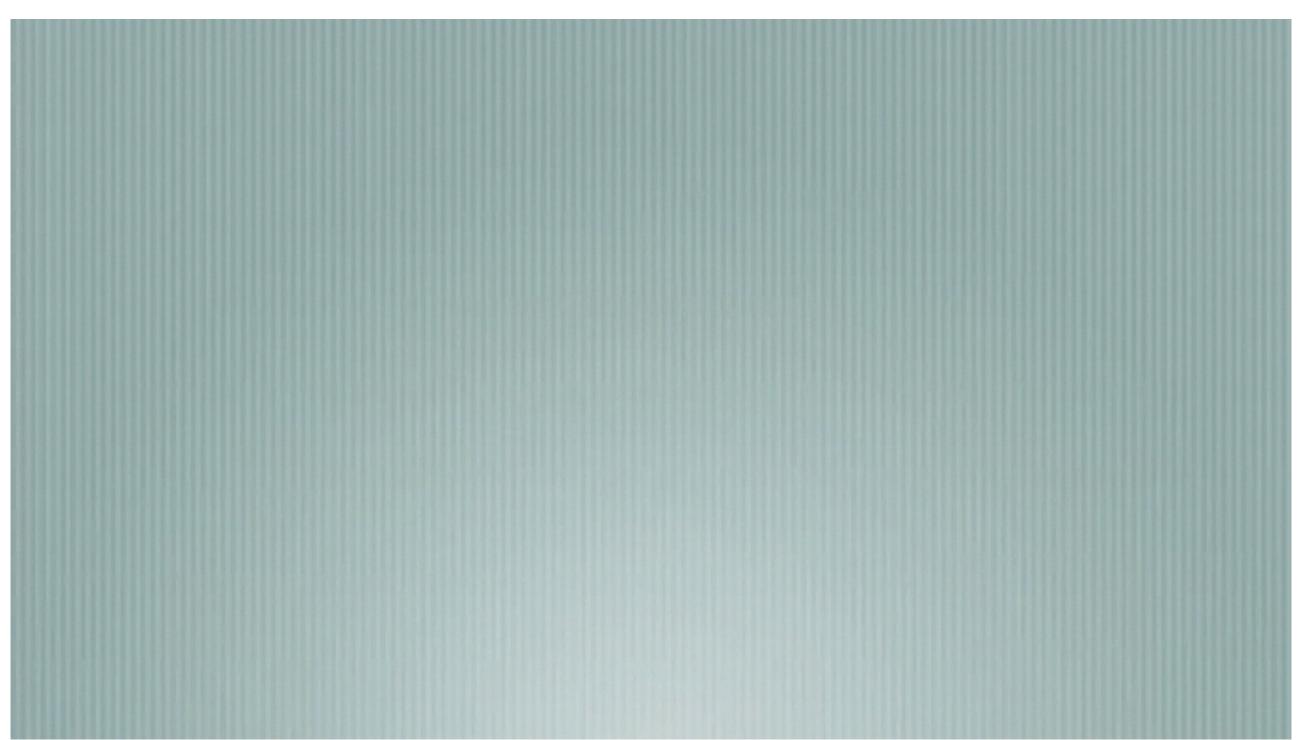
(Konidaris, Kuindersma, Grupen and Barto, NIPS 2010)

CST on the uBot

Trajectory segmented into appropriate skills + abstractions.



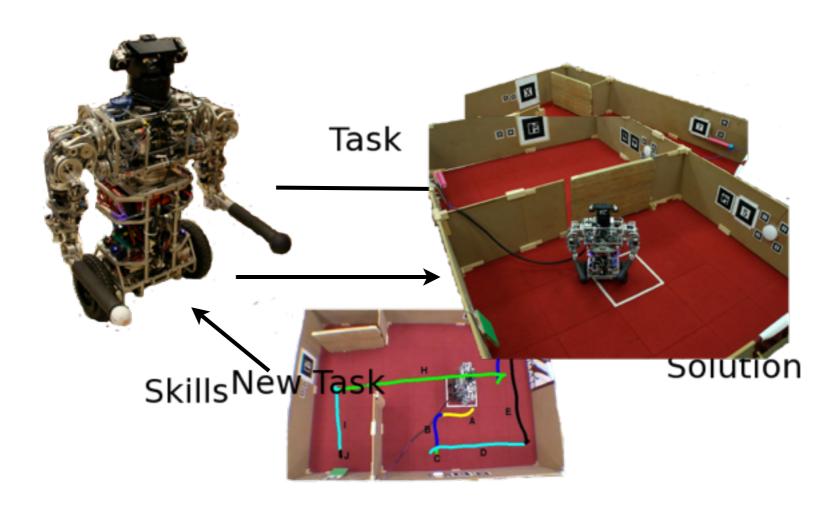
Follow-on Work



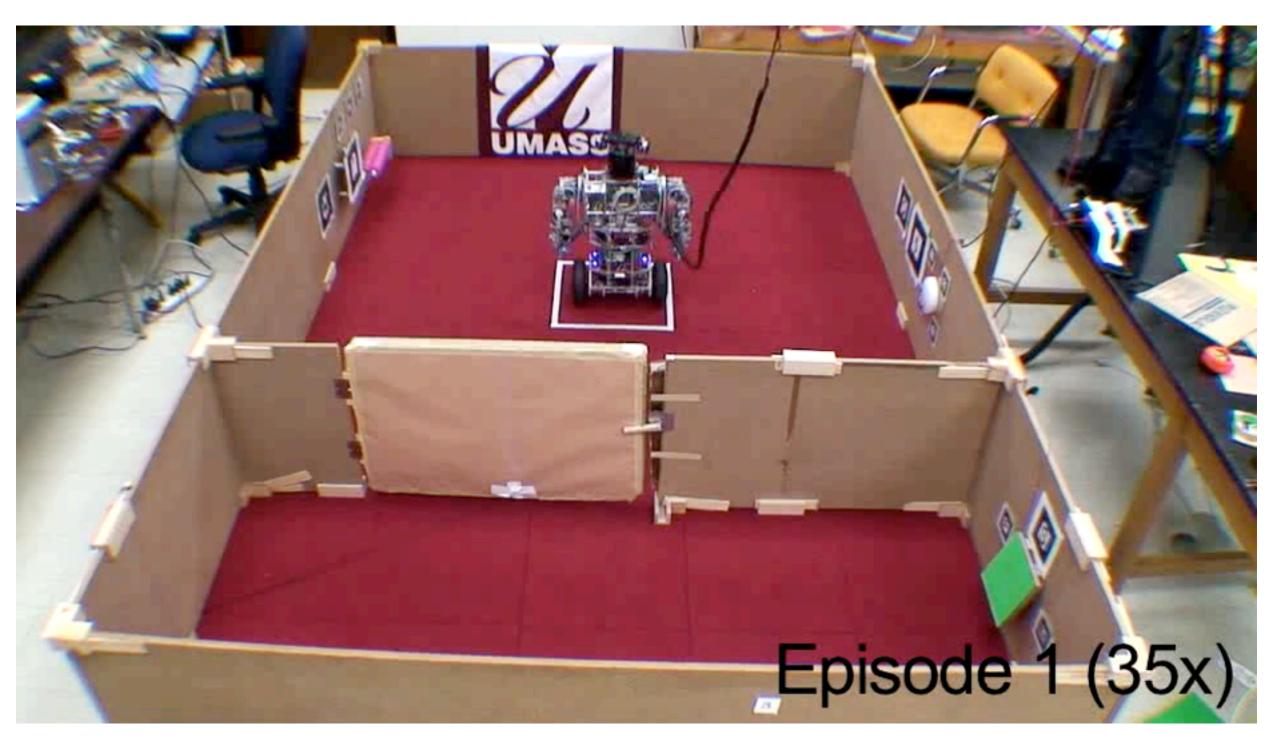
ARSA

Demonstration of:

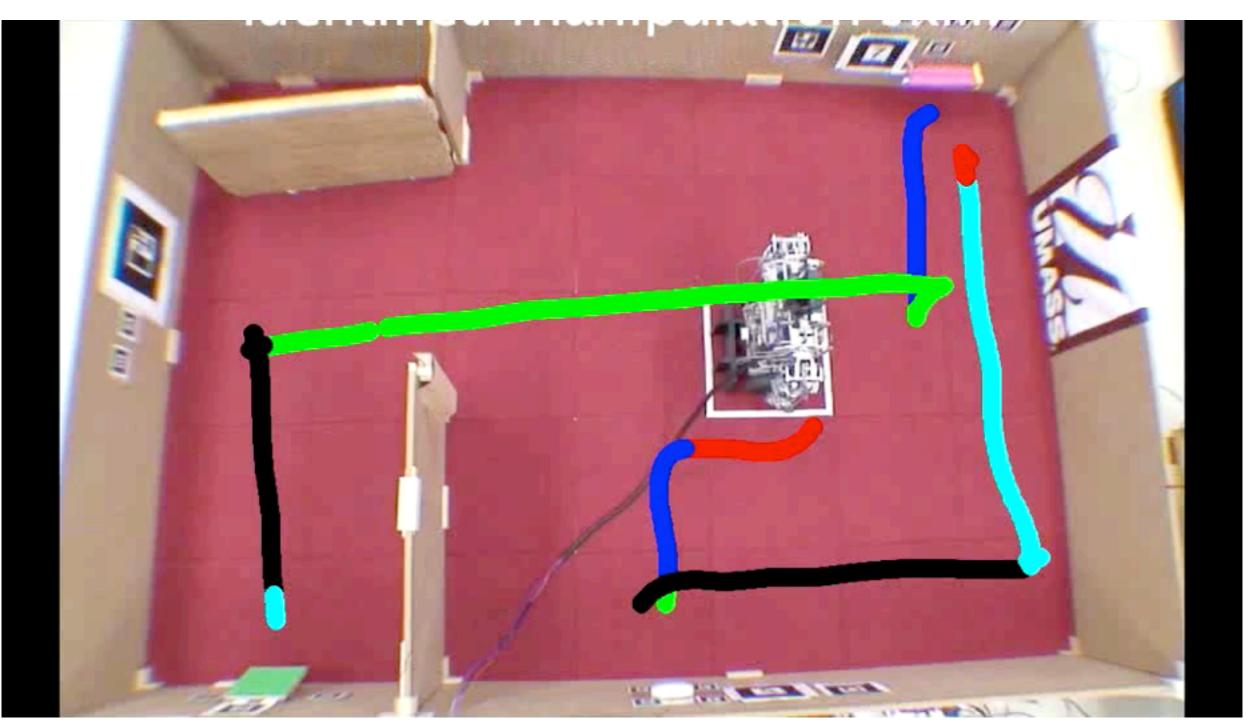
- A mobile manipulator learning to solve a task
- Extracting skills from solution
- Deploying them in a new task



Training Room



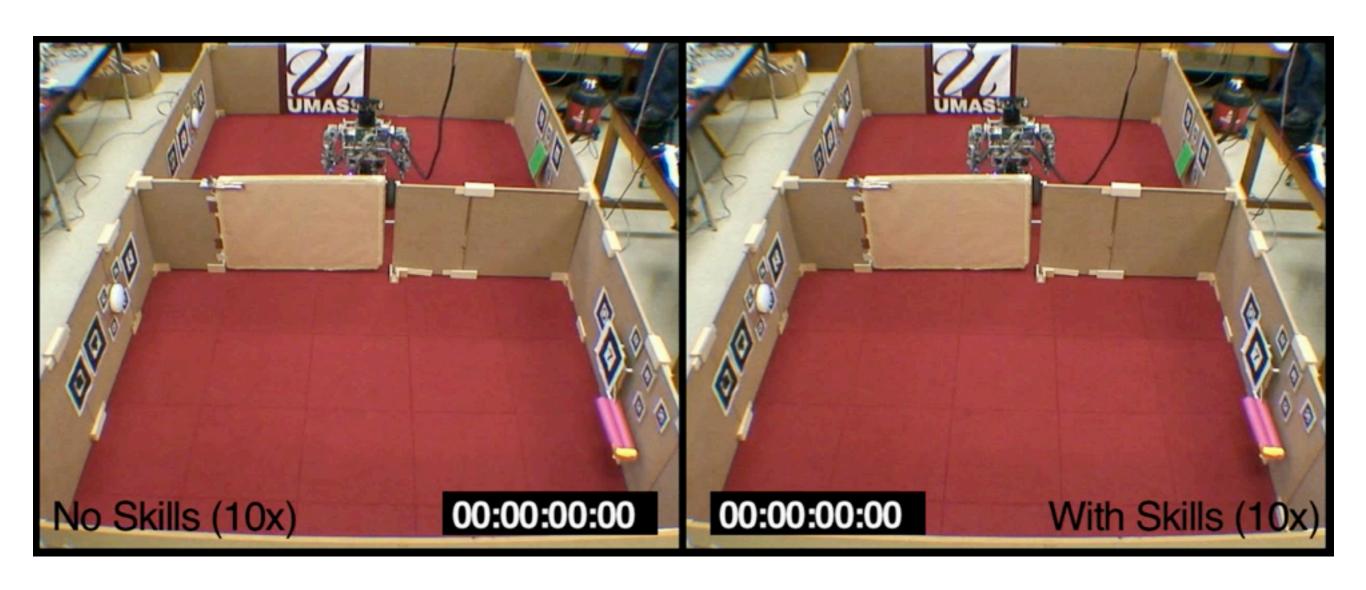
Acquired Skills



The Test Room

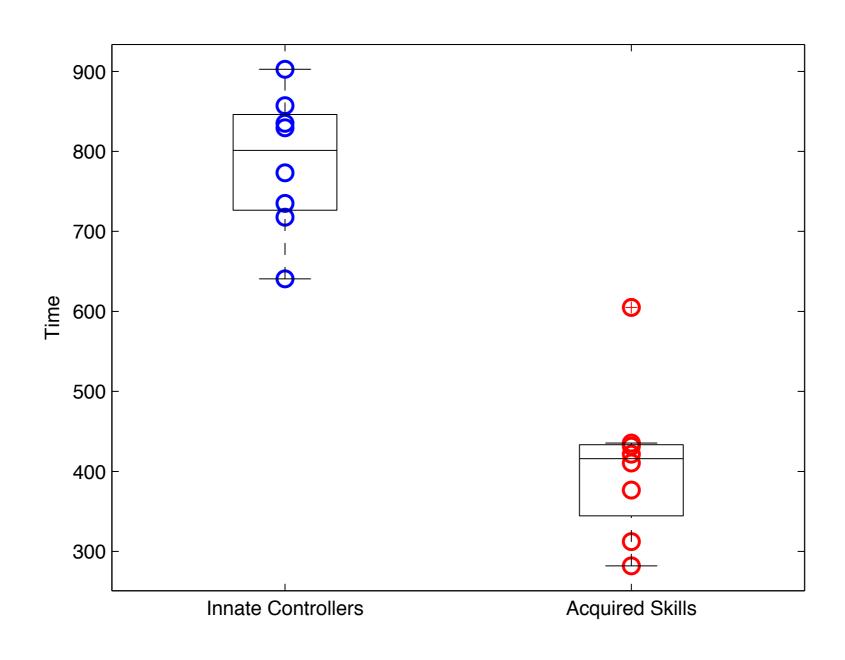


The Test Room



The Test Room

[AAAI 2011]



Summary

Scaled skill acquisition to mobile manipulator:

- Skills extracted because they are useful
- Suitable for further learning (individually)
- Suitable for deployment in new problems

Acquired skills can improve a robot's problem-solving abilities.

Meta-Summary

HRL, and options in particular, provides a framework for:

- Learning and planning with high-level actions.
- Discovering high-level actions from experience.

Key aspects to scaling up:

- Adaptively break complex tasks into simple ones.
- Skill-specific abstractions.
- Skill transfer and reuse.