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Hierarchical RL
RL typically solves a single problem monolithically. 	


!
Hierarchical RL:	



•  Create and use higher-level macro-actions.	


•  Problem now contains subproblems.	


•  Each subproblem is also an RL problem.	



!
!
!

Options Framework: theoretical basis for skill acquisition, 
learning and planning using higher-level actions (options). 



The Options Framework
Basic idea: 	



• Define a temporally extended action as a policy.	


!

A (Markov) option o is a policy unit:	


• Initiation set  	


• A termination probability 	


• A policy	



!
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More Intuitively 
An option o is a policy unit:	



• Initiation set	


• Termination condition	


• Option policy



Notes
• Given     , learning      is just another (episodic) RL 

problem. 	


• Typically only need to define      over    .	


• Equally,      could be any policy (generically, a program). 	
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Options as Actions

Option 

Problem



SMDPs
The resulting problem is a Semi-(Markov Decision Process).	


This consists of:	


!

•                                  Set of states	


•                                  Set of options	


•                                  Transition model	


•                                  Reward function	


•                                  Discount factor (per step)	



!
In this case:	



• All times are integers.	


• “Semi” here means transitions can last t timesteps.	


• Transition and reward function involve time taken for 

option to execute.

S
O

P (s0, t|o, s)
R(s0, s, t)
�



So:
Original problem: MDP.	


MDP + Options = SMDP.	


!
Options framework allows us to both express a low-level policy, 
and plan and learn using the higher-level SMDP.	


!
Additionally, the ability to:	



• Create new options.	


• Update option policies.	


• Do off-policy learning using, or for, them.	


• Interrupt them ...	



puts us “between MDPs and semi-MDPs”.	





What are Skills For?
Lots of things! 	


!
A few salient points:	



• Rewiring.	


• Transfer.	


• Skill-Specific Abstractions.



Rewiring
Adding an option changes the connectivity of the MDP.	


This affects:	



• Learning and Planning.	


• Exploration.	


• State-visit distribution.	


• Diameter of problem. 

(Sutton, Precup and Singh, AIJ 1999)



Transfer
Use experience gained while solving one problem to improve 
performance in another.	


!
Skill transfer:	



• Use options as mechanism for transfer.	


• Transfer components of solution.	


• Can drastically improve performance	


•  ... even if it takes a lot of effort to learn them.	



!

General principle: subtasks recur. 



Example
Tasks drawn from parametrized family.	



• Common features present.	


• Options defined using only common features.	



(Konidaris and Barto, IJCAI 2007)



Skill-Specific Abstractions
Common approach to solving hard problems:	



• Use an abstraction!	


!
!
!
!
!
!

!
But	



• Many high-dimensional problems really are high-
dimensional if you try to solve them monolithically!



Skill-Specific Abstractions
Options provide an alternative approach:	



• Split high-dimensional problem into subproblems ...	


•  ... such that each one supports a solution using an 

abstraction. 	


!

!

!

!

!

Working hypothesis: behavior is piecewise low-dimensional. 

file://localhost/Users/gdk/Desktop/yellow_convertible_sports_car.svg


The Continuous Playroom
The Continuous Playroom

!
!
!
!
!
!
!
!
!
!
!
!
Randomly re-arranged between episodes.

120 state features.

Objects

Effectors

(Konidaris and Barto, IJCAI 2009)



The Continuous Playroom

Skills: placing each effector over an object (allow interaction) 
!
!
!
!
!
!
!
!
!
!
!
Available abstractions:

• x and y differences for each object-effector pair.

!



Experiments
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Skill Discovery
Discover options autonomously, through interaction with an 
environment.	


!

• Typically subgoal options. 	


• This means that we must determine    .	


• Sometimes also     .	



!
The question then becomes:	



• Which states are good subgoals?	


!

There are several ways to answer this.
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Betweenness Centrality
Consider an MDP as a graph.	



• States are vertices.	


• Edges indicate possible transition between two states.	



!
!
!
!
!
!
!

Further, let us assume a task distribution over start states and 
goal pairs: 	



•  	

PT (s, e)
(Simsek and Barto, NIPS 2008)



Betweenness Centrality
We can define the betweenness centrality of a vertex (state) as:	


!
!
!
!
!
!
!
This indicates it probability of being on a shortest path from s 
to e; if we define:	



• Shortest path as optimal solution.	


•   

... then we get something sensible for RL.
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wse = PT (s, e)

(Simsek and Barto, NIPS 2008)



Betwenness Centrality

(Simsek and Barto, NIPS 2008)



Betweenness Centrality

(Simsek and Barto, NIPS 2008)



Betweenness Centrality
Of course:	



• Knowing the MDP is cheating.	


• So is knowing the distribution of problems.	


• But can use this as the basis for approximation.



Continuous State Spaces
Continuous state spaces are more challenging:	



• Need a goal region, not a state.	


• Cannot assume 	



!
For episodic tasks:	



• End-of-episode is a good target.	


• Can we generate more? 
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The point of executing a skill is either to:	


• Get to a solution	


• Get to another skill that might lead to a solution	





Skill Chaining
Simple rule: when creating a new skill to reach a target event, make 
entering that skill’s initiation set a new target event.

...

(Konidaris and Barto, NIPS 2009)



Skill Chaining
Problems are not usually that clean.

...




Skill Chaining
Skill goal is a region, not a state.	


!
Initiation set learned using classifier.	



• Execute and fail:	


• Execute and succeed:	



!
Can include other target events:	



• Domain knowledge	


• Other heuristics	


• Still need to chain to overcome limited range



Skill Chaining

(Konidaris and Barto, NIPS 2009)



Skill Chaining

(Konidaris and Barto, NIPS 2009)



Skill Chaining
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Skill Chaining: Results
An example with multiple start positions.



Scaling Up

(Konidaris, Kuindersma, Grupen and Barto, NIPS 2010)

Combine skill chaining with skill-specific abstractions.



CST on the uBot
Trajectory segmented into appropriate skills + abstractions.



Follow-on Work



ARSA
Demonstration of:	



• A mobile manipulator learning to solve a task	


• Extracting skills from solution	


• Deploying them in a new task	



(Konidaris, Kuindersma, Grupen and Barto,  AAAI 2011)



Training Room



Acquired Skills
Skills extracted with CST:  	


Constructing Skill Trees for RL Agents from Demonstration, NIPS 2010.



The Test Room



The Test Room



The Test Room
[AAAI 2011]
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Summary
Scaled skill acquisition to mobile manipulator:	



•  Skills extracted because they are useful	


•  Suitable for further learning (individually)	


•  Suitable for deployment in new problems

Acquired skills can improve a robot’s problem-solving abilities.



Meta-Summary
HRL, and options in particular, provides a framework for:	



• Learning and planning with high-level actions.	


• Discovering high-level actions from experience. 	



!
!
Key aspects to scaling up:	



• Adaptively break complex tasks into simple ones.	


• Skill-specific abstractions.	


• Skill transfer and reuse.	



!


