
Decision Making for Robots 	

and Autonomous Systems

Fall 2015

George Konidaris	

gdk@cs.duke.edu

mailto:gdk@cs.duke.edu

Hierarchical RL
RL typically solves a single problem monolithically. 	

!
Hierarchical RL:	

• Create and use higher-level macro-actions.	

• Problem now contains subproblems.	

• Each subproblem is also an RL problem.	

!
!
!

Options Framework: theoretical basis for skill acquisition,
learning and planning using higher-level actions (options).

The Options Framework
Basic idea: 	

• Define a temporally extended action as a policy.	

!

A (Markov) option o is a policy unit:	

• Initiation set 	

• A termination probability 	

• A policy	

!

I
o

: S ! {0, 1}
�
o

: S ! [0, 1]
⇡
o

: S ⇥A ! [0, 1]

More Intuitively
An option o is a policy unit:	

• Initiation set	

• Termination condition	

• Option policy

Notes
• Given , learning is just another (episodic) RL

problem. 	

• Typically only need to define over .	

• Equally, could be any policy (generically, a program). 	

R
o

⇡
o

⇡
o

I
o

⇡
o

Options as Actions

Option

Problem

SMDPs
The resulting problem is a Semi-(Markov Decision Process).	

This consists of:	

!

• Set of states	

• Set of options	

• Transition model	

• Reward function	

• Discount factor (per step)	

!
In this case:	

• All times are integers.	

• “Semi” here means transitions can last t timesteps.	

• Transition and reward function involve time taken for

option to execute.

S
O

P (s0, t|o, s)
R(s0, s, t)
�

So:
Original problem: MDP.	

MDP + Options = SMDP.	

!
Options framework allows us to both express a low-level policy,
and plan and learn using the higher-level SMDP.	

!
Additionally, the ability to:	

• Create new options.	

• Update option policies.	

• Do off-policy learning using, or for, them.	

• Interrupt them ...	

puts us “between MDPs and semi-MDPs”.	

What are Skills For?
Lots of things! 	

!
A few salient points:	

• Rewiring.	

• Transfer.	

• Skill-Specific Abstractions.

Rewiring
Adding an option changes the connectivity of the MDP.	

This affects:	

• Learning and Planning.	

• Exploration.	

• State-visit distribution.	

• Diameter of problem.

(Sutton, Precup and Singh, AIJ 1999)

Transfer
Use experience gained while solving one problem to improve
performance in another.	

!
Skill transfer:	

• Use options as mechanism for transfer.	

• Transfer components of solution.	

• Can drastically improve performance	

• ... even if it takes a lot of effort to learn them.	

!

General principle: subtasks recur.

Example
Tasks drawn from parametrized family.	

• Common features present.	

• Options defined using only common features.	

(Konidaris and Barto, IJCAI 2007)

Skill-Specific Abstractions
Common approach to solving hard problems:	

• Use an abstraction!	

!
!
!
!
!
!

!
But	

• Many high-dimensional problems really are high-
dimensional if you try to solve them monolithically!

Skill-Specific Abstractions
Options provide an alternative approach:	

• Split high-dimensional problem into subproblems ...	

• ... such that each one supports a solution using an

abstraction. 	

!

!

!

!

!

Working hypothesis: behavior is piecewise low-dimensional.

file://localhost/Users/gdk/Desktop/yellow_convertible_sports_car.svg

The Continuous Playroom
The Continuous Playroom

!
!
!
!
!
!
!
!
!
!
!
!
Randomly re-arranged between episodes.

120 state features.

Objects

Effectors

(Konidaris and Barto, IJCAI 2009)

The Continuous Playroom

Skills: placing each effector over an object (allow interaction)
!
!
!
!
!
!
!
!
!
!
!
Available abstractions:

• x and y differences for each object-effector pair.

!

Experiments

5 10 15 20 25 30 35 40
−6

−5

−4

−3

−2

−1

0

1
x 105

Episodes

St
ep

s

Given Options
Given Abstractions
No Abstractions
Abstraction Selection

Skill Discovery
Discover options autonomously, through interaction with an
environment.	

!

• Typically subgoal options. 	

• This means that we must determine .	

• Sometimes also .	

!
The question then becomes:	

• Which states are good subgoals?	

!

There are several ways to answer this.

�
o

R
o

Betweenness Centrality
Consider an MDP as a graph.	

• States are vertices.	

• Edges indicate possible transition between two states.	

!
!
!
!
!
!
!

Further, let us assume a task distribution over start states and
goal pairs: 	

• 	

PT (s, e)
(Simsek and Barto, NIPS 2008)

Betweenness Centrality
We can define the betweenness centrality of a vertex (state) as:	

!
!
!
!
!
!
!
This indicates it probability of being on a shortest path from s
to e; if we define:	

• Shortest path as optimal solution.	

•  

... then we get something sensible for RL.

X

s,e

�se(v)

�se
wse

wse = PT (s, e)

(Simsek and Barto, NIPS 2008)

Betwenness Centrality

(Simsek and Barto, NIPS 2008)

Betweenness Centrality

(Simsek and Barto, NIPS 2008)

Betweenness Centrality
Of course:	

• Knowing the MDP is cheating.	

• So is knowing the distribution of problems.	

• But can use this as the basis for approximation.

Continuous State Spaces
Continuous state spaces are more challenging:	

• Need a goal region, not a state.	

• Cannot assume 	

!
For episodic tasks:	

• End-of-episode is a good target.	

• Can we generate more?

I
o

= S

The point of executing a skill is either to:	

• Get to a solution	

• Get to another skill that might lead to a solution	

Skill Chaining
Simple rule: when creating a new skill to reach a target event, make
entering that skill’s initiation set a new target event.

...

(Konidaris and Barto, NIPS 2009)

Skill Chaining
Problems are not usually that clean.

...

Skill Chaining
Skill goal is a region, not a state.	

!
Initiation set learned using classifier.	

• Execute and fail:	

• Execute and succeed:	

!
Can include other target events:	

• Domain knowledge	

• Other heuristics	

• Still need to chain to overcome limited range

Skill Chaining

(Konidaris and Barto, NIPS 2009)

Skill Chaining

(Konidaris and Barto, NIPS 2009)

Skill Chaining

50 100 150 200 250

−16

−14

−12

−10

−8

−6

−4

−2

0

x 104

Episodes

R
et

ur
n

No Options
Given Options
Skill Chaining

Skill Chaining: Results
An example with multiple start positions.

Scaling Up

(Konidaris, Kuindersma, Grupen and Barto, NIPS 2010)

Combine skill chaining with skill-specific abstractions.

CST on the uBot
Trajectory segmented into appropriate skills + abstractions.

Follow-on Work

ARSA
Demonstration of:	

• A mobile manipulator learning to solve a task	

• Extracting skills from solution	

• Deploying them in a new task	

(Konidaris, Kuindersma, Grupen and Barto, AAAI 2011)

Training Room

Acquired Skills
Skills extracted with CST: 	

Constructing Skill Trees for RL Agents from Demonstration, NIPS 2010.

The Test Room

The Test Room

The Test Room
[AAAI 2011]

Innate Controllers Acquired Skills

300

400

500

600

700

800

900
Ti

m
e

Summary
Scaled skill acquisition to mobile manipulator:	

• Skills extracted because they are useful	

• Suitable for further learning (individually)	

• Suitable for deployment in new problems

Acquired skills can improve a robot’s problem-solving abilities.

Meta-Summary
HRL, and options in particular, provides a framework for:	

• Learning and planning with high-level actions.	

• Discovering high-level actions from experience. 	

!
!
Key aspects to scaling up:	

• Adaptively break complex tasks into simple ones.	

• Skill-specific abstractions.	

• Skill transfer and reuse.	

!

