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Hierarchical RL
RL typically solves a single problem monolithically. 	

!
Hierarchical RL:	


•  Create and use higher-level macro-actions.	

•  Problem now contains subproblems.	

•  Each subproblem is also an RL problem.	


!
!
!

Options Framework: theoretical basis for skill acquisition, 
learning and planning using higher-level actions (options). 



The Options Framework
Basic idea: 	


• Define a temporally extended action as a policy.	

!

A (Markov) option o is a policy unit:	

• Initiation set  	

• A termination probability 	

• A policy	


!
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More Intuitively 
An option o is a policy unit:	


• Initiation set	

• Termination condition	

• Option policy



Notes
• Given     , learning      is just another (episodic) RL 

problem. 	

• Typically only need to define      over    .	

• Equally,      could be any policy (generically, a program). 	
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Options as Actions

Option 

Problem



SMDPs
The resulting problem is a Semi-(Markov Decision Process).	

This consists of:	

!

•                                  Set of states	

•                                  Set of options	

•                                  Transition model	

•                                  Reward function	

•                                  Discount factor (per step)	


!
In this case:	


• All times are integers.	

• “Semi” here means transitions can last t timesteps.	

• Transition and reward function involve time taken for 

option to execute.
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So:
Original problem: MDP.	

MDP + Options = SMDP.	

!
Options framework allows us to both express a low-level policy, 
and plan and learn using the higher-level SMDP.	

!
Additionally, the ability to:	


• Create new options.	

• Update option policies.	

• Do off-policy learning using, or for, them.	

• Interrupt them ...	


puts us “between MDPs and semi-MDPs”.	




What are Skills For?
Lots of things! 	

!
A few salient points:	


• Rewiring.	

• Transfer.	

• Skill-Specific Abstractions.



Rewiring
Adding an option changes the connectivity of the MDP.	

This affects:	


• Learning and Planning.	

• Exploration.	

• State-visit distribution.	

• Diameter of problem. 

(Sutton, Precup and Singh, AIJ 1999)



Transfer
Use experience gained while solving one problem to improve 
performance in another.	

!
Skill transfer:	


• Use options as mechanism for transfer.	

• Transfer components of solution.	

• Can drastically improve performance	

•  ... even if it takes a lot of effort to learn them.	


!

General principle: subtasks recur. 



Example
Tasks drawn from parametrized family.	


• Common features present.	

• Options defined using only common features.	


(Konidaris and Barto, IJCAI 2007)



Skill-Specific Abstractions
Common approach to solving hard problems:	


• Use an abstraction!	

!
!
!
!
!
!

!
But	


• Many high-dimensional problems really are high-
dimensional if you try to solve them monolithically!



Skill-Specific Abstractions
Options provide an alternative approach:	


• Split high-dimensional problem into subproblems ...	

•  ... such that each one supports a solution using an 

abstraction. 	

!

!

!

!

!

Working hypothesis: behavior is piecewise low-dimensional. 

file://localhost/Users/gdk/Desktop/yellow_convertible_sports_car.svg


The Continuous Playroom
The Continuous Playroom

!
!
!
!
!
!
!
!
!
!
!
!
Randomly re-arranged between episodes.

120 state features.

Objects

Effectors

(Konidaris and Barto, IJCAI 2009)



The Continuous Playroom

Skills: placing each effector over an object (allow interaction) 
!
!
!
!
!
!
!
!
!
!
!
Available abstractions:

• x and y differences for each object-effector pair.

!



Experiments
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Skill Discovery
Discover options autonomously, through interaction with an 
environment.	

!

• Typically subgoal options. 	

• This means that we must determine    .	

• Sometimes also     .	


!
The question then becomes:	


• Which states are good subgoals?	

!

There are several ways to answer this.
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Betweenness Centrality
Consider an MDP as a graph.	


• States are vertices.	

• Edges indicate possible transition between two states.	


!
!
!
!
!
!
!

Further, let us assume a task distribution over start states and 
goal pairs: 	


•  	
PT (s, e)
(Simsek and Barto, NIPS 2008)



Betweenness Centrality
We can define the betweenness centrality of a vertex (state) as:	

!
!
!
!
!
!
!
This indicates it probability of being on a shortest path from s 
to e; if we define:	


• Shortest path as optimal solution.	

•   

... then we get something sensible for RL.
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wse = PT (s, e)

(Simsek and Barto, NIPS 2008)



Betwenness Centrality

(Simsek and Barto, NIPS 2008)



Betweenness Centrality

(Simsek and Barto, NIPS 2008)



Betweenness Centrality
Of course:	


• Knowing the MDP is cheating.	

• So is knowing the distribution of problems.	

• But can use this as the basis for approximation.



Continuous State Spaces
Continuous state spaces are more challenging:	


• Need a goal region, not a state.	

• Cannot assume 	


!
For episodic tasks:	


• End-of-episode is a good target.	

• Can we generate more? 

I
o

= S

The point of executing a skill is either to:	

• Get to a solution	

• Get to another skill that might lead to a solution	




Skill Chaining
Simple rule: when creating a new skill to reach a target event, make 
entering that skill’s initiation set a new target event.

...

(Konidaris and Barto, NIPS 2009)



Skill Chaining
Problems are not usually that clean.

...




Skill Chaining
Skill goal is a region, not a state.	

!
Initiation set learned using classifier.	


• Execute and fail:	

• Execute and succeed:	


!
Can include other target events:	


• Domain knowledge	

• Other heuristics	

• Still need to chain to overcome limited range



Skill Chaining

(Konidaris and Barto, NIPS 2009)



Skill Chaining

(Konidaris and Barto, NIPS 2009)



Skill Chaining
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Skill Chaining: Results
An example with multiple start positions.



Scaling Up

(Konidaris, Kuindersma, Grupen and Barto, NIPS 2010)

Combine skill chaining with skill-specific abstractions.



CST on the uBot
Trajectory segmented into appropriate skills + abstractions.



Follow-on Work



ARSA
Demonstration of:	


• A mobile manipulator learning to solve a task	

• Extracting skills from solution	

• Deploying them in a new task	


(Konidaris, Kuindersma, Grupen and Barto,  AAAI 2011)



Training Room



Acquired Skills
Skills extracted with CST:  	

Constructing Skill Trees for RL Agents from Demonstration, NIPS 2010.



The Test Room



The Test Room



The Test Room
[AAAI 2011]
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Summary
Scaled skill acquisition to mobile manipulator:	


•  Skills extracted because they are useful	

•  Suitable for further learning (individually)	

•  Suitable for deployment in new problems

Acquired skills can improve a robot’s problem-solving abilities.



Meta-Summary
HRL, and options in particular, provides a framework for:	


• Learning and planning with high-level actions.	

• Discovering high-level actions from experience. 	


!
!
Key aspects to scaling up:	


• Adaptively break complex tasks into simple ones.	

• Skill-specific abstractions.	

• Skill transfer and reuse.	


!


