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The World Reacts




Markov Decision Processes

S : set of states
A : set of actions < S, A ~v,R,T >
v : discount factor

R : reward function

R(s,a,s’) is the reward received taking action a from state S
and transitioning to state s’.

T': transition function

T'(s'|s,a) is the probability of transitioning to state s’ after
taking action a in state s.

(some states are absorbing - execution stops)



MDPs

Our goal is to find a policy:

T: S5 = A

... that maximizes return: expected sum of rewards.
(equiv: min sum of costs)

O

Z 7]




Reinforcement Learning

What if we don’t know T or R (or both?)




Agent interacts with an environment
At each time t:
® Receives sensor signal s;
e [Executes action a;
® Transition:
® new sensor signal s;1
® reward 1y

Cannot query a transition - must actually do it, in order
to get transition data.



How do we do this!

Same as before - learn V!

But! Before, we could do this during policy iteration:

m(s) = max | R(s,a) + ’}/ZT(S"S, a)V(s")

a

... how we cannot. So instead of V, we learn Q:

O

QN(S,CL) = I nytrt T,50 — S,40 = a

| t=0

This is the value of executing ain state s, then following 7.
Note that: Q" (s, 7(s)) = V"™ (s)



Policy Iteration

General policy improvement framework:
|. Start with a policy 7

2. Learn (),

3. Improve 7 Repeat
a. m(s) = max Q(s,a),Vs

This is known as policy iteration.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.
Usually, perform 3a every time step.



Value Functions
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Value Function Learning

Learning proceeds by gathering samples of Q(s, a).

Methods differ by:

* How you get the samples.
* How you use them to update ().



Monte Carlo

Simplest thing you can do: sample R(s).

Do this repeatedly, average values:

Rl(S) -+ RQ(S) + ... + Rn(S)

Q(s,a) =

n



1D Learning

Exploit the Bellman equation: temporal difference error.
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Sarsa

Sarsa: very simple algorithm

| Initialize Q(s, a)

2. For n episodes

observe transition (s, a,r,s’,a’)

compute TD error § = r +vQ(s’,a’) — Q(s,a)
update Q: J(s,a) = Q(s,a) + ad

select and execute action based on Q



1D

« . / /
In Sarsa, we use a sample transition: (s,a,r,s,a’)
This is a sample backup.

Compare with the full expectation (given T):

=E,r[r+vQ(s',ad")] — Q(s,a)

(full backup)



TD vs. MC

TD and MC two extremes of obtaining samples of Q:

r+~yV r+~vV r+~yV




Generalizing TD

We can generalize this to the idea of an n-step rollout:

n) 2. n—1,, Ny
RE?) =T+ Y1 Y g2+ YT T+ VI?V(StnL-n,)

Each tells us something about the value function.
® We can combine all n-step rollouts.
® This is known as a complex backup.



TD(\)

Weighted sum:

RW =y +~V(s1) l
R®) = 1o +~ry +9°V(s2) A x
A" /

. 1 weights
R™ = " A'r; + 4"V (s5)
i=0
Estimator:

R = (1-3) S A"ROH

St
n=>0



TD(\)

This is called the A-return.
* At A=0 we getTD, at A=1 we get MC.
* Intermediate values of A usually best.
* TD(A) family of algorithms



Real-Valued States

What if the states are real-valued?
® Cannot use table to represent Q.
® States may never repeat: must generalize.




Function Approximation

How do we represent general function of state variables!?

Many choices:
®* Most popular is linear value function approximation.

e Use set of basis functions @1, ---s ®m
e Define linear function of them:

V(X) — Z w; 4 (X)

Learning task is to find vector of weights w to best
approximate V.



Function Approximation

One choice of basis functions:
* Just use state variables directly: |1, z, y]

Another:
® Polynomials in state variables.
e Eg, [1,z,y, 2y, 27, y°, 2y*, 2 yz y”]
® This is like a Taylor expansion.

Another:
® Fourier terms on state variables.
e Eg, 1, cos(mx), cos(my), cos(m|z + yl)]
® This is like a Fourier Series expansion.



Acrobot

Episode: 1




Acrobot

Sarsa(\) using the Fourier Basis: Acrobot
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Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)
® At or near best human level
® Learn to play Backgammon through self-play
® |.5 million games
®* Neural network function approximator
®

TD(\)

Changed the way the best human players played.

Figure 3. A c mpl situation where TD-Gammo p sitional judgment s ap-
parently superior to traditional expert thinking. Wht s to play 4-4. The obvious
human play is 84'. g-4, 11-7, 11-7. (The asterisk denotes that an opponent
checker has been hit.) Howaver, TD-Gammon's choice is the surprising 8-4,
8-4, 2117, 21171 TD-Gammon's analysis of the two plays is given in Table 3



