Decision Making for Robots
and Autonomous Systems

Fall 2015

E{DUKE
COMPUTER
SCIENCE

George Konidaris
gdk@cs.duke.edu

mailto:gdk@cs.duke.edu

The World Reacts

Markov Decision Processes

S : set of states
A : set of actions < S, A ~v,R,T >
v : discount factor

R : reward function

R(s,a,s’) is the reward received taking action a from state S
and transitioning to state s’.

T': transition function

T'(s'|s,a) is the probability of transitioning to state s’ after
taking action a in state s.

(some states are absorbing - execution stops)

MDPs

Our goal is to find a policy:

T: S5 = A

... that maximizes return: expected sum of rewards.
(equiv: min sum of costs)

O

Z 7]

Reinforcement Learning

What if we don’t know T or R (or both?)

Agent interacts with an environment
At each time t:
® Receives sensor signal s;
e [Executes action a;
® Transition:
® new sensor signal s;1
® reward 1y

Cannot query a transition - must actually do it, in order
to get transition data.

How do we do this!

Same as before - learn V!

But! Before, we could do this during policy iteration:

m(s) = max | R(s,a) + ’}/ZT(S"S, a)V(s")

a

... how we cannot. So instead of V, we learn Q:

O

QN(S,CL) = I nytrt T,50 — S,40 = a

| t=0

This is the value of executing ain state s, then following 7.
Note that: Q" (s, 7(s)) = V"™ (s)

Policy Iteration

General policy improvement framework:
|. Start with a policy 7

2. Learn (),

3. Improve 7 Repeat
a. m(s) = max Q(s,a),Vs

This is known as policy iteration.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.
Usually, perform 3a every time step.

Value Functions

300

15

10

Value Function Learning

Learning proceeds by gathering samples of Q(s, a).

Methods differ by:

* How you get the samples.
* How you use them to update ().

Monte Carlo

Simplest thing you can do: sample R(s).

Do this repeatedly, average values:

Rl(S) -+ RQ(S) + ... + Rn(S)

Q(s,a) =

n

1D Learning

Exploit the Bellman equation: temporal difference error.

{ -
LI
*
‘e
... ’

., *

L 4 *

‘e, -
., e n
'. L 4 n

., *
'y -
-
32 |
Ce, M
h. []
Y
‘Y '
-
-
o e
E]t

Sarsa

Sarsa: very simple algorithm

| Initialize Q(s, a)

2. For n episodes

observe transition (s, a,r,s’,a’)

compute TD error § = r +vQ(s’,a’) — Q(s,a)
update Q: J(s,a) = Q(s,a) + ad

select and execute action based on Q

1D

« . / /
In Sarsa, we use a sample transition: (s,a,r,s,a’)
This is a sample backup.

Compare with the full expectation (given T):

=E,r[r+vQ(s',ad")] — Q(s,a)

(full backup)

TD vs. MC

TD and MC two extremes of obtaining samples of Q:

r+~yV r+~vV r+~yV

Generalizing TD

We can generalize this to the idea of an n-step rollout:

n) 2. n—1,, Ny
RE?) =T+ Y1 Y g2+ YT T+ VI?V(StnL-n,)

Each tells us something about the value function.
® We can combine all n-step rollouts.
® This is known as a complex backup.

TD(\)

Weighted sum:

RW =y +~V(s1) l
R®) = 1o +~ry +9°V(s2) A x
A" /

. 1 weights
R™ = " A'r; + 4"V (s5)
i=0
Estimator:

R = (1-3) S A"ROH

St
n=>0

TD(\)

This is called the A-return.
* At A=0 we getTD, at A=1 we get MC.
* Intermediate values of A usually best.
* TD(A) family of algorithms

Real-Valued States

What if the states are real-valued?
® Cannot use table to represent Q.
® States may never repeat: must generalize.

Function Approximation

How do we represent general function of state variables!?

Many choices:
®* Most popular is linear value function approximation.

e Use set of basis functions @1, ---s ®m
e Define linear function of them:

V(X) — Z w; 4 (X)

Learning task is to find vector of weights w to best
approximate V.

Function Approximation

One choice of basis functions:
* Just use state variables directly: |1, z, y]

Another:
® Polynomials in state variables.
e Eg, [1,z,y, 2y, 27, y°, 2y*, 2 yz y”]
® This is like a Taylor expansion.

Another:
® Fourier terms on state variables.
e Eg, 1, cos(mx), cos(my), cos(m|z + yl)]
® This is like a Fourier Series expansion.

Acrobot

Episode: 1

Acrobot

Sarsa(\) using the Fourier Basis: Acrobot

2500 1
— Fourier O(5)
F— Fourier O(7)
2000 | -
1500 f -

Steps to Goal

[
o
o
o

500

5 10 15 20 25 30
Episode

Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)
® At or near best human level
® Learn to play Backgammon through self-play
® |.5 million games
®* Neural network function approximator
®

TD(\)

Changed the way the best human players played.

Figure 3. A c mpl situation where TD-Gammo p sitional judgment s ap-
parently superior to traditional expert thinking. Wht s to play 4-4. The obvious
human play is 84'. g-4, 11-7, 11-7. (The asterisk denotes that an opponent
checker has been hit.) Howaver, TD-Gammon's choice is the surprising 8-4,
8-4, 2117, 21171 TD-Gammon's analysis of the two plays is given in Table 3

