
Decision Making for Robots 	

and Autonomous Systems

Fall 2015

George Konidaris	

gdk@cs.duke.edu

mailto:gdk@cs.duke.edu

The World Reacts

Markov Decision Processes
: set of states	

: set of actions	

: discount factor 	

!
: reward function	

 is the reward received taking action from state 	

 and transitioning to state .	

!
: transition function	

 is the probability of transitioning to state after
taking action in state . 	

!

S

A

R

R(s, a, s′)

γ

a s

s
′

T

T (s′|s, a) s
′

a s

< S, A, γ, R, T >

(some states are absorbing - execution stops)

MDPs
Our goal is to find a policy:	

!
!
!
!
!

 … that maximizes return: expected sum of rewards.
(equiv: min sum of costs)	

⇡ : S ! A

1X

i=1

E[�iri]

Reinforcement Learning
What if we don’t know T or R (or both?)

RL

Agent interacts with an environment	

At each time t:	

• Receives sensor signal	

• Executes action 	

• Transition:	

• new sensor signal 	

• reward	

st

at

st+1

rt

Cannot query a transition - must actually do it, in order
to get transition data.

How do we do this!
Same as before - learn V!	

!
But! Before, we could do this during policy iteration:	

!
!
!
 … now we cannot. So instead of V, we learn Q:	

!
!
!
!

This is the value of executing in state , then following .	

Note that:

⇡(s) = max

a

"
R(s, a) + �

X

s0

T (s0|s, a)V (s0)

#

Qπ(s, a) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

π, s0 = s, a0 = a

]

πa s

Q⇡(s,⇡(s)) = V ⇡(s)

Policy Iteration
General policy improvement framework:	

1. Start with a policy 	

2. Learn 	

3. Improve 	

a. 	

!

π

Qπ

π

π(s) = max
a

Q(s, a),∀s
Repeat

This is known as policy iteration. 	

It is guaranteed to converge to the optimal policy.	

!
Steps 2 and 3 can be interleaved as rapidly as you like.	

Usually, perform 3a every time step.

Value Functions

Value Function Learning
Learning proceeds by gathering samples of .	

 
Methods differ by:	

• How you get the samples.	

• How you use them to update .Q

Q(s, a)

Monte Carlo
Simplest thing you can do: sample .	

!
!
!
!
!
!
!
!
!
Do this repeatedly, average values:

R(s)

r
r r r r r r r

Q(s, a) =
R1(s) + R2(s) + ... + Rn(s)

n

TD Learning
Exploit the Bellman equation: temporal difference error.

st st+1
at

rt

Q(st, at) ← rt + γQ(st+1, at+1)

Sarsa
Sarsa: very simple algorithm	

!
1. Initialize Q(s, a)	

2. For n episodes	

• observe transition 	

• compute TD error 	

• update Q: 	

• select and execute action based on Q

(s, a, r, s
′
, a

′)
δ = r + γQ(s′, a′) − Q(s, a)

Q(s, a) = Q(s, a) + αδ

TD
In Sarsa, we use a sample transition:	

This is a sample backup.	

!
Compare with the full expectation (given T):	

!
!
!
!
!
!
(full backup)

(s, a, r, s
′
, a

′)

δ = Eπ,T [r + γQ(s′, a′)] − Q(s, a)

st

st+1 st+1 st+1

p
p p

TD vs. MC
TD and MC two extremes of obtaining samples of Q:	

t=1 t=2 t=3 t=4 t=L

...

r + γV r + γV r + γV

t=1 t=2 t=3 t=4 t=L

...

∑

i

γiri

Generalizing TD
We can generalize this to the idea of an n-step rollout:	

!
!
!
!
!
Each tells us something about the value function.	

• We can combine all n-step rollouts.	

• This is known as a complex backup.

TD(λ)
Weighted sum:	

!
!
 .	

 .	

 .	

!
!
!
!
Estimator:	

!

R(1) = r0 + �V (s1)
R(2) = r0 + �r1 + �2V (s2)

R(n) =
n�1X

i=0

�iri + �nV (sn)

1
�

�n

weights

TD(λ)
This is called the λ-return.	

• At λ=0 we get TD, at λ=1 we get MC.	

• Intermediate values of λ usually best.	

• TD(λ) family of algorithms

Real-Valued States
What if the states are real-valued?	

• Cannot use table to represent Q.	

• States may never repeat: must generalize.

0 10 20 30 40 50 60 70 80 90020406080100

0

0.5

1

1.5

2

2.5

vs

Function Approximation
How do we represent general function of state variables?	

!
Many choices: 	

• Most popular is linear value function approximation.	

• Use set of basis functions	

• Define linear function of them:	

!
!
!
!

Learning task is to find vector of weights w to best
approximate V.

V̄ (x) =
m∑

i=1

wiφi(x)

Function Approximation
One choice of basis functions: 	

• Just use state variables directly: 	

!
Another:	

• Polynomials in state variables.	

• E.g.,	

• This is like a Taylor expansion.	

!
Another:	

• Fourier terms on state variables.	

• E.g., 	

• This is like a Fourier Series expansion.

[1, x, y, xy, x
2
, y

2
, xy

2
, x

2
yx

2
y
2]

[1, cos(πx), cos(πy), cos(π[x + y])]

[1, x, y]

Acrobot

Acrobot

Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)	

• At or near best human level	

• Learn to play Backgammon through self-play	

• 1.5 million games	

• Neural network function approximator	

• TD(λ)	

!
Changed the way the best human players played.

