
NetFence: Preventing Internet Denial of Service from
Inside Out

Xin Liu
Dept. of Computer Science

Duke University

xinl@cs.duke.edu

Xiaowei Yang
Dept. of Computer Science

Duke University

xwy@cs.duke.edu

Yong Xia
Networking Systems Group

NEC Labs China
xia_yong@nec.cn

ABSTRACT

Denial of Service (DoS) attacks frequently happen on the Inter-
net, paralyzing Internet services and causing millions of dollars
of financial loss. This work presents NetFence, a scalable DoS-
resistant network architecture. NetFence uses a novel mechanism,
secure congestion policing feedback, to enable robust congestion
policing inside the network. Bottleneck routers update the feed-
back in packet headers to signal congestion, and access routers use
it to police senders’ traffic. Targeted DoS victims can use the secure
congestion policing feedback as capability tokens to suppress un-
wanted traffic. When compromised senders and receivers organize
into pairs to congest a network link, NetFence provably guaran-
tees a legitimate sender its fair share of network resources without
keeping per-host state at the congested link. We use a Linux imple-
mentation, ns-2 simulations, and theoretical analysis to show that
NetFence is an effective and scalable DoS solution: it reduces the
amount of state maintained by a congested router from per-host to
at most per-(Autonomous System).

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.6 [Computer-Communication Networks]:
Internetworking

General Terms

Design, Security

Keywords

Internet, Denial-of-Service, Capability, Congestion Policing

1. INTRODUCTION
Large-scale Denial of Service (DoS) attacks remain as a po-

tent threat to the Internet. A survey from Arbor Networks shows
that DoS attacks continue to grow in both scale and sophistica-
tion [4]. The largest observed attack reached 49Gbps in 2009, a
104% growth over the past two years. The survey also ranks DoS
attacks as the largest anticipated threat in the next 12 months. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

result is not surprising, as tens of gigabits flooding traffic could
easily overwhelm most links, routers, or sites on the Internet.

The destructive nature of DoS attacks has brought forth a fun-
damental research challenge: how can we design an open network
architecture that is resistant to large-scale DoS attacks? There have
been several proposals addressing this challenge [5,27,35,48,47,3].
These proposals enable DoS victims to suppress attack traffic using
network capabilities or filters, but when malicious sender-receiver
pairs collude to flood a link, the best defense mechanism these sys-
tems can offer is per-host queuing at the flooded link to separate
legitimate traffic from attack traffic. This solution faces a scalabil-
ity challenge, as a flooded router may forward packets for millions
of (malicious and legitimate) end systems.

This paper presents the design and evaluation of NetFence, a
scalable DoS-resistant network architecture. NetFence provably
guarantees each sender its fair share of bandwidth without keep-
ing per-host state at bottleneck routers even when malicious senders
and receivers collude into pairs to flood the network. It also enables
DoS victims to suppress unwanted traffic as in a capability-based
system [48, 35]. A key departure of NetFence from previous work
is that it places the network at the first line of DoS defense rather
than relies on end systems (be it senders or receivers) to suppress
attack traffic.

The NetFence design places a robust traffic policing control loop
inside the network (§ 3 and § 4). Packets carry unforgeable con-
gestion policing feedback stamped by routers that suffer excessive
congestion (caused either by DoS attacks or other reasons, which
NetFence does not distinguish). Access routers at the trust bound-
aries between the network and end systems examine the feedback
and police the senders’ traffic. A malicious sender cannot gain
more than its fair share of bandwidth even if it colludes with a
compromised receiver, because it cannot spoof valid congestion
policing feedback. Innocent DoS victims can use the unforgeable
congestion policing feedback as capability tokens to suppress the
bulk of unwanted traffic, by not returning the feedback to mali-
cious senders. To be fail-safe in case access routers are compro-
mised, NetFence uses Autonomous System (AS)-level queues (or
rate-limiters) to separate traffic from different source ASes, limit-
ing DoS damage to the ASes that harbor the compromised routers.

We have implemented NetFence in Linux and evaluated its over-
head and performance using theoretical analysis (§ 3.4), testbed
experiments, and large-scale simulations (§ 6). Our analysis shows
that regardless of attackers’ strategies, NetFence provides a legit-
imate sender its fair share of bottleneck bandwidth. The simula-
tion results correlate well with this analysis, and also show that
NetFence performs similarly to state-of-the-art capability- or filter-
plus-fair-queuing DoS defense systems [27, 48]. Our Linux pro-

totype benchmarking results show that NetFence’s per-packet pro-
cessing overhead is low.

These results suggest that NetFence is an effective and scalable
DoS solution. NetFence’s bottleneck routers have O(1) per-packet
computational overhead, and maintain at most per-AS state (more
scalable design alternatives exist as discussed in § 4.5), while pre-
vious work requires these bottleneck routers to keep per-host state
to protect legitimate traffic. One concern for the NetFence design is
that access routers need to keep per-(sender, bottleneck link) state
(§ 3), but we show in § 5.1 today’s access routers can meet such
scalability requirements.

The key contributions of this paper include a new DoS defense
primitive: secure congestion policing feedback, and based on it,
the construction of a robust, network-based, closed-loop conges-
tion policing architecture that scalably and effectively limits the
damage of DoS flooding attacks. With a closed-loop design, Net-
Fence can flexibly place different functionalities at different lo-
cations: lightweight attack detection and congestion signaling at
bottleneck links, and congestion policing that requires per-(sender,
bottleneck link) state at access routers. This design makes it scale
much better than previous open-loop approaches that employ per-
host queuing at bottleneck routers [27, 48].

2. ASSUMPTIONS AND GOALS
Before we present the design of NetFence, we first describe its

threat model, assumptions, and design goals.

2.1 Threat Model and Assumptions

Flood-based network attacks: NetFence focuses on mitigating
network-layer flooding attacks where attackers send excessive traf-
fic to exhaust network resources such as link capacity or router pro-
cessing power. It does not aim to mitigate DoS attacks that exploit
application vulnerabilities to exhaust end system resources.

Strong adversary: We assume that attackers can compromise
both end systems and routers. Compromised end systems involved
in an attack can grow into millions; they may launch brute-force or
strategic flooding attacks. For instance, they may disguise attack
traffic as legitimate traffic, launch on-off attacks, or collude into
sender-receiver pairs to send flooding traffic. Attack traffic may or
may not be distinguishable from legitimate traffic.

We make two assumptions to assist NetFence’s design.

Trust: We assume that routers managed by the network are much
less likely to be compromised than end systems. We thus place
policing functions on routers rather than end systems. As a tradeoff
for scalability, we treat each AS as a trust and fate sharing unit.
When compromised routers exist, we aim to localize the damage
to the ASes that harbor compromised routers rather than protect all
the legitimate hosts within such ASes.

Line-speed lightweight cryptography: We assume that symmet-
ric key cryptography can be supported at line-speed. Some current
hardware can support AES operations at 40Gbps [20], and the latest
Intel Westmere processors have native support for AES [21].

2.2 Goals
NetFence aims to meet several design goals. It is these goals that

distinguish NetFence from previous work.

i) Guaranteed network resource fair share: When DoS victims
can identify attack traffic, we aim to enable them to suppress the at-
tack traffic near the origins. This prevents attack traffic from wast-
ing network resources. When DoS victims fail to identify attack
traffic, or attackers collude into sender-receiver pairs to flood the

Figure 1: The NetFence architecture. Packets carry unspoofable con-

gestion policing feedback stamped by bottleneck routers (Rb in this

figure). Access routers (Ra) use the feedback to police senders’ traffic,

preventing malicious senders from gaining unfair shares of bottleneck

capacity. DoS victims can use the congestion policing feedback as ca-

pability tokens to suppress unwanted traffic.

network, we resort to a weaker goal to guarantee a legitimate sender
its fair share of network resources. That is, for any link of capac-
ity C shared by N (legitimate and malicious) senders, each sender
with sufficient demand should be guaranteed at least O(C

N
) band-

width share from that link. This mitigates the effect of large-scale
DoS attacks from denial of service to predictable delay of service.

ii) Open network: NetFence aims to keep the network open to
new applications, and thus places the attack traffic identification
function at the receivers to avoid false positives introduced by in-
network traffic classification. This goal is also shared by previous
work [3, 48, 5].

iii) Scalable and lightweight: NetFence may face millions of at-
tackers that attempt to congest a single link. To be effective at such
a scale, it does not assume that a router always has sufficient re-
sources to warrant per-flow or per-host state management. It aims
to keep little or no state in the core network and avoid heavyweight
operations such as per-flow/host fair queuing in the core network.
To facilitate high-speed router implementation, NetFence aims to
incur low communication, computation, and memory overhead.

iv) Robust: NetFence should be robust against both simple, brute-
force flooding attacks and sophisticated ones that attempt to bypass
or abuse NetFence itself.

v) Incrementally adoptable: We aim to make NetFence incre-
mentally deployable on today’s Internet. Specifically, we aim to
provide early adopters immediate deployment benefits: they can
form an “overlay” network of deployed regions and benefit col-
lectively from the deployment. We aim not to require hop-by-hop
deployment from a congested link to compromised end systems to
be effective, unlike [30].

vi) Network self-reliant defense: We aim for a self-reliant solu-
tion that depends on only routers in the network, not other infras-
tructures such as trusted host hardware [2] or DNS extensions [35].
Our hypothesis is that extra dependencies increase security risk and
may create deployment deadlocks. That is, without the deploy-
ment or upgrade of other infrastructures, the design is not effective.
Hence, there is little incentive to deploy it, and vice versa.

3. ARCHITECTURE
In this section, we present an overview of the NetFence architec-

ture, and defer design details to § 4.

3.1 System Components
NetFence has three types of packets: request packets, regular

packets, and legacy packets. The first two, identified by a special

Figure 2: Each NetFence router keeps three channels.

protocol number in the IP header, have a shim NetFence header
between their IP and upper-layer protocol headers. The NetFence
header carries unforgeable congestion policing feedback generated
by the network (§ 3.2 and § 4.4). A NetFence-ready sender sends
request and regular packets, while a non-NetFence sender sends
only legacy packets.

Each NetFence router, depicted in Figure 2, keeps three chan-
nels, one for each of the three packet types discussed above. To
motivate end systems to upgrade, the NetFence design gives legacy
channel lower forwarding priority than the other two. To prevent re-
quest flooding attacks from denying legitimate requests, NetFence
has a priority-based backoff mechanism for the request channel
(§ 4.2). The request channel is also limited to consume no more
than a small fraction (5%) of the output link capacity, as in [48,35].

NetFence places its feedback and policing functions at bottle-
neck and access routers that are either inside the network or at the
trust boundaries between the network and end systems. It does
not place any trusted function at end systems. As shown in Fig-
ure 1, a NetFence sender starts an end-to-end communication by
sending request packets to its NetFence-ready receiver (Step 1).
The access router inserts the nop feedback in the NetFence header
of the packet (Step 2, § 4.1). Along the path, a bottleneck router
might modify the feedback, in a way similar to TCP ECN [37] (Step
3). After the receiver returns the feedback to the sender (Step 4),
the sender can send valid regular packets that contain the feedback
(Step 5). In Step 4, two-way protocols like TCP can piggyback the
returned feedback in their data packets, while one-way transport
protocols such as UDP must send extra, low-rate feedback packets
from a receiver to a sender.

A NetFence router periodically examines each output link to de-
cide if an attack is happening at the link. It uses a combination of
link load and packet loss rate as an attack indicator (§ 4.3.1). If an
attack is detected, NetFence starts a monitoring cycle, which lasts
until i) no more attack is detected during the cycle, and ii) the cycle
has existed for an extended period (typically a few hours) after the
most recent attack is detected. During a monitoring cycle, the mon
congestion policing feedback (containing the link ID l, an action
field, etc.) is stamped into the NetFence header of all the passing
request/regular packets (§ 4.3.2). The sender’s regular packets must
include this mon feedback to be considered valid, and they will be
policed by the access router (Step 6, § 4.3.3).

An access router maintains one rate limiter for every sender-
bottleneck pair to limit a sender’s regular traffic traversing a bottle-
neck link. The router uses an Additive Increase and Multiplicative
Decrease (AIMD) algorithm to control the rate limit: it keeps the
rate limit constant within one pre-defined control interval (a few
seconds); across control intervals, it either increases the rate limit
additively or decreases it multiplicatively, depending on the partic-
ular mon feedback it receives (§ 4.3.4). We use AIMD to control
the rate limit because it has long been shown to converge onto ef-
ficiency and fairness [11]. Other design choices exist; they have
different cost-performance tradeoffs, and are discussed in [28].

When no attack is detected, a downstream router will not modify
the nop feedback stamped by an access router. When the sender

obtains the nop feedback and presents it back to its access router
in a packet, the packet will not be rate-limited. That is, when no
attack happens, NetFence stays in idle state. The overhead during
such idle periods is low, because 1) the NetFence header is short
(20 bytes) (§ 6.1); 2) the bottleneck attack detection mechanism
only involves a packet counter and a queue sampler; and 3) an ac-
cess router only needs to stamp and validate (not rate limit) the
NetFence header for each packet. Only when an attack is detected
at a bottleneck link, does NetFence activate its policing functions,
which add additional processing overhead at bottleneck and access
routers. We show the overhead benchmarking results in § 6.2.

3.2 Unforgeable Congestion Policing Feedback
Congestion policing feedback must be made unforgeable so that

malicious nodes cannot evade NetFence’s traffic policing functions.
NetFence achieves this goal using efficient symmetric key cryptog-
raphy. An access router inserts a periodically changing secret in a
packet’s NetFence header. A bottleneck router uses this secret to
protect its congestion policing feedback, and then erases the secret.
The access router, knowing the secret, can validate the returned
feedback. We describe the details of this design in § 4.4, and dis-
cuss how to limit the effect of compromised access routers in § 4.5.

3.3 Congestion Feedback as Capability
If a DoS victim can identify and desires to bar attack traffic, Net-

Fence’s unspoofable congestion policing feedback also serves as a
capability token: a receiver can return no feedback to a malicious
sender. Because the malicious sender cannot forge valid feedback,
it cannot send valid regular packets. It can at most flood request
packets to a destination, but an access router will use a priority-
based policing scheme to strictly limit a sender’s request traffic rate
(§ 4.2). Alternatively, it can simply flood to congest its local area
network, but this attack is easy to detect and the damage is confined
to the local area network.

3.4 Fair Share Guarantee
With the above-described closed-loop network architecture, we

are able to prove that NetFence achieves per-sender fairness for
single bottleneck scenarios.

Theorem: Given G legitimate and B malicious senders sharing

a bottleneck link of capacity C, regardless of the attack strategies,

any legitimate sender g with sufficient demand eventually obtains a

capacity fair share
νgρ C

G+B
, where 0 < νg ≤ 1 is a parameter deter-

mined by how efficient the sender g’s transport protocol (e.g., TCP)

utilizes the rate limit allocated to it, and ρ is a parameter close to

1, determined by NetFence’s implementation-dependent AIMD and

attack detection parameters.

Due to lack of space, we briefly describe why this theorem holds,
but leave a detailed proof in the technical report [28].

Proof sketch: In NetFence, an access router keeps one rate lim-
iter for each sender-bottleneck pair when a monitoring cycle is
triggered during attack times. Based on the unspoofable conges-
tion feedback from the bottleneck, the access router dynamically
adjusts the rate limits using a robust AIMD algorithm (§ 4.3.4).
Since AIMD has been shown to converge onto efficiency and fair-
ness [11], all the rate limits will eventually converge to the fair
share of the bottleneck capacity. Thus, any sender, whether legiti-
mate or malicious, can send at most as fast as its fair share rate.

4. DESIGN DETAILS
In this section, we show the design details of NetFence. For

clarity, we first present the design assuming unforgeable congestion

policing feedback and non-compromised routers. We then describe
how to make congestion policing feedback unforgeable and how to
handle compromised routers. Key notations used to describe the
design are summarized in Figure 3.

4.1 Congestion Policing Feedback
NetFence uses three types of congestion policing feedback:

• nop, indicating no policing action is needed;
• L↓, indicating the link L is overloaded, and an access router

should reduce the traffic traversing L;
• L↑, indicating the link L is underloaded, and an access router

can allow more traffic traversing L.

We refer to L↑ and L↓ as the mon feedback. Each congestion
policing feedback includes a timestamp to indicate its freshness.

4.2 Protecting the Request Channel
Attackers may simply flood request packets to congest down-

stream links. NetFence mitigates this attack with two mechanisms.
First, it limits the request channel on any link to a small fraction
(5%) of the link’s capacity, as in [48, 35]. This prevents request
packets from starving regular packets. Second, it combines packet
prioritization and priority-based rate limiting to ensure that a legit-
imate sender can always successfully transmit a request packet if it
waits long enough to send the packet with high priority. This mech-
anism ensures that a legitimate user can obtain the valid congestion
policing feedback needed for sending regular packets.

In NetFence, a sender can assign different priority levels to its
request packets. Routers forward a level-k packet with higher pri-
ority than lower-level packets, but the sender is limited to send
level-k packets at half of the rate of level-(k-1) packets. An ac-
cess router installs per-sender token-based rate limiters to impose
this rate limit. It removes 2k−1 tokens from a request packet rate
limiter when admitting a level-k packet. Level-0 packets are not
rate-limited, but they have the lowest priority.

This request channel policing algorithm guarantees that a legiti-
mate sender can eventually send a request packet to a receiver re-
gardless of the number of attackers [35]. It holds because the ar-
rival rate of request packets decreases exponentially as their priority
level increases. Thus, the arrival rate of high priority request pack-
ets will eventually be smaller than the request channel capacity.

NetFence does not use computational puzzles as in [35]. This is
because computational resources may be scarce [13], especially in
busy servers and handheld devices. In addition, NetFence’s design
has the flexibility that an access router can configure different token
refill rates for different hosts on its subnet. Legitimate servers could
be given a higher rate to send more high priority request packets
without purchasing additional CPU power.

When an access router forwards a request packet to the next hop,
it stamps the nop feedback into the packet, ensuring that a sender
can obtain valid feedback if the receiver desires to receive from it.

4.3 Protecting the Regular Channel
Malicious senders may flood regular packets when they can ob-

tain valid congestion policing feedback from their colluding re-
ceivers. We describe how to mitigate this attack.

4.3.1 A Monitoring Cycle

When a router suspects that its outgoing link L is under attack,
it starts a monitoring cycle for L. That is, it marks L as in the
mon state and starts updating the congestion policing feedback in
packets that traverse L (§ 4.3.2). Once a sender’s access router
receives such feedback, it will start rate limiting the sender’s regular
packets that will traverse the link L (§ 4.3.3).

Name Value Meaning
l1 1 ms level-1 request packet rate limit

Ilim 2 s Rate limiter ctrl interval length

w 4 s Feedback expiration time

∆ 12 kbps Rate limiter additive incr

δ 0.1 Rate limiter multiplicative decr

pth 2% Packet loss rate threshold

Qlim 0.2s× link bw Max queue length

minthresh 0.5 Qlim RED algorithm parameter
maxthresh 0.75 Qlim RED algorithm parameter

wq 0.1 EWMA weight for avg queue length

Figure 3: Key parameters and their values in our implementation.

It is difficult to detect if L is under an attack because the at-
tack traffic may be indistinguishable from legitimate traffic. In Net-
Fence, L’s router infers an attack based on L’s utilization and the
loss rate of regular packets. If L is well-provisioned and its normal
utilization is low (a common case in practice), it can be consid-
ered as under an attack when its average utilization becomes high
(e.g., 95%); if L always operates at or near full capacity, its router
can infer an attack when the regular packets’ average loss rate p
exceeds a threshold pth. A link’s average utilization and p can be
calculated using the standard Exponentially Weighted Moving Av-
erage (EWMA) algorithm [18]. The threshold pth is a local policy
decision of L’s router, but it should be sufficiently small so that
loss-sensitive protocols such as TCP can function well when no at-
tack is detected. Attackers may launch a mild attack and evade the
detection by keeping p below pth, but the damage is also limited.

When the attack detection is based on the packet loss rate p, a
flash crowd may also be considered as an attack. We do not distin-
guish these two because it is too difficult to do so. As shown by our
simulation results (§ 6), starting a monitoring cycle for a link does
not have much negative impact on a legitimate sender.

It is undesirable to infinitely keep a monitoring cycle due to the
added overhead. Thus, a NetFence router terminates a link L’s
monitoring cycle when L is no longer under attack (e.g., p < pth)
for a sufficiently long period of time Tb. The router will mark L as
in the nop state and stop updating the congestion policing feedback
in packets traversing L. Similarly, an access router will terminate
a rate limiter (src, L) if it has not received any packet with the L↓

feedback and the rate limiter has not discarded any packet for Ta

seconds.
Routers should set Ta and Tb to be significantly longer (e.g., a

few hours) than the time it takes to detect an attack (Td). This is
because attackers may flood the network again after Ta (or Tb) sec-
onds. By increasing the ratio of the monitored period min(Ta, Tb)
to the unprotected period Td, we reduce the network disruption
time. Network disruption during an attack detection period can-
not be eliminated unless compromised senders are patched up, but
we do not assume routers have this ability.

4.3.2 Updating Congestion Policing Feedback

When a link L is in the mon state, its router Rb uses the follow-
ing ordered rules to update the congestion policing feedback in any
request/regular packet traversing L:

1. If the packet carries nop, stamp L↓;
2. Otherwise, if the packet carries L′↓ stamped by an upstream

link L′, do nothing;
3. Otherwise, if L is overloaded, stamp L↓.

The router Rb never stamps the L↑ feedback. As we will see in
§ 4.3.3, only an access router stamps L↑ when forwarding a packet.
If the L↑ feedback reaches the receiver of the packet, it indicates
that the link L is not overloaded, because otherwise the router Rb

would replace the L↑ feedback with the L↓ feedback.

Figure 4: Once a router Rb encounters congestion between time

[t, t1], it will continuously stamp the L↓ feedback until t1 + 2Ilim.

A packet may cross multiple links in the mon state. The access
router must ensure that the sender’s rate does not exceed its legit-
imate share at any of these links. The second rule above allows
NetFence to achieve this goal, gradually. This is because the first
link L1 on a packet’s forwarding path that is both overloaded and in
the mon state can always stamp the L↓

1 feedback, and downstream

links will not overwrite it. When the L↓
1 feedback is presented to

an access router, the router will reduce the sender’s rate limit for
the link L1 until L1 is not overloaded and does not stamp L↓

1. This
would enable the next link (L2) on the path that is both in the mon
state and overloaded to stamp L↓

2 into the packets. Gradually, a
sender’s rate will be limited such that it does not exceed its fair
share on any of the on-path links in the mon state.

4.3.3 Regular Packet Policing at Access Routers

A sender src’s access router polices the sender’s regular packets
based on the congestion policing feedback in its packets. If a packet
carries the nop feedback, indicating no downstream links require
congestion policing, the packet will not be rate-limited. Otherwise,
if it carries L↑ or L↓, it must pass the rate limiter (src, L).

We implement a rate limiter as a queue whose de-queuing rate
is the rate limit, similar to a leaky bucket [44]. We use the queue
to absorb traffic bursts so that bursty protocols such as TCP can
function well with the rate limiter. We do not use a token bucket
because it allows a sender to send short bursts at a speed exceeding
its rate limit. Strategic attackers may synchronize their bursts to
temporarily congest a link, leading to successful on-off attacks.

When an access router forwards a regular packet to the next hop,
it resets the congestion policing feedback. If the old feedback is
nop, the access router refreshes the timestamp of the feedback. If
the old feedback is L↓ or L↑, the access router resets it to L↑. This
design reduces the computational overhead at the link L’s router,
as it does not update a packet’s feedback if L is not overloaded.

For simplicity, NetFence uses at most one rate limiter to police
a regular packet. One potential problem is that a flow may switch
between multiple rate limiters when its bottleneck link changes. We
discuss this issue in § 4.3.5.

4.3.4 Robust Rate Limit Adjustment

The L↑ and L↓ feedback enables an access router to adjust a
rate limiter (src,L)’s rate limit rlim with an AIMD algorithm. A
strawman design would decrease rlim multiplicatively if the link L
is overloaded and stamps the L↓ feedback, or increase it additively
otherwise. However, a malicious sender can manipulate this design
by hiding the L↓ feedback to prevent its rate limit from decreasing.

To address this problem, we periodically adjust a rate limit, use
L↑ as a robust signal to increase the rate limit, and ensure that a
sender cannot obtain valid L↑ feedback for a full control interval if
its traffic congests the link L. Let Ilim denote the control interval
length for rate adjustment on an access router. Suppose a down-
stream bottleneck router Rb has a link L in the mon state. Rb

monitors L’s congestion status using a load-based [46] or a loss-
based algorithm such as Random Early Detection (RED) [18]. If
Rb detects congestion between time t and t1, it will stamp the L↓

feedback into all packets traversing L from time t until two control
intervals after t1: t1 + 2Ilim, even if it has considered the link not
congested after t1. This hysteresis ensures that if a sender congests
a link L during one control interval, it will only receive the L↓

feedback in the following control interval, as shown in Figure 4.
For each rate limiter (src,L), the access router Ra keeps two

state variables: ts and hasIncr, to track the feedback it has re-
ceived. The variable ts records the start time of the rate limiter’s
current control interval, and hasIncr records whether the rate lim-
iter has seen the L↑ feedback with a timestamp newer than ts.
At the end of each control interval, Ra adjusts the rate limiter
(src, L)’s rate limit rlim as follows:

1. If hasIncr is true, Ra compares the throughput of the rate
limiter with 1

2
rlim. If the former is larger, rlim will be in-

creased by ∆; otherwise, rlim will remain unchanged. Check-
ing the rate limiter’s current throughput prevents a malicious
sender from inflating its rate limit by sending slowly for a
long period of time.

2. Otherwise, Ra will decrease rlim to (1 − δ)rlim.

We discuss how to set the parameters ∆, δ, etc. in § 4.6.
We now explain why this AIMD algorithm is robust, i.e., a ma-

licious sender cannot gain unfair bandwidth share by hiding the
L↓ feedback: if a sender has sent a packet when a link L suffers
congestion, the sender’s rate limit for L will be decreased. Sup-
pose L’s router Rb detects congestion and starts stamping the L↓

feedback at time t, and let te denote the finishing time of an ac-
cess router’s control interval that includes the time t, as shown in
Figure 4. Rb will stamp the L↓ feedback between [t, t1 + 2Ilim].
Since te ∈ [t, t + Ilim], a sender will only receive the L↓ feedback
for packets sent during the control interval [te, te + Ilim], because
te ≥ t and te + Ilim < t1 + 2Ilim. It can either present the L↓

feedback newer than te to its access router, or present one older
than te, or not send a packet. All these actions will cause its rate
limit to decrease according to the second rule above.

A legitimate sender should always present L↑ feedback to its
access router as long as the feedback has not expired, even if it has
received newer L↓ feedback. This design makes a legitimate sender
mimic an aggressive sender’s strategy and ensures fairness among
all senders.

4.3.5 Handling Multiple Bottlenecks

When a flow traverses multiple links in the mon state, the flow’s
access router will instantiate multiple per-(sender, bottleneck link)
rate limiters for the sender. The present NetFence design sends a
regular packet to only one rate limiter for simplicity, but it may
overly limit a sender’s sending rate in some cases. This is be-
cause when a sender’s packets carry the congestion policing feed-
back from one of the bottleneck links, all other rate limiters stay
idle. The sender’s access router will reduce their rate limits, if
they are idle for longer than a full control interval, as described
above (§ 4.3.4). Consequently, the idle rate limiters’ rate limits
may become smaller than a sender’s fair share rates at those bottle-
neck links. When a sender’s bottleneck link changes, it may obtain
less than fair share bandwidth at the new bottleneck initially, until
its rate limit for the new bottleneck converges. Additionally, if a
sender’s bottleneck link changes frequently due to congestion dy-
namics, its packets may switch between different rate limiters. If
those rate limiters’ rate limits differ greatly, it may be difficult for
a transport protocol such as TCP to fully utilize its available band-
width.

We have considered various solutions to address this problem.
One simple solution is to allow a packet to carry all feedback from
all the bottleneck links on its path. An access router can then pass
the packet through all the on-path rate limiters, each receiving its
own feedback and policing the packet independently. This solution
requires a longer and variable-length NetFence header. Another
one is for an access router to infer the on-path bottleneck links of
a packet based on history information and send the packet through
all the inferred rate limiters.

We do not include these solutions in the core design for sim-
plicity. We describe the details of these solutions in [28], and use
simulations to evaluate how NetFence performs against those al-
ternative designs when there are multiple bottlenecks. The results
suggest that NetFence’s performance is acceptable. Thus, we con-
sider it a worthy tradeoff to keep the design simple.

4.4 Securing Congestion Policing Feedback
Congestion policing feedback must be unforgeable. Malicious

end systems should not be able to forge or tamper the feedback,
and malicious routers should not be able to modify or remove the
feedback stamped by other routers. The NetFence design uses effi-
cient symmetric key cryptography to achieve these goals.

Feedback format: A congestion policing feedback consists of
five key fields as shown in Figure 5: mode, link, action, ts,
and MAC. When the mode field is nop, it represents the nop
feedback. When the mode field is mon, the link field indicates
the identifier (an IP address) of the corresponding link L, and the
action field indicates the detailed feedback: if action is incr (decr),
it is the L↑ (L↓) feedback. The ts field records a timestamp, and
the MAC field holds a MAC signature that attests the feedback’s
integrity.

In addition to the five key fields, a mon feedback also includes a
field tokennop. We explain the use of this field later in this section.

Stamping nop feedback: When an access router stamps the nop
feedback, it sets mode to nop, link to a null identifier linknull,
action to incr, ts to its local time, and uses a time-varying secret
key Ka known only to itself to compute the MAC:

tokennop = MACKa(src, dst, ts, linknull, nop) (1)

The MAC computation covers both the source and destination
addresses to prevent an attacker from re-using valid nop feedback
on a different connection.

Stamping L↑ feedback: When an access router stamps the L↑

feedback, the mode field is already mon, and the link field already
contains the link identifier L. The router sets action to incr and
ts to its local time, and computes the MAC field using the secret
key Ka:

tokenL↑ = MACKa(src, dst, ts,L, mon, incr) (2)

The router also inserts a tokennop as computed in Eq (1) into
the tokennop field.

Stamping L↓ feedback: When a link L’s router Rb stamps the
L↓ feedback, it sets mode to mon, link to L, action to decr,
and computes a new MAC value using a secret key Kai shared
between its AS and the sender’s AS:

tokenL↓ = MACKai
(src, dst, ts, L, mon, decr, tokennop) (3)

The shared secret key Kai is established by piggybacking a dis-
tributed Diffie-Hellman key exchange in BGP as in [26]. The router
Rb includes tokennop stamped by the sender’s access router in its
MAC computation, and erases it afterwards to prevent malicious
downstream routers from overwriting its feedback.

linkmode action MACts

Figure 5: The key congestion policing feedback fields.

If Rb is an AS internal router that does not speak BGP, it may
not know Kai. In this case, Rb can leave the MAC and tokennop

fields unmodified and let an egress border router of the AS update
their values when the packet exits the AS. This design reduces the
management overhead to distribute Kai to an internal router Rb.

Validating feedback: When a source access router receives a reg-
ular packet, it first validates the packet’s congestion policing feed-
back. If the feedback is invalid, the packet will be treated as a
request packet and subject to per-sender request packet policing.

A feedback is considered invalid if its ts field is more than w sec-
onds older than the access router’s local time tnow: |tnow − ts| >
w, or if the MAC field has an invalid signature. The MAC field
is validated using Eq (1) and Eq (2) for the nop and L↑ feedback,
respectively. To validate L↓ feedback, the access router first re-
computes the tokennop using Eq (1), and then re-computes the
MAC using Eq (3). The second step requires the access router to
identify the link L’s AS in order to determine the shared secret key
Kai. We can use an IP-to-AS mapping tool [33] for this purpose,
as the feedback includes the link L’s IP address.

4.5 Localizing Damage of Compromised Routers
The NetFence design places enforcement functions that include

feedback validation and traffic policing at the edge of the network
to be scalable. However, if an access router is compromised, attack-
ers in its subnet or itself may misbehave to congest the network.
NetFence addresses this problem by localizing the damage to the
compromised AS. If an AS has a compromised router, we consider
the AS as compromised, and do not aim to provide guaranteed net-
work access for that AS’s legitimate traffic.

A NetFence router can take several approaches to localize the
damage of compromised ASes, if its congestion persists after it
has started a monitoring cycle, a signal of malfunctioning access
routers. One approach is to separate each source AS’s traffic into
different queues. This requires per-AS queuing. We think the over-
head is affordable because the present Internet has only about 35K
ASes [7]. We may replace per-AS queuing with per-AS rate lim-
iting and set the rate limits by periodically computing each AS’s
max-min fair share bandwidth on the congested link as in [30].
Another more scalable approach is to use a heavy-hitter detection
algorithm such as RED-PD [31] to detect and throttle high-rate
source ASes. A heavy-hitter detection algorithm is suitable in this
case because legitimate source ASes will continuously reduce their
senders’ traffic as long as they receive the L↓ feedback. The de-
tected high-rate ASes are likely to be the compromised ASes that
do not slow down their senders.

All these approaches require a router to correctly identify a packet’s
source AS, which can be achieved using an IP-to-AS mapping tool
if the packet’s source IP address is not spoofed. NetFence uses
Passport [26] to prevent source address spoofing. A Passport header
is inserted between IP and the NetFence header. Passport pig-
gybacks a distributed Diffie-Hellman key exchange in the inter-
domain routing system to enable each pair of ASes to share a se-
cret key. A source AS uses a key it shares with an AS on the
path to a destination to compute a secure MAC and inserts it into
a packet’s Passport header. Each AS on the path can verify that
a packet is originated from the source AS by validating the corre-
sponding MAC. NetFence also uses Passport to establish the shared
secret keys between ASes to secure the congestion policing feed-
back (§ 4.4).

4.6 Parameter Settings
Figure 3 summarizes the main parameters in the NetFence de-

sign and their values used in our implementation. The level-1 re-
quest packets (l1) are rate limited at one per 1 ms. A request
packet size is estimated as 92 bytes that includes a 40-byte TCP/IP
header, a 28-byte NetFence header (Figure 6) and a 24-byte Pass-
port header [26]. We set the control interval Ilim to 2 seconds, one
order of magnitude larger than a typical RTT (< 200ms) on the
Internet. This allows an end-to-end congestion control mechanism
such as TCP to reach a sender’s rate limit during one control inter-
val. We do not further increase Ilim because a large control interval
would slow down the rate limit convergence.

The rate limit AI parameter ∆ can be neither too small nor too
large: a small ∆ would lead to slow convergence to fairness; a
large ∆ may result in significant overshoot. We set ∆ to 12Kbps
because it works well for our targeted fair share rate range: 50Kbps
∼ 400Kbps. A legitimate sender may abort a connection if its send-
ing rate is much lower than 50Kbps, and 400Kbps should provide
reasonable performance for a legitimate sender during DoS flood-
ing attacks. The rate limit MD parameter δ is set to 0.1, a value
much smaller than TCP’s MD parameter 0.5. This is because a
router may stamp the L↓ feedback for two control intervals longer
than the congestion period (§ 4.3.4).

We set the attack detection threshold pth to 2%, since at this
packet loss rate, a TCP flow with 200ms RTT and 1500B packets
can obtain about 500Kbps throughput [34]. We set a link’s maxi-
mum queue length Qlim to 200ms × the link’s capability. We use
a loss-based algorithm RED to detect a link’s congestion status. It
is our future work to implement a load-based algorithm (e.g., [46]).

5. ANALYSIS
In this section, we analyze the scalability and security of Net-

Fence, and discuss the incremental deployment issues.

5.1 Scalability
As a closed-loop design, NetFence can place different functions

at different locations to provide per-sender fairness. It places per-
sender traffic policing at access routers, and lightweight congestion
detection, feedback stamping, and AS-level policing at bottleneck
routers. In contrast, per-host fair queuing, an open-loop solution
used in previous work [48,27], does not have this flexibility. Every
bottleneck router must keep per-host queues to provide per-sender
(or per-receiver) fairness. There are only 35K ASes on today’s In-
ternet [7], while the number of compromised hosts involved in a
DoS attack could reach millions [17]. Thus, compared to per-host
fair queuing, NetFence can significantly reduce the amount of state
kept by a bottleneck router.

However, NetFence access routers need to perform per-(sender,
bottleneck link) rate limiting. Our calculation suggests that with
today’s hardware technology, they can afford to do so and will not
become a new scaling bottleneck. While we do not have accu-
rate data to estimate the number of bottlenecks a sender traverses
during attack times, we think 100 links per legitimate sender is a
reasonable upper bound. An access router can aggregate a sender’s
rate limiters by bottleneck links’ prefixes if a sender needs more
than 100 rate limiters. If an access router serves 10K end hosts, it
will have at most one million rate limiters in total. Each rate lim-
iter needs about 24 bytes of memory for state variables (1 bit for
hasIncr, 8 bytes for two timestamps, 4 bytes for the rate limit,
and 12 bytes for a queue object) and another 1500 bytes to queue at
least one packet. The total amount of memory requirement is less
than 2GB, and we can use fast DRAM for this purpose as access
routers’ line speeds are typically slower than those of core routers.

The processing overhead of an access router is also acceptable.
The per-packet processing time on our benchmarking PC is less
than 1.3µs during attack times (§ 6.2). This translates into a through-
put of 770K packets per second, or more than 9 Gbps, assuming
1500-byte packet size and CPU is the throughput bottleneck. Im-
plementing the cryptographic operations in hardware can further
improve an access router’s throughput.

5.2 Security
Next we summarize how NetFence withstands various attacks.

5.2.1 Malicious End Systems

Forgery or Tampering: Malicious end systems may attempt to
forge valid congestion policing feedback. But NetFence protects
congestion policing feedback with MAC signatures. As long as
the underlying MAC is secure, malicious end systems cannot spoof
valid feedback. A malicious sender may selectively present L↑ or
hide L↓ to its access router, but NetFence’s robust AIMD algorithm
(§ 4.3.4) prevents it from gaining a higher rate limit.

Evading attack detection: Malicious end systems may attempt to
prevent a congested router from starting a monitoring cycle. This
attack is ineffective when a well-provisioned router uses high link
utilization to detect attacks. When an under-provisioned router uses
the packet loss rate to detect attacks, NetFence limits the damage
of this attack with a low loss detection threshold pth (§ 4.3.1).

On-off attacks: Attackers may attempt to launch on-off attacks. In
a macroscopic on-off attack, attackers may flood the network again
after a congested router terminates a monitoring cycle. NetFence
uses a prolonged monitor cycle (§ 4.3.1) to mitigate this attack. In
a microscopic on-off attack, attackers may send traffic bursts with
a short on-off cycle, attempting to congest the network with syn-
chronized bursts, yet maintaining average sending rates lower than
their rate limits. Our theoretical bound in § 3 and simulation results
in § 6.3.2 both show that the shape of attack traffic cannot reduce
a legitimate user’s guaranteed bandwidth share, because a sender
cannot send faster than its rate limit at any time (§ 4.3.3), and Net-
Fence’s robust rate limit adjustment algorithm (§ 4.3.4) prevents a
sender from suddenly increasing its actual sending rate.

5.2.2 Malicious On-path Routers

A malicious router downstream to a congested link may attempt
to remove or modify the L↓ feedback stamped by a congested router
in order to hide upstream congestion. But such attempts will make
the feedback invalid, because the router does not know the original
tokennop value needed to compute a valid MAC (§ 4.4).

A malicious on-path router may discard packets to completely
disrupt end-to-end communications, duplicate packets, or increase
packet sizes to congest downstream links. It may also change the
request packet priority field in a NetFence header to congest the
request channel on downstream links. Preventing such attacks re-
quires Byzantine tolerant routing [36], which is not NetFence’s de-
sign goal. Instead, we aim to make these attacks detectable. Pass-
port [26], the source authentication system NetFence uses, partially
protects the integrity of a packet and enables duplicate detection. It
includes a packet’s length and the first 8 bytes of a packet’s trans-
port payload (which includes the TCP/UDP checksum) in its MAC
computation. We can further extend Passport’s MAC computation
to include NetFence’s request packet priority field to protect it.

5.3 Incremental Deployment
NetFence can be incrementally deployed by end systems and

routers. Since the NetFence header is a shim layer between IP

VER(4) TYPE(4) PROTO(8) PRIORITY(8) FLAGS(8)

TIMESTAMP (32)

MAC (32)

LINK-ID (32)

MAC
LINK-ID

return

return

Common

Header

Returned

Feedback

nop

Feedback Common Header (64)

LINK-ID (32)

mon

Feedback
Common Header (64)

TOKEN-NOP (32)

1xxx: request packet

0xxx: regular packet

00xx: regular packet w/ nop feedback

01xx: regular packet w/ mon feedback

xxx1: w/ returned feedback

1xxxxxxx: the action is decr
x1xxxxxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
xxxxxxYY: YY is the timestamp of the returned feedback

FLAGS field:

(32)

(32)May be omitted

MAC (32)

Figure 6: The NetFence header format.

and upper layer protocols, legacy applications need not be modi-
fied. Legacy routers can ignore the NetFence header and forward
packets using the IP header. Routers at congested links and ac-
cess routers need to be upgraded, but well-provisioned routers that
can withstand tens of Gbps attack traffic may not need to upgrade.
The deployment can take a bump-in-the-wire approach, by placing
inline boxes that implement NetFence’s enforcement functions in
front of the routers that require upgrading. Middleboxes such as
firewalls need to be configured to permit NetFence traffic.

NetFence provides deployment incentives to both end systems
and ASes, because legacy traffic is treated by deployed ASes with
lower priority (Figure 2). Deployed ASes can form a trusted over-
lay network and protect each other’s legitimate traffic within their
networks. Their traffic is not protected at undeployed networks, en-
couraging them to direct traffic to other deployed ASes using BGP.

6. IMPLEMENTATION AND EVALUATION
We have implemented NetFence prototypes in Linux and in the

ns-2 simulator. Next we evaluate the NetFence header and packet
processing overhead with our Linux implementation, and use ns-2
simulations to show how effective NetFence mitigates DoS attacks.

6.1 NetFence Header
Figure 6 shows the format of a NetFence header in our Linux im-

plementation. A full NetFence header from a sender to a receiver
includes a forward header and a return header. The forward header
includes the congestion policing feedback on the forward path from
the sender to the receiver, and the return header includes the reverse
path information from the receiver to the sender. Most fields are
self-explained. A NetFence header is implemented as a shim layer
between IP and an upper-layer protocol, and the PROTO field de-
scribes the upper-layer protocol (e.g., TCP or UDP). The unit of a
timestamp is one second.

The return header may be omitted to reduce overhead if the sender
has previously returned the latest feedback to the receiver. Even
when the return header is present, it does not always include all the
fields. If the returned feedback is nop, the LINK-IDreturn field
will be omitted because it is zero, and one bit in the FLAGS field
indicates this omission.

A NetFence header only includes the last two bits of the returned
timestamp to save header space. In the subsequent packets from the
sender to the receiver, the sender’s access router will reconstruct

Packet Router Processing Overhead (ns/pkt)
Type Type NetFence TVA+

request
bottleneck

w/o attack: 0
389w/ attack: 492

access 546

regular
bottleneck

w/o attack: 0
w/ attack: 554

access
w/o attack: 781 791
w/ attack: 1267

Figure 7: NetFence implementation micro-benchmarking results.

the full timestamp from its local time and the returned two bits,
assuming that the timestamp is less than four seconds older than
its current time. With this implementation, a NetFence header is
20 bytes in the common case when the feedback is nop for both
the forward and return paths. In the worst case that the feedback is
mon for both paths, the header is 28 bytes long.

6.2 Micro-benchmarking
We have implemented NetFence in Linux using XORP [19] and

Click [24]. We modified XORP’s BGP module to establish the
pairwise symmetric keys shared between ASes. We added the data
packet processing logic into Click and ran Click routers in the ker-
nel space for packet forwarding. XORP communicates with Click
via the /click file system. We added a module between the IP and
transport layers on end-hosts to handle NetFence headers. This de-
sign keeps upper-layer TCP/UDP protocols and legacy applications
unmodified. We use AES-128 as a secure MAC function due to its
fast speed and available hardware support [20, 21].

We benchmark the Linux implementation on Deterlab [14] with
a three-node testbed. A source access router A and a destination C
are connected via a router B. The B—C link is the bottleneck with
a capacity of 5Mbps. Each node has two Intel Xeon 3GHz CPUs
and 2GB memory. To benchmark the processing overhead without
attacks, we send 100Kbps UDP request packets and 1Mbps UDP
regular packets from A to C respectively. To benchmark the over-
head in face of DoS attacks, we send 1Mbps UDP request packets
and 10Mbps UDP regular packets simultaneously.

The benchmarking results are shown in Figure 7. With Net-
Fence, when there is no attack, a request packet does not need any
extra processing on the bottleneck router B, but it introduces an av-
erage overhead of 546ns on the access router A because the router
must stamp the nop feedback into the packet. A regular packet does
not incur any extra processing overhead on the bottleneck router ei-
ther, but it takes the access router 781ns on average to validate the
returned feedback and generate a new one. When the bottleneck
link enters the mon state during attack times, the bottleneck router
takes 492ns to process a 92B request packet, or at most 554ns to
process a 1500B regular packet. The access router takes on aver-
age 1267ns to process a regular packet at attack times.

The performance of a capability system TVA+ [27] on the same
topology is also shown in Figure 7 for comparison. We can see
that the processing overhead introduced by NetFence is on par with
that of TVA+. Note that we do not show the result when TVA+
caches capabilities, because such caching requires per-flow state
on routers, while NetFence does not have this requirement.

These results show that NetFence’s per-packet overhead is low.
The CPU-intensive operations are primarily AES computation. Since
there exists commercial hardware that can support AES operations
at 40Gbps [20], we expect that NetFence’s per-packet processing
will not become a performance bottleneck. We note that the bench-
marking results do not include the Passport overhead, as a Passport
header can be updated by inline boxes near an AS’s ingress and
egress border routers [26].

 0

 2

 4

 6

 8

 10

25K 50K 100K 200KFi
le

 T
ra

ns
fe

r
T

im
e

(s
)

Number of Simulated Senders

FQ
NetFence

TVA+
StopIt

Figure 8: The average transfer time of a 20KB file when the targeted

victim can identify and wish to remove the attack traffic. The file trans-

fer completion ratio is 100% in all simulated systems.

6.3 Mitigating DoS Flooding Attacks
Next we evaluate how well NetFence mitigates various DoS flood-

ing attacks using ns-2 simulations. We also compare NetFence with
three other representative DoS mitigation schemes:

TVA+ : TVA+ [48, 27] is a network architecture that uses network
capabilities and per-host fair queuing to defend against DoS flood-
ing attacks. TVA+ uses hierarchical queuing (first based on the
source AS and then based on the source IP address) at congested
links to mitigate request packet flooding attacks, and per-receiver
fair queuing to mitigate authorized traffic flooding attacks in case
(colluding or incompetent) receivers fail to stop attack traffic.

StopIt : StopIt [27] is a filter and fair queuing based DoS defense
system. A targeted victim can install network filters to stop un-
wanted traffic. Similar to TVA+, in case receivers fail to install
filters, StopIt uses hierarchical queuing (first based on the source
AS and then based on the source IP address) at congested links to
separate legitimate traffic from attack traffic.

Fair Queuing (FQ) : Per-sender fair queuing at every link provides
a sender its fair share of the link’s bandwidth. We use fair queuing
to represent a DoS defense mechanism that aims to throttle attack
traffic to consume no more than its fair share of bandwidth.

We have implemented TVA+ and StopIt as described in [27,48].
We use the Deficit Round Robin (DRR) algorithm [39] to imple-
ment fair queuing because it has O(1) per packet operation over-
head. In our simulations, attackers do not spoof source addresses
because NetFence uses Passport [26] to prevent spoofing. Thus,
routers could queue attack traffic separately from legitimate traffic.

6.3.1 Unwanted Traffic Flooding Attacks

We first simulate the attack scenario where the attackers directly
flood a victim, but the victim can classify the attack traffic, and
uses the provided DoS defense mechanism: capabilities in TVA+,
secure congestion policing feedback in NetFence, and filters in Sto-
pIt, to block the unwanted traffic.

We desire to simulate attacks in which thousands to millions of
attackers flood a well provisioned link. However, we are currently
unable to scale our simulations to support beyond several thousand
nodes. To address this limitation, we adopt the evaluation approach
in [48]. We fix the number of nodes, but scale down the bottleneck
link capacity proportionally to simulate the case where the bottle-
neck link capacity is fixed, but the number of attackers increases.

We use a dumb-bell topology in which ten source ASes connect
to a destination AS via a transit AS. Each source AS has 100 source
hosts connected to a single access router. The transit AS has two
routers Rbl and Rbr , and the destination AS has one victim desti-
nation host. The link between Rbl and Rbr is the bottleneck link,
and all other links have sufficient capacity to avoid congestion. We
vary the bottleneck link capacity from 400Mbps to 50Mbps to sim-

ulate the scenario where 25K ∼ 200K senders (both legitimate and
malicious) share a 10Gbps link. Each sender’s fair share bandwidth
varies from 400Kbps ∼ 50Kbps, which is NetFence’s targeted op-
erating region. The propagation delay of each link is 10ms.

In the simulations, each sender is either a legitimate user or an
attacker. To stress-test our design, we let each source AS have
only one legitimate user that repeatedly sends a 20KB file to the
victim using TCP. We let each attacker send 1Mbps constant-rate
UDP traffic to the victim. We measure the effectiveness of a DoS
defense system using two metrics: 1) the average time it takes to
complete a successful file transfer; and 2) the fraction of successful
file transfers among the total number of file transfers initiated. We
set the initial TCP SYN retransmission timeout to 1 second, and
abort a file transfer if the TCP three-way handshake cannot finish
after nine retransmissions, or if the entire file transfer cannot finish
in 200 seconds. We terminate a simulation run when the simulated
time reaches 4000 seconds.

For each DoS defense system we study, we simulate the most
effective DoS flooding attacks malicious nodes can launch. In case
of an unwanted traffic flooding attack, the most effective flooding
strategy in NetFence and TVA+ is the request packet flooding at-
tack. Under this attack, each NetFence sender needs to choose a
proper priority level for its request packets. We make an attacker
always select the highest priority level at which the aggregate attack
traffic can saturate the request channel. A legitimate sender starts
with the lowest priority level and gradually increases the priority
level if it cannot obtain valid congestion policing feedback.

Figure 8 shows the simulation results. The average file transfer
completion ratio is omitted because all file transfers complete in
these simulations. As can be seen, StopIt has the best performance,
because the attack traffic is blocked near the attack sources by net-
work filters. TVA+ and NetFence also have a short average file
transfer time that only increases slightly as the number of simulated
senders increases. This is because in a request packet flooding at-
tack, as long as a legitimate sender has one request packet delivered
to the victim, it can send the rest of the file using regular packets
that are not affected by the attack traffic. The average file transfer
time in NetFence is about one second longer than that in TVA+, be-
cause a legitimate sender will initially send a level-0 request packet
that cannot pass the bottleneck link due to attackers’ request packet
floods. After one second retransmission backoff, a sender is able
to retransmit a request packet with sufficiently high priority (level-
10) to pass the bottleneck link. Attackers cannot further delay le-
gitimate request packets, because they are not numerous enough to
congest the request channel at this priority level.

Figure 8 also shows that FQ alone is an ineffective DoS defense
mechanism. With FQ, the average file transfer time increases lin-
early with the number of simulated senders, as each packet must
compete with the attack traffic for the bottleneck bandwidth.

These results show that NetFence performs similarly to capability-
based and filter-based systems when targeted victims can stop the
attack traffic. A legitimate sender may wait longer in NetFence
to successfully transmit a request packet than in TVA+ or StopIt.
This is because NetFence uses coarse-grained exponential back-
off to schedule a request packet’s transmission and set its prior-
ity, while TVA+ uses fine-grained but less scalable per-sender fair
queuing to schedule a request packet’s transmission, and StopIt en-
ables a victim to completely block unwanted traffic.

6.3.2 Colluding Attacks

Next we present our simulation results for regular traffic flooding
attacks where malicious sender-receiver pairs collude to flood the

 0

 0.2

 0.4

 0.6

 0.8

 1

25K 50K 100K 200K

T
hr

ou
gh

pu
t R

at
io

Number of Simulated Senders

NetFence
FQ

StopIt
TVA+

(a) Long-running TCP

 0

 0.2

 0.4

 0.6

 0.8

 1

25K 50K 100K 200K

T
hr

ou
gh

pu
t R

at
io

Number of Simulated Senders

NetFence
FQ

StopIt
TVA+

(b) Web-like traffic

Figure 9: Throughput Ratio between legitimate users and attackers

when receivers fail to suppress the attack traffic. Fairness Index among

legitimate users is close to 1 in all the simulations.

network. Such attacks may also occur if DoS victims fail to identify
the attack traffic.

Single Bottleneck: We use a similar topology as in the previous
experiments (§ 6.3.1) to simulate colluding attacks. In this simu-
lation topology, the router at the right-hand side of the bottleneck
link Rbr connects to one destination AS with a victim host and
nine additional ASes, each having a colluding host (colluder). Each
source AS has 25% legitimate users and 75% attackers, simulating
the case where the attackers are numerous but there are still a rea-
sonable number of legitimate users in each source AS.

Each legitimate user sends TCP traffic to the victim host. We
simulate two types of user traffic: 1) long-running TCP, where a le-
gitimate sender sends a single large file; 2) web-like traffic, where a
sender sends small files whose size distribution mimics that of web
traffic. We draw the file size distribution from a mixture of Pareto
and exponential distributions as in [29], and make the interval be-
tween two file transfers uniformly distributed between 0.1 and 0.2
seconds. The maximum file size is limited to 150KB to make the
experiments finish within a reasonable amount of time.

To simulate colluding attacks, we let each attacker send 1Mbps
UDP traffic to a colluder. The attackers in TVA+ and NetFence
send regular packets. Colluders in StopIt do not install filters to stop
the attack traffic. We simulate each experiment for 4000 seconds.

When compromised nodes organize into pairs to send attack traf-
fic, NetFence aims to guarantee each legitimate sender its fair share
of the bottleneck bandwidth without keeping per-sender queues in
the core network. We use two metrics to measure a DoS defense
system’s performance under this type of attack: 1) Throughput Ra-

tio, the ratio between the average throughput of a legitimate user
and that of an attacker; and 2) Fairness Index among legitimate
users [11]. Let xi denote a legitimate sender i’s throughput, and the
fairness index is defined as (

P

xi)
2/(n

P

x2
i). The ideal through-

put ratio is 1, indicating that a legitimate user obtains on average
the same bottleneck bandwidth as an attacker. The ideal fairness
index is also 1, indicating that each legitimate sender has the same
average throughput. We only measure the fairness index among
legitimate users because Throughput Ratio has already quantified
how well a legitimate user performs relatively to an attacker.

Figure 9 shows the simulation results. The fairness index for all
systems is close to 1 in all the simulations and is thus not shown
in the figure. For long-running TCP, NetFence’s throughput ratio is
also close to 1. This result shows that NetFence provides a legiti-
mate sender its fair share of bandwidth despite the presence of DoS
flooding traffic, consistent with the theoretic analysis in § 3.4. For
the web-like traffic, NetFence’s throughput ratio increases gradu-
ally from 0.3 to close to 1 as the number of simulated senders in-
creases. The throughput ratio is low when the number of senders is
small, because a legitimate sender cannot fully utilize its fair share
bandwidth: each sender has a large fair share of bandwidth, but
a legitimate sender’s web-like traffic has insufficient demand and
there are gaps between consecutive file transfers.

FQ and StopIt perform exactly the same, because in these collud-
ing attacks, they both resort to per-sender fair queuing to protect a
legitimate user’s traffic. However, unexpectedly, we note that they
provide legitimate users less throughput than attackers even when
the user traffic is long-running TCP. By analyzing packet traces,
we discover that this unfairness is due to the interaction between
TCP and the DRR algorithm. A TCP sender’s queue does not al-
ways have packets due to TCP’s burstiness, but a constant-rate UDP
sender’s queue is always full. When a TCP sender’s queue is not
empty, it shares the bottleneck bandwidth fairly with other attack-
ers, but when its queue is empty, the attack traffic will use up its
bandwidth share, leading to a lower throughput for a TCP sender.

TVA+ has the lowest throughput ratio among all systems in this
simulation setting, indicating that a small number of colluders can
significantly impact TVA+’s performance. This is because TVA+
uses per-destination fair queuing on the regular packet channel.
With NC colluders, a DoS victim obtains only 1

NC+1
fraction of

the bottleneck capacity C at attack times, and each of the victim’s
G legitimate senders obtains 1

G(1+NC)
fraction of the capacity C.

The attackers, however, obtain an aggregate NC

(1+Nc)
fraction of C.

If this bandwidth is shared by B attackers fairly, each will get a
NC

B(1+Nc)
fraction of the bottleneck capacity. A sender’s bottleneck

bandwidth share in other systems (NetFence, StopIt, and FQ) is
1

G+B
, and does not depend on the number of colluders NC . In our

simulations, Nc = 9, G = 25%× 1000, and B = 75%× 1000. A
legitimate TVA+ sender obtains 1

2500
of the bottleneck bandwidth,

while an attacker obtains 9
7500

of the bottleneck bandwidth, three
times higher than a legitimate sender, as shown in Figure 9.

In these simulations, we also measure the bottleneck link uti-
lization. The result shows that the utilization is above 90% for
NetFence, and almost 100% for other systems. NetFence does not
achieve full link utilization mainly because a router stamps the L↓

feedback for two extra control intervals after congestion has abated,
as explained in § 4.3.4.

Multiple Bottlenecks: To evaluate NetFence’s performance with
multiple bottlenecks, we have also simulated colluding attacks on
a parking-lot topology with two bottleneck links. The results show
that in a multi-bottleneck topology, NetFence provides a reason-
able share of bandwidth to a legitimate TCP sender, but this share
may be less than a TCP sender’s max-min fair share, because a
TCP flow may switch back and forth between two rate limiters and
cannot adapt quickly enough to fully use its rate limit. This per-
formance can be improved with a more complicated design, as dis-
cussed in § 4.3.5. More discussions and simulation results for the
multi-bottleneck topology can be found in [28].

Strategic Attacks: Attackers may launch sophisticated attacks
(§ 5.2) than brute-force flooding attacks. We simulate microscopic

 0

 100

 200

 300

 400

 1 10 100

U
sr

 T
hr

ou
gh

pu
t (

K
bp

s)

Toff (s)

Ton=4s
Ton=0.5s

Figure 10: Average user throughput in face of microscopic on-off at-

tacks. The user traffic is long-running TCP. There are 100K senders.

Each sender’s fair share bottleneck bandwidth is 100Kbps.

on-off attacks and show that with NetFence, the attack traffic’s
shape does not reduce a legitimate user’s throughput.

The simulation topology is the same as in the previous single-
bottleneck simulations. All legitimate users send long-running TCP
traffic, while attackers send on-off UDP traffic. In the on-period
Ton, an attacker sends at the rate of 1Mbps; in the off-period Toff ,
it does not send any traffic. All attackers synchronize their on-
periods to create the largest traffic bursts. There are 100K simulated
senders, each having a fair share bandwidth of at least 100Kbps.

In these simulations, we use two different values for Ton: 0.5s
and 4s. For each Ton, we vary the off-period length Toff from
1.5s to 100s. Figure 10 shows the simulation results. As we can
see, the average user throughput is at least a user’s fair share rate
as if attackers were always active (100Kbps), indicating that the
attack cannot reduce a legitimate user’s fair share of bandwidth. As
the attackers’ off-period length increases toward 100s, a legitimate
user can achieve a throughput close to 400Kbps, indicating that
long running TCP users can use most of the bottleneck bandwidth
when the attackers’ off-period is long.

7. DISCUSSION

Fair Share Bound: When a disproportionally large number (B)
of attackers attack a narrow link C (e.g., a million bots attacking a
1Mbps link), the fair share lower bound O(C

G+B
) achieved by Net-

Fence or per-sender fair queuing (e.g., [27]) is small. However, this
lower bound is still valuable, because without it, a small number
of attackers can starve legitimate TCP flows on a well-provisioned
link (e.g., 10Gbps). Although this guarantee does not prevent large-
scale DoS attacks from degrading a user’s network service, it mit-
igates the damage of such attacks with a predictable fair share,
without trusting receivers or requiring the network to identify and
remove malicious traffic. Other means, like congestion quota dis-
cussed below, can be used to further throttle malicious traffic.

Congestion Quota: If we assume legitimate users have limited
traffic demand while attackers aim to persistently congest a bottle-
neck link, we can further weaken a DoS flooding attack by impos-
ing a congestion quota, an idea borrowed from re-ECN [9]. That
is, an access router only allows a host to send a limited amount
of “congestion traffic” through a bottleneck link within a period of
time. Congestion traffic can be defined as the traffic that passes a
rate limiter when its rate limit decreases. With a congestion quota,
if an attacker keeps flooding a link, its traffic through the link will
be throttled after it consumes its congestion quota.

Convergence Speed: It may take a relatively long time (e.g., 100s-
200s) for NetFence to converge to fairness. This is because the
control interval Ilim is on the order of a few seconds (two seconds
in our implementation), much longer than a typical RTT on the
Internet. This convergence speed is acceptable in the NetFence

design, because a rate limiter persists for a much longer period of
time (i.e., on the order of hours).

Equal Cost Multiple Path (ECMP): NetFence assumes that a
flow’s path is relatively stable and the bottleneck links on the path
do not change rapidly. One practical concern arises as routers may
split traffic among equal-cost multi-paths for load balancing. Fortu-
nately, most ECMP implementations in practice (e.g., [12]) would
assign a flow’s packets to the same path to avoid packet reordering.
Thus, we expect NetFence to work well with ECMP.

8. RELATED WORK
At the architectural level, NetFence combines the elements of

capability-based systems [48,47,35] and re-ECN/re-feedback [8,9].
In contrast to capability tokens, NetFence’s congestion policing
feedback carries valuable network congestion information. Re-
ECN/re-feedback is a congestion policing framework that incen-
tivizes rational senders to honestly report downstream path con-
gestion. Routers will discard the packets from the senders that
under-report downstream congestion with high probability before
they reach the destinations. In contrast, NetFence is a DoS defense
architecture that uses unspoofable congestion policing feedback to
scalably and robustly guarantee a sender’s fair share of bottleneck
bandwidth in face of attacks. Attackers cannot send packets with
false congestion feedback reporting no or low levels of congestion
to flood a link. Instead, they can at most send packets reporting the
actual levels of congestion and will not gain more bandwidth than
honest senders. In addition, DoS victims can use the unspoofable
feedback as capability tokens to suppress unwanted traffic. ECN-
nonce [16] robustly signals congestion from the network to a honest
sender even when a receiver attempts to hide congestion, while Net-
Fence enables robust congestion signaling from congested routers
to access routers when both senders and receivers are malicious.

NetFence’s request packet protection mechanism is inspired by
Portcullis [35] that uses computational puzzles to impose delay on
senders. Differently, NetFence uses a rate limiting algorithm that
does not require proof-of-work (PoW) nor a network-wide puzzle
synchronization mechanism. This algorithm is similar in spirit to
LazySusan [13] which substitutes resource-based PoW for latency-
based PoW. Different from LazySusan, NetFence uses a sender’s
waiting time to set its request packet’s priority level, and guarantees
the eventual delivery of a legitimate request packet.

Several DoS defense systems aim to enable a victim to install
network filters to stop unwanted traffic [5, 2, 27], or to control who
can send to it [6]. Unlike them, NetFence does not use per-host
queues at congested routers to separate legitimate traffic from at-
tack traffic in case compromised receivers collude with malicious
senders. Pushback [30] sends hop-by-hop pushback messages from
a congested router to install per-(incoming interface, destination
prefix) rate limiters to reduce DoS flooding traffic. NetFence does
not require hop-by-hop deployment, enables a victim to suppress
unwanted traffic, and provides per-sender fairness at bottleneck
links: attackers cannot diffuse their traffic to many destinations to
gain unfair bandwidth shares. AIP [2] uses trusted host hardware to
block unwanted attack traffic, while NetFence places policing func-
tions inside the network and does not require trusted host hardware.

Speakup [45] and Kill-Bots [22] address application-layer DoS
attacks, while NetFence addresses network-layer DoS attacks. Sev-
eral systems use overlay networks [1, 23, 15, 40, 38, 42] or middle-
boxes [10, 32] to mitigate DoS attacks against dedicated destina-
tions. DoS mitigation products on today’s market (e.g., [43]) offer
in-network anomaly detection and attack traffic removal services
near the victims. Kreibich et al. [25] propose to use packet symme-

try to detect and remove attack traffic. This body of work requires
fewer changes to routers, but NetFence can remove attack traffic
near its origins and protect all destinations on the Internet once de-
ployed. Moreover, it places the attack traffic identification function
at the receivers to keep the network open to new applications.

NetFence’s approach to scalability is inspired by CSFQ [41] that
achieves per-flow fairness without per-flow queues in the core routers.
Differently, NetFence enables DoS victims to suppress attack traf-
fic, and provides per-sender rather than per-flow fairness.

9. CONCLUSION
This paper presents the design and evaluation of NetFence, an

architecture that places the network at the first line of DoS defense.
NetFence uses a key mechanism, secure congestion policing feed-
back, to enable scalable and robust traffic policing inside the net-
work. Bottleneck routers use the congestion policing feedback to
signal congestion to access routers, and access routers use it to ro-
bustly police senders’ traffic. In case compromised senders and
receivers collude in pairs to flood the network, NetFence limits the
damage of this attack by providing each sender (malicious or legiti-
mate) its fair share of bottleneck capacity without keeping per-host
state at bottleneck routers. In case attackers send DoS floods to
innocent victims, NetFence enables the DoS victims to use the se-
cure congestion policing feedback as capability tokens to suppress
unwanted traffic. Using a combination of a Linux implementation,
simulations, and theoretic analysis, we show that NetFence is an
effective DoS solution that reduces the amount of state maintained
by a congested router from per-host [48, 27] to per-AS.

Acknowledgment

The authors thank Jeff Chase, David Harrison, Yongqiang Liu, and
the anonymous SIGCOMM reviewers for their insightful comments,
and David Oran for shepherding this paper. This work is supported
in part by NSF awards CNS-0925472 and CNS-0845858.

10. REFERENCES
[1] D. Andersen. Mayday: Distributed Filtering for Internet Services. In USENIX

USITS, 2003.

[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable Internet Protocol (AIP). In ACM SIGCOMM, 2008.

[3] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial of Service
with Capabilities. In ACM HotNets-II, 2003.

[4] Arbor Networks. Worldwide Infrastructure Security Report, Volume V.
http://www.arbornetworks.com/en/research.html, 2009.

[5] K. Argyraki and D. R. Cheriton. Scalable Network-layer Defense Against
Internet Bandwidth-Flooding Attacks. ACM/IEEE ToN, 17(4), 2009.

[6] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker. Off by
default! In ACM Hotnets-IV, 2005.

[7] BGP Routing Table Statistics. http://bgp.potaroo.net/as6447/, 2010.

[8] B. Briscoe, A. Jacquet, C. D. Cairano-Gilfedder, A. Salvatori, A. Soppera, and
M. Koyabe. Policing Congestion Response in an Internetwork using
Re-feedback. In ACM SIGCOMM, 2005.

[9] B. Briscoe, A. Jacquet, T. Moncaster, and A. Smith. Re-ECN: A Framework for
Adding Congestion Accountability to TCP/IP. http://tools.ietf.org/
id/draft-briscoe-tsvwg-re-ecn-tcp-motivation-01.txt, 2009.

[10] M. Casado, P. Cao, A. Akella, and N. Provos. Flow-Cookies: Using Bandwidth
Amplification to Defend Against DDoS Flooding Attacks. In IWQoS, 2006.

[11] D.-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks. Comput. Netw. ISDN Syst.,
17(1), 1989.

[12] CSS Routing and Bridging Configuration Guide. http://www.cisco.com/
en/US/docs/app_ntwk_services/data_center_app_services/

css11500series/v7.30/configuration/routing/guide/IP.html,
2010.

[13] J. Crowcroft, T. Deegan, C. Kreibich, R. Mortier, and N. Weaver. Lazy Susan:
Dumb Waiting as Proof of Work. Technical Report UCAM-CL-TR-703,
University of Cambridge, Computer Laboratory, 2007.

[14] Deterlab. http://www.deterlab.net/, 2010.

[15] C. Dixon, A. Krishnamurthy, and T. Anderson. Phalanx: Withstanding
Multimillion-node Botnets. In USENIX/ACM NSDI, 2008.

[16] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson. Robust
Congestion Signaling. In In IEEE ICNP, 2001.

[17] F-Secure. Calculating the Size of the Downadup Outbreak. http://www.f-
secure.com/weblog/archives/00001584.html, 2009.

[18] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM ToN, 1(4), 1993.

[19] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov. Designing
Extensible IP Router Software. In USENIX/ACM NSDI, 2005.

[20] Helion Technology. AES Cores. http://www.heliontech.com/aes.htm,
2010.

[21] Intel AES Instructions Set. http://software.intel.com/en-us/
articles/intel-advanced-encryption-standard-aes-
instructions-set/, 2010.

[22] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Surviving DDoS
Attacks that Mimic Flash Crowds. In USENIX/ACM NSDI, 2005.

[23] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services. In
ACM SIGCOMM, 2002.

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM TOCS, 18(3), 2000.

[25] C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt. Using Packet
Symmetry to Curtail Malicious Traffic. In ACM Hotnets-IV, 2005.

[26] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and Adoptable
Source Authentication. In USENIX/ACM NSDI, 2008.

[27] X. Liu, X. Yang, and Y. Lu. To Filter or to Authorize: Network-Layer DoS
Defense Against Multimillion-node Botnets. In ACM SIGCOMM, 2008.

[28] X. Liu, X. Yang, and Y. Xia. NetFence: Preventing Internet Denial of Service
from Inside Out. Technical Report 2010-01 (available at http://www.cs.
duke.edu/nds/ddos/netfence-tr.pdf), Duke University, 2010.

[29] S. Luo and G. A. Marin. Realistic Internet Traffic Simulation through Mixture
Modeling and A Case Study. In Winter Simulation Conference, 2005.

[30] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.
Controlling High Bandwidth Aggregates in the Network. ACM SIGCOMM

CCR, 32(3), 2002.

[31] R. Mahajan, S. Floyd, and D. Wetherall. Controlling High-Bandwidth Flows at
the Congested Router. In IEEE ICNP, 2001.

[32] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. dFence:
Transparent Network-based Denial of Service Mitigation. In USENIX/ACM

NSDI, 2007.

[33] Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards an Accurate AS-Level
Traceroute Tool. In ACM SIGCOMM, 2003.

[34] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of the
TCP Congestion Avoidance Algorithm. ACM SIGCOMM CCR, 27(3), 1997.

[35] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu. Portcullis:
Protecting Connection Setup from Denial-of-Capability Attacks. In ACM

SIGCOMM, 2007.

[36] R. Perlman. Network Layer Protocols with Byzantine Robustness. MIT Ph.D.
Thesis, 1988.

[37] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, 2001.

[38] E. Shi, I. Stoica, D. Andersen, and A. Perrig. OverDoSe: A Generic DDoS
Protection Service Using an Overlay Network. Technical Report
CMU-CS-06-114, Carnegie Mellon University, 2006.

[39] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round
Robin. In ACM SIGCOMM, 1995.

[40] A. Stavrou and A. Keromytis. Countering DoS Attacks with Stateless Multipath
Overlays. In ACM SIGCOMM CCS, 2005.

[41] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: a Scalable
Architecture to Approximate Fair Bandwidth Allocations in High-Speed
Networks. IEEE/ACM ToN, 2003.

[42] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS Floods. In
USENIX Security Symposium, 2000.

[43] DDoS Mitigation to the Rescue. https://www.arbornetworks.com/
dmdocuments/DDoS%20Mitigation%20to%20the%20Rescue.pdf, 2010.

[44] J. S. Turner. New Directions in Communications (Or Which Way to the
Information Age?). IEEE Communications Magazine, 1986.

[45] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker. DDoS
Defense by Offense. In ACM SIGCOMM, 2006.

[46] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit is
Enough. IEEE/ACM ToN, 16(6), 2008.

[47] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Filter to
Mitigate DDoS Flooding Attacks. In IEEE Security Symposium, 2004.

[48] X. Yang, D. Wetherall, and T. Anderson. TVA: A DoS-limiting Network
Architecture. IEEE/ACM ToN, 16(6), 2008.

http://www.arbornetworks.com/en/research.html
http://bgp.potaroo.net/as6447/
http://tools.ietf.org/id/draft-briscoe-tsvwg-re-ecn-tcp-motivation-01.txt
http://tools.ietf.org/id/draft-briscoe-tsvwg-re-ecn-tcp-motivation-01.txt
http://www.cisco.com/en/US/docs/app_ntwk_services/data_center_app_services/css11500series/v7.30/configuration/routing/guide/IP.html
http://www.cisco.com/en/US/docs/app_ntwk_services/data_center_app_services/css11500series/v7.30/configuration/routing/guide/IP.html
http://www.cisco.com/en/US/docs/app_ntwk_services/data_center_app_services/css11500series/v7.30/configuration/routing/guide/IP.html
http://www.deterlab.net/
http://www.f-secure.com/weblog/archives/00001584.html
http://www.f-secure.com/weblog/archives/00001584.html
http://www.heliontech.com/aes.htm
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://www.cs.duke.edu/nds/ddos/netfence-tr.pdf
http://www.cs.duke.edu/nds/ddos/netfence-tr.pdf
https://www.arbornetworks.com/dmdocuments/DDoS%20Mitigation%20to%20the%20Rescue.pdf
https://www.arbornetworks.com/dmdocuments/DDoS%20Mitigation%20to%20the%20Rescue.pdf

	Introduction
	Assumptions and Goals
	Threat Model and Assumptions
	Goals

	Architecture
	System Components
	Unforgeable Congestion Policing Feedback
	Congestion Feedback as Capability
	Fair Share Guarantee

	Design Details
	Congestion Policing Feedback
	Protecting the Request Channel
	Protecting the Regular Channel
	A Monitoring Cycle
	Updating Congestion Policing Feedback
	Regular Packet Policing at Access Routers
	Robust Rate Limit Adjustment
	Handling Multiple Bottlenecks

	Securing Congestion Policing Feedback
	Localizing Damage of Compromised Routers
	Parameter Settings

	Analysis
	Scalability
	Security
	Malicious End Systems
	Malicious On-path Routers

	Incremental Deployment

	Implementation and Evaluation
	NetFence Header
	Micro-benchmarking
	Mitigating DoS Flooding Attacks
	Unwanted Traffic Flooding Attacks
	Colluding Attacks

	Discussion
	Related Work
	Conclusion
	References

