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Abstract— We motivate the capability approach to network
denial-of-service (DoS) attacks, and evaluate the TVA architecture
which builds on capabilities. With our approach, rather than
send packets to any destination at any time, senders must first
obtain “permission to send” from the receiver, which provides the
permission in the form of capabilities to those senders whose traffic
it agrees to accept. The senders then include these capabilities
in packets. This enables verification points distributed around
the network to check that traffic has been authorized by the
receiver and the path in between, and hence to cleanly discard
unauthorized traffic. To evaluate this approach, and to understand
the detailed operation of capabilities, we developed a network
architecture called TVA. TVA addresses a wide range of possible
attacks against communication between pairs of hosts, including
spoofed packet floods, network and host bottlenecks, and router
state exhaustion. We use simulations to show the effectiveness of
TVA at limiting DoS floods, and an implementation on Click router
to evaluate the computational costs of TVA. We also discuss how
to incrementally deploy TVA into practice.

I. I NTRODUCTION

The Internet owes much of its historic success and growth to
its openness to new applications. A key design feature of the
Internet is that any application can send anything to anyoneat
any time, without needing to obtain advance permission from
network administrators. New applications can be designed,im-
plemented and come into widespread use much more quickly,
if they do not need to wait for key features to be added to the
underlying network.

Quietly, however, the Internet has become much less open
to new applications over the past few years. Perversely, this
has happened as a rational response of network and system
administrators needing to cope with the consequences of the
Internet’s openness. The Internet architecture is vulnerable to
denial-of-service (DoS) attacks, where any collection of hosts
with enough bandwidth (e.g., using machines taken over by a
virus attack) can disrupt legitimate communication between any
pair of other parties, simply by flooding one end or the other
with unwanted traffic. These attacks are widespread, increasing,
and have proven resistant to all attempts to stop them [26].

Operationally, to deal with persistent and repeated DoS and
virus attacks, network and system administrators have begun
to deploy automated response systems to look for anomalous
behavior that might be an attack. When alarms are triggered,
often by legitimate traffic, the operational response is typically
to “stop everything and ask questions later.” Unfortunately, any
new application is likely to appear to be anomalous! Our expe-
rience with this comes from operating and using the PlanetLab
testbed, which is designed to make it easy to develop new, ge-
ographically distributed, Internet applications [27]. Onseveral
occasions, we have observed innocuous, low-rate traffic from a
single application trigger alarms that completely disconnected
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entire universities from the Internet. Since alarm rules are by
nature secret, the only way to guarantee that a new application
does not trigger an alarm (and the resulting disproportionate
response) is to make its traffic look identical to some existing
application. In other words, the only safe thing to do is to
precisely mimic an old protocol.

The openness of the Internet is likely to erode if there
is no effective solution to eliminate large scale DoS attacks.
Attackers are winning the arms race with anomaly detection by
making their traffic look increasingly like normal traffic. The
CodeRed and follow-on viruses have demonstrated repeatedly
that it is possible to recruit millions of machines to the task
of sending normal HTTP requests to a single destination [24],
[25]. This problem is fundamental to the Internet architecture:
no matter how over-provisioned you are, if everyone in the
world sends you a single packet, legitimate traffic will not get
through.

We argue for taking a step back, to ask how, at an architec-
tural level, we can address the DoS problem in its entirety while
still allowing new applications to be deployed. Our goal, in
essence, is to let any two nodes exchange whatever traffic they
like (subject to bandwidth constraints of intermediate links),
such that no set of third parties can disrupt that traffic exchange.

Our approach is based on the notion of capabilities, which are
short-term authorizations that senders obtain from receivers and
stamp on their packets. This allows senders to control the traffic
that they receive. Our attraction to capabilities is that they cut
to the heart of the DoS problem by allowing unwanted traffic
to be removed in the network, but do so in an open manner
by providing destinations with the control over which traffic
is filtered. However, while capabilities may be an appealing
approach, they leave many questions unanswered, such as how
capabilities are granted without being vulnerable to attack.

To answer these questions and help evaluate the capability
approach, we have designed and prototyped the Traffic Val-
idation Architecture (TVA1). TVA is a DoS-limiting network
architecture that details the operation of capabilities and com-
bines mechanisms that counter a broad set of possible denial-
of-service attacks, including those that flood the setup channel,
that exhaust router state, that consume network bandwidth,and
so forth. The design that we present in this paper is a revision
of our earlier work [35] that pays greater attention to protecting
the capability request channel.

We have designed TVA to be practical in three key respects.
First, we bound both the computation and state needed to
process capabilities. Second, we have designed our system to
be incrementally deployable in the current Internet. This can
be done by placing inline packet processing boxes at trust
boundaries and points of congestion, and upgrading collections
of hosts to take advantage of them. No changes to Internet

1The name TVA is inspired by the Tennessee Valley Authority, which
operates a large-scale network of dams to control flood damage,saving more
than $200 million annually.
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routing or legacy routers are needed, and no cross-providerre-
lationships are required. Third, our design provides a spectrum
of solutions that can be mixed and matched to some extent. Our
intent is to see how far it is possible to go towards limiting DoS
with a practical implementation, but we are pragmatic enough
to realize that others may apply a different cost-benefit tradeoff.

The remainder of this paper discusses our work in more
detail. We motivate the capability approach in the context of
related work in Section II. Section III and IV present a concrete
design and implementation of a capability-based network archi-
tecture. Sections V, VI, and VII evaluate our approach usinga
combination of simulation, a Click router implementation,and
analysis. Section VIII discusses TVA’s deployment issues,and
future directions. Section IX summarizes our work.

II. BACKGROUND AND RELATED WORK

Early work in the area of DoS sought to make all sources
identifiable, e.g., ingress filtering [12] discards packetswith
widely spoofed addresses at the edge of the network, and
traceback uses routers to create state so that receivers can
reconstruct the path of unwanted traffic [28], [30], [31]. This is a
key step, but it is insufficient as a complete solution, as attackers
may still launch packet floods with unspoofed packets.

A different tack is for the network to limit communication
to previously established patterns, e.g., by giving legitimate
hosts an authenticator off-line that permits them to send to
specific destinations.SOS [18] and Mayday [2] take this ap-
proach. This approach does not protect public servers (e.g.,
www.google.com) that are in general unable to arrange an off-
line authenticator for legitimate senders prior to communica-
tion.

Handley and Greenhalgh [13] propose to limit host com-
munication patterns to client-server only by separating client
and server address spaces. The proposalOff by Default[6] is
similar in spirit. The network does not permit any two hosts to
communicate by default, unless a destination explicitly requests
to receive from a sender. Both solutions limit DoS attacks to
private end hosts, but require additional mechanisms to protect
open public servers.

An insidious aspect of the Internet model is that receivers
have no control over the resources consumed on their behalf:
a host can receive (and have to pay for!) a repetitive stream of
packets regardless of whether they are desired. One response
is to install packet filters at routers upstream from the destina-
tion to cause unwanted packets to be dropped in the network
before they consume the resources of the destination, e.g.,
pushback [16], [21] and more recently AITF [4]. Unfortunately,
these filters will block some legitimate traffic from the receiver
because there is no clean way to discriminate attack traffic from
other traffic, given that attackers can manufacture packetswith
contents of their choosing. Our work can be seen as a robust
implementation of network filtering.

Perhaps the most active area of DoS prevention work is
anomaly detection [7], [15]. Rule-based or statistical techniques
are used to classify traffic patterns as friendly or malicious.
However, anomaly detection is not a sufficient response to the
DoS problem—the decision as to whether a particular flow is
an attack or not needs to be made end-to-end at the application

level. Worse, in the limit anomaly detection leads to a closed
Internet that stifles innovations, as ISPs and sysadmins lock
down everything that isn’t completely standard in the arms race
with attackers.

Therefore, we propose the approach of putting a capability
into each data packet to demonstrate that the packet was re-
quested by the receiver in [3]. Communication takes two steps:
1) the sender requests permission to send; 2) after verifying the
sender is good, the receiver provides it with a capability. When
included in a packet, this capability allows the network to verify
that the packet was authorized by the receiver. By itself, this
does not prevent attacks against the initial request packet, the
router state or computation needed to verify the packet, andso
forth. For example, in our initial work [3] we used a separate
overlay for transmitting the request packets; an attack against
this channel would disrupt hosts that had not yet established a
capability to send.

In SIFF, Yaaret al.refine the capability approach to eliminate
the separate overlay channel for request packets and per-flow
state. Instead, routers stamp packets with a key that reaches the
receiver and is returned to authorize the sender, which usesit on
subsequent packets [34]. This is reminiscent of work in robust
admission control [20]. Our design TVA adopts this approach,
with some enhancements motivated by the weaknesses of the
SIFF proposal. First, in SIFF, router stamps are embedded in
normal IP packets, which requires each router stamp to be
extremely short (2 bits), and thus potentially discoverable by
brute-force attack. We show how to combine the security of
long stamps with the efficiency of short stamps. Second, initial
request packets are forwarded with low priority. This allows
attacking hosts to establish “approved” connections purely
amongst themselves and flood a path and prevent any further
connections from being established along its congested links.
We address this through a more careful treatment of request
packets. Finally, routers allow all copies of packets with avalid
stamp through because they have no per-flow state. Thus, an
attacker that is incorrectly granted a capability by a receiver
can flood the receiver at an arbitrary rate until the permission
expires. This is problematic because a typical Web server
will only know after a connection starts whether the traffic is
legitimate. Given the timeout constants suggested in [34],even
a small rate of incorrect decisions would allow DoS attacks to
succeed. Our approach is to provide fine-grained control over
how many packets can be sent based on a single authorization.

III. TVA D ESIGN OVERVIEW

In this section, we motivate the key components of TVA.
Later in Section IV, we describe the protocol and sketch its
common case of operation. The overall goal of TVA is to strictly
limit the impact of packet floods so that two hosts can commu-
nicate despite attacks by other hosts. To achieve this, we start
with standard IP forwarding and routing. We then extend hosts
and routers with the handling described below, conceptually at
the IP level. For simplicity of exposition, we consider a network
in which all routers and hosts run our protocol. However, our
design only requires upgrades at network locations that aretrust
boundaries or that experience congestion.
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Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities

To prevent a destination from losing connectivity because
of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwisethe
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However,to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities

In our design, capabilities are initially obtained using request
packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in thesense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path−identifier queuerequests 

per−destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.
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hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channelnot
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests usingpath
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the(n − 1)th-level is congested, a router will use thenth
most recent tag to separate packets intonth-level queues. If
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the number of queues a router can support is greater than the
number of trust domains that use the router to reach a desti-
nation, and attackers do not insert faked path identifier tags,
this queueing mechanism will effectively separate attackers’
requests from legitimate requests, even if attackers fake their
source addresses.

However, an attacker may attempt to exhaust a router’s
queues by inserting arbitrary path identifier tags in its request
packets, and then flood those packets to congest the request
queues. This may cause a router to create many queues to
separate the faked path identifiers. Our design uses a queue
balancing algorithm to limit the effect of this attack. If a
(n − 1)th-level queue is needed, but a router has reached its
queue limit, the queue balancing algorithm would merge two
queues at a deeper level (e.g., at thenth level) to a lower-
level queue (e.g., ton − 1th-level) to make space for the new
queue. This algorithm prevents an attacker from grabbing an
arbitrarily large number of queues by spoofing path identifiers.
In the worst case that a router runs out of queues, legitimate
users that are far away from a router are more likely to share
queues with attackers close to them, localizing the impact of an
attack.

This hierarchical queueing mechanism is a significant im-
provement over an earlier design of TVA [35], which fairly
queues packets using the most recent tags rather than hi-
erarchically fair-queue packets using all path identifier tags.
If attackers and legitimate users share partial paths, requests
from legitimate senders may be overwhelmed by requests from
attackers.

Hierarchically queuing based on a path identifier has two
benefits. First the number of queues is bounded to a router’s pre-
set queue limit even in the presence of source address or path
identifier spoofing. Second, the scheme offers defense-in-depth
because each trust domain such as an AS places the most trust in
domains that are closest. The hierarchical queuing mechanism
gives higher shares of a router’s queues and correspondingly
request channel bandwidth to request packets coming from
domains that are closer, because it merges deepest queues first
when a router hits its queue limit.

C. Destination Policies

The next question we consider is how a destination can
determine whether to authorize a request. This is a matter of
policy, and it depends on the role the destination plays in the
network. We consider two extreme cases of a client and a public
server to argue that simple policies can be effective, but defer
the study on optimal receiver policies for future study.

A client may act in a way that by default allows it to
contact any server but not otherwise be contacted, as is doneby
firewalls and NAT boxes today. To do this, it accepts incoming
requests if they match outgoing requests it has already made
and refuses them otherwise. Note that the client can readilydo
this because capabilities are added to existing packets rather
than carried as separate packets. For example, a client can
accept a request on a TCP SYN/ACK that matches its earlier
request on a TCP SYN.

A public server may initially grant all requests with a default
number of bytes and timeout, using the path identifier to fairly

serve different sources when the load is high. If any of the
senders misbehave, by sending unexpected packets or floods,
that sender can be temporarily blacklisted and its capability will
soon expire. This blacklisting is possible because the handshake
involved in the capability exchange weakly authenticates that
the source address corresponds to a real host. The result is that
misbehaving senders are quickly contained. More sophisticated
policies may be based on HTTP cookies that identify returning
customers, CAPTCHAs that distinguish zombies from real
users [10], [17], and so forth.

D. Unforgeable Capabilities

Having provided a bootstrap mechanism and policy, we turn
our attention to the form of capabilities themselves. Our key
requirement is that an attacker can neither forge a capability,
nor make use of a capability that they steal or transfer from
another party. We also need capabilities to expire.

We use cryptography to bind each capability to a specific
network path, including source and destination IP addresses,
at a specific time. Each router that forwards a request packet
generates its own pre-capability and attaches it to the packet.
Figure 3 shows this pre-capability. It consists of a local router
timestamp and a cryptographic hash of that timestamp plus
the source and destination IP addresses and a slowly-changing
secret known only to the router. Observe that each router can
verify for itself that a pre-capability attached to a packetis
valid by re-computing the hash, since the router knows all of
the inputs, but it is cryptographically hard for other parties
to forge the pre-capability without knowing the router secret.
Each router changes its secret at twice the rate of the timestamp
rollover, and only uses the current or the previous secret to
validate capability. This ensures that a pre-capability expires
within at most the timestamp rollover period, and each pre-
capability is valid for about the same time period regardless of
when it is issued. The high-order bit of the timestamp indicates
whether the current or the previous router secret should be used
for validation. This allows a router to try only one secret even if
the router changed its secret right after issuing a pre-capability.

The destination thus receives an ordered list of pre-
capabilities that corresponds to a specific network path with
fixed source and destination IP endpoints. It is this corre-
spondence that prevents an attacker from successfully using
capabilities issued to another party: it cannot generally arrange
to send packets with a specific source and destination IP address
through a specific sequence of routers unless it is co-located
with the source. In the latter case, the attacker is indistin-
guishable from the source as far as the network is concerned,
and shares its fate in the same manner as for requests. (And
other, more devastating attacks are possible if local security is
breached.) Thus we reduce remote exploitation to the problem
of local security.

If the destination wishes to authorize the request, it returns
an ordered list of capabilities to the sender via a packet sent
in the reverse direction. Conceptually, the pre-capabilities we
have described could directly serve as these capabilities.How-
ever, we process them further to provide greater control, asis
described next.



5

E. Fine-Grained Capabilities

Even effective policies will sometimes make the wrong de-
cision and the receiver will authorize traffic that ultimately is
not wanted. For example, with our blacklist server policy an
attacker will be authorized at least once, and with our client pol-
icy the server that a client accesses may prove to be malicious.
If authorizations were binary, attackers whose requests were
granted would be able to arbitrarily flood the destination until
their capabilities expire. This problem would allow even a very
small rate of false authorizations to deny service. This argues
for a very short expiration period, yet protocol dynamics such
as TCP timeouts place a lower bound on what is reasonable.

To tackle this problem, we design fine-grained capabilities
that grant the right to send up toN bytes along a path within the
nextT seconds, e.g., 100KB in 10 seconds2. That is, we limit
the amount of data as well as the period of validity. The form of
these capabilities is shown in Figure 3. The destination converts
the pre-capabilities it receives from routers to full capabilities
by hashing them withN andT . Each destination can choose
N and T (within limits) for each request, using any method
from simple defaults to models of prior behavior. It is thesefull
capabilities, along withN andT , that are returned to authorize
the sender. For longer flows, the sender should renew these
capabilities before they reach their limits.

With this scheme, routers verify their portion of the capa-
bilities by re-computing the hashes much as before, except
that now two hashes are required instead of one. The routers
now perform two further checks, one forN and one forT .
First, routers check that their local time is no greater thanthe
router timestamp plusT to ensure that the capability has not
expired. This requires thatT be at most one half of the largest
router timestamp so that two time values can be unambiguously
compared under a modulo clock. The replay of very old capabil-
ities for which the local router clock has wrapped are handled
as before by periodically changing the router secret. Second,
routers check that the capability will not be used for more than
N bytes. This check is conceptually simple, but it requires state
and raises the concern that attackers may exhaust router state.
We deal with this concern next.

F. Bounded Router State

We wish to ensure that attackers cannot exhaust router mem-
ory to bypass capability limits. This is especially a concern
given that we are counting the bytes sent with a capability and
colluding attackers may create many authorized connections
across a target link.

To handle this problem, we design an algorithm that bounds
the bytes sent using a capability while using only a fixed amount
of router state no matter how attackers behave. In the worst
case, a capability may be used to send2N bytes inT seconds.
The same capability will still be precisely limited toN bytes if
there is no memory pressure.

The high level idea of the algorithm is to make a router keep
state only for flows (a flow is defined on a sender to a destination
basis.) with valid capabilities that send faster thanN/T . The
router does not need to keep state for other authorized flows

2An alternative would be to build rapid capability revocation. We believe this
to be a less tractable problem.

ts

� (t2−t1) x N
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ttl
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� (t4−t3) x N � N

Fig. 4. Bound on the bytes of a capability with caching.

because they will not send more thanN bytes before their
capabilities expire inT seconds. We track flows via their rates
by using the rateN/T to convert bytes to equivalent units of
time, as we describe next.

When a router receives a packet with a valid capability for
which it does not have state, it begins to track byte counts for
the capability and also associates a minimal time-to-live (ttl)
with the state. Thettl is set to the time equivalent value of
the packet:L ∗ T/N seconds (withL being the packet length).
This ttl is decremented as time passes (but our implementation
simply sets an expiration time ofnow+ttl) and incremented as
subsequent packets are charged to the capability. When thettl
reaches zero, it is permissible for the router to reclaim thestate
for use with a new capability.

We now show that this scheme bounds the number of bytes
sent using a capability. Referring to Figure 4, suppose thatthe
router created the capability at timets and it expires at timets+
T . Further suppose that the router creates state for the capability
at time t1 > ts, and reclaims the state when itsttl reaches
zero at timet2 < ts + T . Then by the definition of thettl, the
capability must have been used for at most(t2−t1)/T ∗N bytes
from t1 to t2. This may occur more than once, but regardless of
how many times it occurs, the time intervals can total to no more
thanT seconds. Thus the total bytes used for the capability must
be at mostT/T ∗N = N bytes. If a capability has state created
at time immediately precedingts+T , then up toN bytes can be
sent at a rate faster thanN/T . Therefore, at mostN +N = 2N
bytes can be sent before the capability is expired.

This scheme requires only fixed memory to avoid reclaiming
state with non-zerottl values, as required above. Suppose the
capacity of the input link isC. To have state at timet, a
capability must be used to send faster thanN/T beforet. Oth-
erwise, thettl associated with the state will reach zero and the
state may be reclaimed. There can be at mostC/(N/T ) such
capabilities. We require that the minimumN/T rate be greater
than an architectural constraint(N/T )min. This bounds the
state a router needs toC/(N/T )min records. As an example,
if the minimum sending rate is 4K bytes in 10 seconds, a router
with a gigabit input line will only need 312,500 records. If
each record requires 100 bytes, then a line card with 32MB of
memory will never run out of state. This amount of fast memory
is not trivial, but appears modest.

G. Efficient Capabilities

We want capabilities to be bandwidth efficient as well as se-
cure. Yet these properties are in conflict, since security benefits
from long capabilities (i.e., a long key length) while efficiency
benefits from short ones (i.e., less overhead). To reconcilethese
factors, we observe that most bytes reside in long flows for
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which the same capability is used repeatedly on packets of
the flow. Thus we use long capabilities (64 bits per router)
to ensure security, and cache capabilities at routers so that
they can subsequently be omitted for bandwidth efficiency. We
believe that this is a better tradeoff than short capabilities that
are always present, e.g., SIFF uses 2 bits per router. Short
capabilities are vulnerable to a brute force attack if the behavior
of individual routers can be inferred, e.g., from bandwidth
effects, and do not provide effective protection with a limited
initial deployment.

In our design, when a sender obtains new capabilities from
a receiver, it chooses a random flow nonce and includes it
together with the list of capabilities in its packets. When a
router receives a packet with a valid capability it caches the
capability relevant information and flow nonce, and initializes
a byte counter andttl as previously described. Subsequent
packets can then carry the flow nonce and omit the list of
capabilities. Observe that path MTU discovery process is likely
unaffected because the larger packet is the first one sent to
a destination, but subsequent packets sent may be slightly
smaller than MTU. Routers look up a packet that omits its
capabilities using its source and destination IP addresses, and
compare the cached flow nonce with that in the packet. A match
indicates that a router has validated the capabilities of the flow
in previous packets. The packets are then subject to byte limit
and expiration time checking as before.

For this scheme to work well, senders must know when
routers will evict their capabilities from the cache. To do so,
hosts model router cache eviction based on knowledge of the
capability parameters and how many packets have used the
capability and when. By the construction of our algorithm,
eviction should be rare for high-rate flows, and it is only these
flows that need to remain in cache to achieve overall bandwidth
efficiency. This modeling can either be conservative, basedon
later reverse path knowledge of which packets reached the
destination3, or optimistic, assuming that loss is infrequent.
In the occasional case that routers do not have the needed
capabilities in cache, the packets will be demoted to legacy
packets rather than lost, as we describe next.

H. Route Changes and Failures

To be robust, our design must accommodate route changes
and failures such as router restarts. The difficulty this presents
is that a packet may arrive at a router that has no associated
capability state, either because none was set up or because the
cache state or router secret has been lost.

This situation should be infrequent, but we can still minimize
its disruption. First, we demote such packets to be the same
priority as legacy traffic (which have no associated capabilities)
by changing a bit in the capability header. They are likely to
reach the destination in normal operation when there is little
congestion. The destination then echoes demotion events to
the sender by setting a bit in the capability header of the next
message sent on the reverse channel. This tells the sender that
it must re-acquire capabilities.

3We ignore for the present the layering issues involved in using transport
knowledge instead of building more mechanism.

I. Balancing Authorized Traffic

Capabilities ensure that only authorized traffic will compete
for the bandwidth to reach a destination, but we remain vulner-
able to floods of authorized traffic: a pair of colluding attack-
ers can authorize high-rate transfers between themselves and
disrupt other authorized traffic that shares the bottleneck. This
would allow, for example, a compromised insider to authorize
floods on an access link by outside attackers.

We must arbitrate between authorized traffic to mitigate this
attack. Since we do not know which authorized flows are
malicious, if any, we simply seek to give each capability a
reasonable share of the network bandwidth. To do this we use
fair-queuing based on the authorizing destination IP address.
This is shown in Figure 2. Users will now get a decreasing share
of bandwidth as the network becomes busier in terms of users
(either due to legitimate usage or colluding attackers), but they
will be little affected unless the number of attackers is much
larger than the number of legitimate users.

Note that we could queue on the source address (if source ad-
dress can be trusted) or other flow definitions involving prefixes.
The best choice is a matter of AS policy that likely depends on
whether the source or destination is a direct customer of theAS,
e.g., the source might be used when the packet is in the sender
ISP’s network and vice versa.

One important consideration is that we limit the number
of queues to bound the implementation complexity of fair
queuing. To do this, we again fall back on our router state
bound, and fair-queue over the flows that have their capabilities
in cache. In this manner, the high-rate flows that send more
rapidly thanN/T will fairly share the bandwidth. These are
the flows that we care most about limiting. The low-rate flows
will effectively receive FIFO service with drops dependingon
the timing of arrivals. This does not guarantee fairness butis
adequate in that it prevents starvation. An alternative approach
would have been to hash the flows to a fixed number of queues
in the manner of stochastic fair queuing [22]. However, we
believe our scheme has the potential to prevent attackers from
using deliberate hash collisions to crowd out legitimate users.

J. Short, Slow or Asymmetric Flows

TVA is designed to run with low overhead for long, fast flows
that have a reverse channel. Short or slow connections will
experience a higher relative overhead, and in the extreme may
require a capability exchange for each packet. However, several
factors suggest that TVA is workable even in this regime. First,
the effect on aggregate efficiency is likely to be small given
that most bytes belong to long flows. Second, and perhaps more
importantly, our design does not introduce added latency inthe
form of handshakes, because capabilities are carried on existing
packets, e.g., a request may be bundled with a TCP SYN and
the capability returned on the TCP SYN/ACK. Third, short
flows are less likely because flows are defined on a sender to a
destination basis. Thus all TCP connections or DNS exchanges
between a pair of hosts can take place using a single capability.

TVA will have its lowest efficiency when all flows near a
host are short, e.g., at the root DNS servers. Here, the portion
of request bandwidth must be increased. TVA will then pro-
vide benefits by fair-queuing requests from different regions
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Common Header type (4) upper protocol (8)version (4)

                       

path−id 1 (16)

capability 1 (64)

capability n (64)

blank capability 1 (64)

blank capability n (64)

path−id n (16)

Request Header

capability num (8) capability ptr (8)

flow nonce (48)

capability num (8) capability ptr (8)

N (10) T (6)

  xx01:   regular w/ capabilities

  x1xx:   return info
  xx00:   request

common header (16)

common header (16)Regular / Renewal

Header

cached

Return info return type (8)

  xx10:   regular w/ nonce only       
  xx11:   renewal

  1xxx:   demoted

00000001: demotion notification

and a list of return capabilities follow this field.
0000001x: a 8−bit capability num fied, N, T,

Fig. 5. Types of capability packets. Return information is presentif the
return bit in the common header is set. Sizes are in bits. The units for N

are KB; the units for T are seconds.

of the network. Truly unidirectional flows would also require
capability-only packets in the reverse direction. Fortunately,
even media streaming protocols typically use some reverse
channel communications. Finally, we have not addressed IP
multicast as it already requires some form of authorizationfrom
the receiver. It would be interesting to see whether we can pro-
vide a stronger protection in this setting by using capabilities.

IV. TVA P ROTOCOL

In this section, we describe TVA in terms of how hosts
and routers process packets and provide a more detailed view
of the common case for data transfer. We consider attacks
more systematically in the following sections. We ignore legacy
concerns for the moment, returning to them in Section VIII.

There are three elements in our protocol: packets that carry
capability information; hosts that act as senders and desti-
nations; and routers that process capability information.We
describe each in turn.

A. Packets with Capabilities

Other than legacy traffic, all packets carry a capability header
that extends the behavior of IP. We implement this as a shim
layer above IP, piggybacking capability information on normal
packets so that there are no separate capability packets.

There are two types of packets from the standpoint of
capabilities: request packets and regular packets. They share
an identifying capability header and are shown in Figure 5.
Request packets carry a list of blank capabilities and path
identifiers that are filled in by routers as requests travel towards
destinations. Regular packets have two formats: packets that
carry both a flow nonce and a list of valid capabilities, and
packets that carry only a flow nonce. (Recall that a flow is
defined by a source and a destination IP address.) A regular
packet with a list of capabilities may be used to request a new
set of capabilities. We refer to such packets as renewal packets.
If a regular packet does not pass the capability check, it maybe

demoted to low priority traffic that is treated as legacy traffic.
Such packets are called demoted packets.

We use the lowest two bits of thetypefield in the capability
header to indicate the type and the format of packets: request
packet, regular packet with a flow nonce only, regular packet
with both a flow nonce and a list of capabilities, and renewal
packet. One bit in thetypefield is used by routers to indicate
that the packet has been demoted. The remaining bit indicates
whether there is also return information being carried in the
reverse direction to a sender. This information follows the
capability payload. It may be a list of capabilities grantedby
the destination or a demote notification.

Each capability is as described in Section 3: a 64 bit value,
broken down into 8 bits of router timestamp in seconds (a
modulo 256 clock), and 56 bits of a keyed hash.

B. Senders and Destinations

To send to a destination for which it has no valid capabilities,
a sender must first send a request. A request will typically be
combined with the first packet a sender sends, such as a TCP
SYN. When a destination receives the request, it must decide
whether to grant or refuse the transfer. We described some
simple policies in Section III-C; there is also an issue we have
not tackled of how to express policies within the socket API.
If the destination chooses to authorize the transfer, it sends a
response with capabilities back to the sender, again combined
with another packet, such as a TCP SYN/ACK. This SYN/ACK
will also carry a request for the reverse direction. The reverse
setup occurs in exactly the same manner as the forward setup,
and we omit its description. To refuse the transfer, the destina-
tion may instead return an empty capability list, again combined
with a packet such as a TCP RST.

Once the sender receives capabilities, the remainder of the
transfer is straightforward. The sender sends data packets,
initially with capabilities, and models capability expiration and
cache expiration at routers to conservatively determine when
routers will have their capabilities in cache, and when to renew
the capabilities. In the common case, the flow nonce and
capabilities are cached at every router. This enables the source
to transmit most packets with only the flow nonce.

The destination simply implements a capability granting
policy and does not need to model router behavior. It also
echoes any demote signals to the sender, so that the sender may
repair the path.

C. Routers

Routers route and forward packets as required by IP and
additionally process packets according to the capability infor-
mation that they carry. At a high level, routers share the capacity
of each outgoing link between three classes of traffic. This is
shown in Figure 2. Request packets, which do not have valid
capabilities, are guaranteed access to a small, fixed fraction of
the link (5% is our default) and are rate-limited not to exceed
this amount. Regular packets with associated capabilitiesmay
use the remainder of the capacity. Legacy traffic is treated
as the lowest priority, obtaining bandwidth that is not needed
for either requests or regular packets in the traditional FIFO
manner.
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To process a request, the router adds a pre-capability to the
end of the list and adds a new path identifier if it is at a trust
boundary. The pre-capability is computed as the local times-
tamp concatenated with the hash of a router secret, the current,
local router time in seconds using its modulo 256 clock, and the
source and destination IP addresses of the packet. This is shown
in Figure 3. The path identifier is a constant that identifies the
ingress to the trust domain, either with high likelihood using
pseudo-random functions or with configuration information.
Requests are fair-queued for onward transmission using the
most recent path identifiers.

To process a regular packet, routers check that the packet
is authorized, update the cached information and packet as
needed, and schedule the packet for forwarding. First, the router
tries to locate an entry for the flow using the source and the
destination IP address from the packet. An entry will exist if
the router has received a valid regular packet from that flow in
the recent past. The cache entry stores the valid capability, the
flow nonce, the authorized bytes to send (N ), the valid time (T ),
and thettl and byte count as described in Section III-F.

If there is a cached entry for the flow, the router compares the
flow nonce to the packet. If there is a match, it further checks
and updates the byte count and thettl, and then fair queues the
packet as described below. If the flow nonce does not match and
a list of capabilities are present, this could be the first packet
with a renewed capability, and so the capability is checked
and if valid, replaced in the cache entry. Equivalently, if there
is not a cached entry for the flow, the capability is checked,
and a cache entry is allocated if it is valid. If the packet hasa
valid capability and is a renewal packet, a fresh pre-capability
is minted and placed in the packet.

A router validates capability using the information in the
packet (the source and destination addresses,N , andT ) plus
the router’s secret. It recomputes the two hash functions to
check whether they match the capability value. The router also
checks that the byte count does not exceedN , and the current
time does not exceed the expiration time (of timestamp+T )
and updates the entry’sttl. Any packet with a valid capability
or flow nonce is scheduled using fair queuing. Our scheme
does this across flows cached at the router using destination
addresses by default.

If neither the packet’s flow nonce nor capability is valid, then
the packet is marked as demoted and queued along with legacy
packets.

V. SIMULATION RESULTS

In this section, we usens-2 to simulate TVA to see how
well it limits the impact of DoS floods. We compare TVA with
SIFF, pushback, and the legacy Internet to highlight various
design choices of TVA. TVA is implemented as described in
the previous sections. Routers rate limit capability requests to
5% of the link capacity. SIFF is implemented as described in
[34]. It treats capacity requests as legacy traffic, does notlimit
the number of times a capability is used to forward traffic, and
does not balance authorized traffic sent to different destinations.
We use the Pushback implementation described in [21]. It
recursively pushes destination-based network filters backwards
across the incoming link that contributes most of the flood.

We first describe our experimental methodology. Due to the
complexity of Internet topologies and attacker strategies, it is a
challenging task to design high-fidelity experiments to compare
different DoS solutions. We make a best-effort attempt to base
our experiments on realistic Internet topologies and estimated
attacker strategies.

A. Methodology

Comparison metrics. For each scheme, we set up TCP
file transfers between legitimate users and a destination under
various attacks. We then measure the distribution of the file
transfer times of legitimate users. This metric is useful because
a successful DoS attack will cause heavy loss that will slow
legitimate transfers and eventually cause the applications to
abort them.

Topologies.Simulations of TVA require knowing the path
identifier distribution of legitimate users and attackers seen
at a bottleneck. Unfortunately, this information is not readily
available. Instead, we approximate it using AS paths included in
BGP dumps from the Oregon RouteView and RIPE RIS servers.
The BGP dumps were obtained between April and May 2007.
We use the reversed best AS path from a vantage point to an
AS to approximate the forwarding path from that AS to the
vantage point. We then generate AS-level network topologies
using the AS path information. Each topology includes around
35K unique AS paths and 25K ASes.

Unfortunately, our simulator cannot simulate topologies at
this scale. To address this issue, we partition the Internet-scale
topology into sub-topologies using path identifier prefixes. For
instance, suppose the vantage point AS tags a neighbor with
an identifierpi. Then all ASes with the path identifier prefix
pi∗ belong to the sub-topologypi∗. We then randomly sample
the largest sub-topologies that our simulator can handle, ie.,
sub-topologies with 1000∼2000 ASes. Intuitively, the larger a
sub-topology is, the more similar it is to the original AS-level
Internet topology. We simulated a total of six sub-topologies
sampled from five different vantage points, and the results
presented in this section are take from one representative sub-
topology from the Oregon OIX vantage point. Other results are
mostly similar, and are included in [1].

For each sub-topology, the bottleneck link lies between the
AS that is closest to the vantage point and the vantage point.
The victim destination and a colluder are behind the vantage
point.

Parameters.For each sub-topology, we randomly markd%
of edge ASes as attackers, withd ranging from 10, 20, 40,
to 80. Unmarked edge ASes are legitimate users. We also
randomly mark 25% of edge ASes as spoofers. This number is
set according to the Spoofer [9] project that shows close to 25%
of ASes still allow address spoofing. We assume that ASes that
do not allow address spoofing will not allow path spoofing were
TVA deployed. In our simulations, an AS marked as an attacker
sends packet floods. If an AS is marked both as an attacker and
spoofer, it sends packet floods with spoofed path identifier tags.

Since BGP uses prefix-based route selection and an AS may
announce multiple prefixes, there are multiple paths between
two ASes. As ns-2 only supports single-path routing, we create
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one node corresponding to one path identifier of an AS in ns-
2. If an AS is marked as an attacker or spoofer in the marking
process, all instances of the AS in the simulation topology are
attackers or spoofers.

In our simulations, each attacker instance sends 1Mb/s traf-
fic. The bottleneck bandwidth is set to one tenth of the ag-
gregate attack bandwidth when the attacker density is 80%.
The non-bottleneck links are set to 10Gb/s. Link delay is set
between 5ms to 10ms. TVA’s results also depend on the number
of request queues a bottleneck router can handle. In our simu-
lations, we assume 200K queues are available to an Internet-
scale topology withNI unique path identifiers. We choose
200K because our prototype implementation (Section VI) on
a commodity PC can support this number. We scale the number
of queues allocated to a sub-topology toNs/NI ∗ 200K, where
Ns is the number of path identifiers seen in the sub-topology.
The maximum depth of a hierarchical queue is set to four based
on our prototype implementation. This is because most AS path
lengths are less than five, and the sampled sub-topologies are
often one AS hop away from a vantage point. A few legitimate
users that share the last four path identifier tags with attackers
are not protected.

The TCP file transfer size in our simulations is 20KB. A
new capability request is piggybacked on the TCP SYN packet
of each transfer. We choose a small and fixed file size to
speed up the simulations and for clarity: we use this sam-
ple point to explain the performance difference of different
schemes. Although there is evidence that most TCP flows are
less than 20KB [36], most bytes are sent by flows longer than
100KB [36]. Besides, as TVA’s capabilities are requested ona
per-host basis, multiple short flows (e.g., embedded imagesin
a web page) only need to send one request. Thus we believe
a transfer size of 20KB is a fair choice for our simulations,
and the benefits of capabilities are more prominent for longer
transfers. Capability processing overhead is not simulated, as
it is evaluated in Section??. Capability cache misses are not
simulated, because caching is an optimization, and a detailed
cache eviction algorithm is left for further study.

To provide a fair comparison to other schemes, we modify
TCP to have a more aggressive connection establishment al-
gorithm. Specifically, the timeout for TCP SYNs is fixed at
one second (without the normal exponential backoff). Without
this change, SIFF suffers disproportionately because it treats
SYN packets with capability requests as legacy traffic, and its
performance under overload will be dominated by long TCP
timeouts. This modification also favors TVA slightly. But as
we will see, most TVA transfers finish without or with only a
few retransmissions. We set the application timeout value to 10
seconds to speed up simulations. That is, we abort a file transfer
if it cannot finish within 10 seconds.

The number of legitimate users differs in each sub-topology
for each attacker density. We compute the rate of file transfers
for each setting such that the file transfers from legitimate
users would not congest the bottleneck link. The contention
effects we see in the simulations come directly from massed
attackers. In each simulation, a legitimate user sends 10 files to
the destination.

B. Legacy Packet Floods

The first scenario we consider is that of each attacker flood-
ing the destination with legacy traffic at 1Mb/s. Figure 6 shows
the cumulative fraction of file transfer times among all file
transfers that are started by legitimate users for TVA, SIFF,
pushback, and the current Internet. We see that all TVA trans-
fers complete and the completion time remains small as the
attacker density varies from 10% to 80%. The corresponding
attack bandwidth varies from 1.25 to 10 times the bottleneck
bandwidth. Our design strictly limits the impact of legacy traffic
floods, as we treat legacy traffic with lower priority than TVA
traffic.

SIFF treats both legacy and request packets as equally low
priority traffic. Therefore, when the intensity of legacy traffic
exceeds the bottleneck bandwidth, a legitimate user’s request
packets begin to suffer losses. When the aggregate attack
bandwidthBa is greater than the bottleneck bandwidthBl, the
packet loss ratep is approximately(Ba − Bl)/Ba. Once a
request packet gets through, a sender’s subsequent packetsare
authorized packets and are treated with higher priority. Sothe
probability that a file transfer completes with SIFF equals to
the probability a request gets through within 10 seconds. As
a SYN packet is retransmitted every second in our simulations,
this is equivalent to nine tries, i.e.,(1−p9). When the attacker’s
density is 80% ,p is 90%, giving a completion rate of(1 −

0.99) = 0.61. This is consistent with the results in Figure 6(d).
With Pushback, the file transfer time increases as the number

of attackers increases, and the fraction of files completed within
10 seconds decreases. This is because the pushback algorithm
rate-limits the aggregate traffic from each incoming interface,
and it cannot precisely separate attack traffic from legitimate
traffic. If legitimate traffic and attack traffic shares the same
interface at a bottleneck link, it suffers collateral damage. As
the number of attackers increases, more legitimate users suffer
collateral damage at multiple hops. Therefore, their file transfer
times increase.

With the Internet, legitimate traffic and attack traffic are
treated alike. Therefore, every packet from a legitimate user
encounters a loss rate ofp. The probability for a file transfer
of n packets to get through, each within a fixed number of
retransmissionsk is (1 − pk)n. This probability decreases
polynomially as the drop ratep increases and exponentially
as the number of packetsn (or the file size) increases. This
explains the results we see in Figure 6: the fraction of completed
transfers quickly approaches to zero as the number of attackers
increases.

C. Request Packet Floods

The next scenario we consider is that of each attacker flood-
ing the destination with request packets at 1Mb/s. Attackers that
are spoofers send packets with spoofed initial path identifiers.
In this attack, we assume the destination was able to distinguish
requests from legitimate users and those from attackers.

The results are shown in Figure 7. With TVA, request
flooding attacks may cause request channel congestion. In
our simulations, all queues at the same level have the same
weights. As a result, legitimate users that are far away fromthe
bottleneck link may only have a tiny share of request channel
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Fig. 6. These figures show the cumulative fraction of the file transfer times among all transfers started by legitimate users. Legacy traffic flooding does
not increase the file transfer time of TVA. With SIFF and Pushback, file transfer time increases and the fraction of transfers completed decreases as the
number of attackers increases; with the legacy Internet, the transfer time increases, and the fraction of completion approaches zero after the attacker’s
density exceeds 40%.
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Fig. 7. Request packet flooding with spoofed path identifiers may congest TVA’s request channel and increases the file transfer time for some legitimate
users. When the attacker’s density is 80%, more than 80% of legitimate users are isolated from attackers and can completetheir transfers in less than
three seconds. Less than 14% of legitimate users can not complete their transfers within 10 seconds, as a result of sharing queues with attackers.

bandwidth, insufficient to send one request packet within one
second. Those users will see increased transfer times due to
increased queuing delay and request retransmissions. Thiscan
be seen from the “tail” part of the TVA transfer time distribution
in Figure 7. When the attacker density reaches 80%, spoofed
path identifiers cause the bottleneck router to exhaust all its
queues. Some legitimate users whose path identifiers overlap
with the attackers’ may share queues with the attackers. As
a result, they suffer collateral damage and cannot complete
their file transfers within 10 seconds. Legitimate users that do
not share queues with attackers can finish faster than those
users in other schemes. In Figure 7(d), more than 80% of TVA
transfers can finish within three seconds. This result depends
on the topology and the number of queues the bottleneck router
can support. In general, fewer queues or more attackers will
limit TVA’s ability to separate attackers from legitimate users,
leading to collateral damage to legitimate users.

TVA’s results can be improved if we allocate more bandwidth
to the request channel, or assign weights to queues based on
the measured request traffic demand when there are no attacks.
In the simulations, we strictly rate limit TVA’s request packets
to 5% of the bottleneck bandwidth. This assumes that the data
channel is congested at the same time, and the request channel
cannot use spare bandwidth in the data channel. Otherwise, if
the bottleneck link is work conserving and the data channel is
not congested, request packets may use the available bandwidth
in the data channel and encounter less congestion. This will
reduce both the queuing delay and the loss rate of legitimate
requests.

The results for SIFF are similar to those for legacy packet
floods, as SIFF treats both requests and legacy traffic as low
priority traffic. Both pushback and the legacy Internet treat

request traffic as regular data traffic. The results for them are
the same as those for the legacy traffic attack.

D. Authorized Packet Floods

Strategic attackers will realize that it is more effective to
collude when paths can be found that share the bottleneck link
with the destination. The colluders grant capabilities to requests
from attackers, allowing the attackers to send authorized traffic
at their maximum rate. Figure 8 shows the results under this
attack. Because TVA allocates bandwidth approximately fairly
among all destinations and allows destinations to use fine-
grained capabilities to control how much bandwidth to allocate
to a sender, this attack causes bandwidth to be fairly allocated
between the colluder and the destination. When the fraction of
attackers is less than 80%, a small fraction of transfers take a
few retransmissions to finish. This is because there are a large
number of users, and after their available bandwidth is reduced
by the attack, TCP burstiness causes temporary congestion.But
all transfers complete. If the number of colluders that share a
bottleneck link with the destination increases, the destination
gets a decreased share of the bandwidth. Each legitimate user
will get a lesser share of the bandwidth, but will not be starved.

Under the same attack with SIFF, legitimate users are com-
pletely starved. Again, this is because the request packetsare
treated with low priority and are dropped in favor of the autho-
rized attack traffic. We see in Figure 8 that no SIFF transfers
complete even when there are only 10% attackers.

Pushback performs reasonably well in this scenario, but its
file transfer times still increase. This is because pushbackis
per-destination based. If legitimate traffic and attack traffic do
not share the same destination, legitimate traffic does not suffer
collateral damage caused by pushback’s rate limiting, but it
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Fig. 8. With TVA, per-destination queue ensures that the destination and the colluder equally share the access link bandwidth.A few transfer times
increase as a result of reduced bandwidth, but all transferscomplete.
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Fig. 9. X-axis is the simulation time a transfer is started. Y-axis is the
time it takes to complete the transfer. Attackers can only cause temporary
damage if a destination stops renewing their capabilities.TVA uses a fine-
grained capability to limit the impact of authorizing an att acker to a
smaller amount of attack traffic compared to SIFF, even assuming SIFF
has a rapid-changing router secret that expires every 3 seconds.

still suffers congestion losses caused by the attack trafficat the
bottleneck.

The legacy Internet treats request traffic and authorized traf-
fic as regular traffic. Thus, the results for the legacy Internet
under an authorized traffic attack is similar to those under a
legacy traffic attack.

E. Imprecise Authorization Policies

Finally, we consider the impact of imprecise policies, when
a destination sometimes authorizes attackers because it cannot
reliably distinguish between legitimate users and attackers at
the time that it receives a request. In the extreme case that the
destination cannot differentiate attackers from users at all, it
must grant them equally.

However, if the destination is able to differentiate likely
attack requests, even imprecisely, TVA is still able to limit the
damage of DoS floods. To see this, we simulate the simple
authorization policy described in Section III-C: a destination
initially grants all requests, but stops renewing capabilities for
senders that misbehave by flooding traffic. We set the desti-
nation to grant an initial capability of 32KB in 10 seconds.
This allows an attacker to flood at a rate of 1Mb/s, but for
only 32KB until the capability expires. The destination does
not renew capabilities because of the attack. Figure 9 shows
how the transfer time changes for TVA with this policy as
an attack commences. The attacker density is 80%. There are
two attacks: a high intensity one in which all attackers attack
simultaneously; and a low intensity one in which the attackers
divide into 10 groups that flood one after another, as one group
finishes their attack. We see that both attacks last for a short
period of time. When the number of attackers increases, the
impact of an attack may increase, but the attack will stop as
soon as all attackers consume their 32KB capabilities.

Figure 9 also shows the results for SIFF under the same
attacks. In SIFF, the expiration of a capability depends on

changing a router secret – even if the destination determines
that the sender is misbehaving it is powerless to revoke the au-
thorization beforehand. This suggests that rapid secret turnover
is needed, but there are practical limitations on how quickly
the secret can be changed, e.g., the life time of a router secret
should be longer than a small multiple of TCP timeouts. In our
experiment, we assume SIFF can expire its capabilities every
three seconds. By contrast, TVA expires router secret every
128 seconds. We see that both attacks have a more pronounced
effect on SIFF.

F. Summary

The results presented in this section evaluate the benefits
and limitations of the design choices of TVA. The comparison
between TVA and Pushback highlights the benefits of capabil-
ities: without capabilities, every data packet may suffer col-
lateral damage; with capabilities, only the first request packet
of a connection may suffer collateral damage. The comparison
between TVA and SIFF shows the benefits and limitations of
treating request packets with the same priority as data packets,
protecting the request channel with hierarchical fair queuing,
and fine grained capabilities. The higher benefits of TVA come
from these additional defense mechanisms.

VI. I MPLEMENTATION

We prototyped TVA using the Linux Click router [19]
running on commodity hardware. We implemented the host
portion of the protocol as a user-space proxy, as this allows
legacy applications to run without modification. We use AES-
based message authentication code to compute pre-capabilities
and AES-based Matyas-Meyer-Oseas hash [23] as the second
secure hash function to compute capabilities. We use AES
because of its superb hardware speed [14]. We implement the
path-identifier based hierarchical fair queuing scheme using
DRR [29] and HFQ [8].

The purpose of this effort is to check the completeness of our
design and to understand the processing costs of capabilities.
In our experiment, we set up a router using an AMD Opteron
2.6GHz CPU with 2GB memory. Both the router, packet gen-
erator, and packet sink run a Linux 2.6.16.13 kernel. We then
use a kernel packet generator to generate different types of
packets and send them through the router, modifying the code
to force the desired execution path. For each run, our packet
generator sends ten million packets of each type to the router.
We record the average number of instruction cycles for the
router to process each type of packet, averaging the resultsover
three experiments.
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Fig. 10. The peak output rate of different types of packets.

Packet type Processing time

Request
No attack Under attack

313 ns 1378 ns
Regular with a cached entry 9 ns
Regular without a cached entry 628 ns
Renewal with a cached entry 341 ns
Renewal without a cached entry 852 ns

TABLE I

Processing overhead of different types of packets.

We also evaluate the processing costs of request packets
under a request flooding attack. The attack will trigger a router
to split hierarchical queues to separate packets with different
path identifiers, increasing the processing costs. We set a queue
limit of 200K in our experiments, and the maximum depth of
a queue to five, because longer paths increase processing costs,
and most AS paths are less than five hops long. We use an AS-
level topology obtained from the Oregon RouteView server as
described in Section V to obtain path identifier distributions.
Our packet generator uniformly generates request floods from
each path identifier, forcing a request queue to be created for
each unique path identifier. We also randomly choose 25% of
path identifiers to be spoofable and prepend them with spoofed
tags [9]. This forces the router to exhaust all its 200K queues.
We then benchmark the cycles to process a request packet,
averaging the results over all path identifiers.

Table I shows the results of these experiments, with cycles
converted to time. In normal operations, the most common type
of packet is a regular packet with an entry at a router. The
processing overhead for this type is the lowest at 9 ns. The
processing overhead for validating a capability for a packet
without a cached entry is about 628 ns, as it involves computing
two hash functions. The cost to process a request packet is lower
and similar to the cost to process a renewal packet with a cached
entry because both involve a pre-capability hash computation.
The most computation-intensive operation is forwarding a re-
newal packet without a cached entry. In this case the router
needs to compute three hash functions: two to check the validity
of the old capability, and one to compute a new pre-capability
hash. The processing cost is 852 ns. During request flooding
attacks, the processing cost of a request packet increases to
1378 ns.

We also evaluate how rapidly a Linux router could forward
capability packets. The results are shown in Figure 10. The out-
put rate increases with the input rate and reaches a peak of 386
to 692Kpps, depending on the type of packet. This compares
well with the peak lossless rate for vanilla IP packets of about
694Kpps. All types of packets are minimum size packets with

a 40 bytes TCP/IP header plus a minimum capability header
of that packet type. Request packet processing under request
floods has the lowest throughput, but is sufficient to saturate
5% of a 3Gb/s link.

VII. SECURITY ANALYSIS

The security of TVA is based on the inability of an attacker
to obtain capabilities for routers along the path to a destination
they seek to attack. We briefly analyze how TVA counters
various threats.

An attacker might try to obtain capabilities by breaking the
hashing scheme. We use standard cryptographic functions with
a sufficient amount of key material and change keys every 128
seconds as to make breaking keys a practical impossibility.

An attacker may try to observe the pre-capabilities placed in
its requests by routers, e.g., by causing ICMP error messages
to be returned to the sender from within the network, or by
using IP source routing. To defeat these vulnerabilities, we use a
packet format that does not expose pre-capabilities in the first 8
bytes of the IP packet payload (which are visible in ICMP mes-
sages) and require that capability routers treat packets with IP
source routes as legacy traffic. Beyond this, we rely on Internet
routing to prevent the intentional misdelivery of packets sent to
a remote destination. Some router implementations may return
more than eight bytes of payload in ICMP messages. In that
case, an attacker may obtain pre-capabilities up to that router,
but not after the router. If it turns out to be a security risk,a
future version of TVA may pad more bytes in request packets,
a tradeoff between security and efficiency.

A different attack is to steal and use capabilities belonging
to a sender (maybe another attacker) who was authorized by
the destination. Since a capability is bound to a specific source,
destination, and router, the attacker will not generally beable
to send packets along the same path as the authorized sender.
The case in which we cannot prevent theft is when the attacker
can eavesdrop on the traffic between an authorized sender and
a destination. This includes a compromised router, and a host
sharing a broadcast and unencrypted LAN. In this case, the at-
tacker can co-opt the authorization that belongs to the sender. In
fact, it can speak for any senders for whom it forwards packets.
However, even in this situation our design provides defensein
depth. A compromised router is just another attacker – it does
not gain more leverage than an attacker at the compromised
location. So is an attacker that sniffs a sender’s capability at a
LAN. DoS attacks on a destination will still be limited as long
as there are other capability routers between the attacker and the
destination. However, senders behind the router or sharingthe
same LAN with an attacker will be denied service, a problem
that can only be solved if senders do not use the compromised
router to forwarding packets or by improved local security.

Another attack an eavesdropper can launch is to masquerade
a receiver to authorize attackers to send attack traffic to the
receiver. Similarly, our design provides defense in depth.If the
attacker is a compromised router, this attack can only congest
the receiver’s queues at upstream links, because the router
cannot forge pre-capabilities of downstream routers. Thisattack
is no worse than the router simply dropping all traffic to the
receiver. If the attacker is a compromised host that shares alocal
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broadcast network with a receiver, the attacker can be easily
spotted and taken off-line.

Alternatively, an attacker and a colluder can spoof authorized
traffic as if it were sent by a different senderS. The attacker
sends requests to the colluder withS’s address as the source
address, and the colluder returns the list of capabilities to the
attacker’s real address. The attacker can then flood authorized
traffic to the colluder usingS’s address. This attack is harmful
if per-source queuing is used at a congested link. If the spoofed
traffic and S’s traffic share the congested link,S’s traffic
may be completely starved. This attack has little effect on a
sender’s traffic if per-destination queueing is used, whichis
TVA’s default. ISPs should not use per-source queuing if source
addresses cannot be trusted.

TVA’s capabilities cover all connections between two hosts.
In the presence of NAT or time-shared hosts, one malicious host
or user may prevent all other hosts or users sharing the same IP
address to send to a destination. Unfortunately, this problem
cannot be easily solved without a better scheme for host or user
identity. If future work solves the identity problem, TVA can be
modified to return capabilities on a per-host or per-user basis.

Finally, other attacks may target capability routers directly,
seeking to exhaust their resources. However, the computation
and state requirements for our capability are bounded by design.
They may be provisioned for the worst case.

VIII. D ISCUSSION

A. Deployment issues

Our design requires both routers and hosts to be upgraded,
but does not require a flag day. We expect incremental deploy-
ment to proceed organization by organization. For example,a
government or large scale enterprise might deploy the system
across their internal network, to ensure continued operation
of the network even if the attacker has compromised some
nodes internal to the organization, e.g., with a virus. Upstream
ISPs in turn might deploy the system to protect communication
between key customers.

Routers can be upgraded incrementally, at trust boundaries
and locations of congestion, i.e., the ingress and egress ofedge
ISPs. This can be accomplished by placing an inline packet
processing box adjacent to the legacy router and preceding
a step-down in capacity (so that its queuing has an effect).
No cross-provider or inter-router arrangements are neededand
routing is not altered. Further deployment working back from a
destination then provides greater protection to the destination
in the form of better attack localization, because floods are
intercepted earlier.

Hosts must also be upgraded. We envision this occurring
with proxies at the edges of customer networks in the manner
of a NAT box or firewall. This provides a simpler option
than upgrading individual hosts and is possible since legacy
applications do not need to be upgraded. Observe that legacy
hosts can communicate with one another unchanged during
this deployment because legacy traffic passes through capability
routers, albeit at low priority. However, we must discover which
hosts are upgraded if we are to use capabilities when possible
and fall back to legacy traffic otherwise. We expect to use
DNS to signal which hosts can handle capabilities in the same

manner as other upgrades. Additionally, a capability-enabled
host can try to contact a destination using capabilities directly.
This will either succeed, or an ICMP protocol error will be
returned when the shim capability layer cannot be processed,
as evidence that the host has not been upgraded.

B. Limitations

We have constrained our design to modify only the data plane
of the network, as modifying control plane may require inter-
ISP cooperation and additional control messages and mecha-
nisms to prevent those control messages from being DDoSed.
We have also constrained our design to be architectural in the
sense that we aim to protect any destination and any bottleneck.

Consequently, designs that relax these restrictions may have
different cost and benefit tradeoffs. For instance, designsthat
aim to protect a bottleneck near a web server [11] may be sim-
pler than TVA, as they can use SYN cookies to prevent source
address spoofing, and respond faster in cutting off attack traffic,
if filters can be installed faster than attackers consuming their
initial capabilities. Similarly, designs [16], [21] that assume the
bottleneck link is always close to a destination may also be
simpler than TVA.

In addition, if we relax our design space to allow modifi-
cations in the control plane, capability-based systems canbe
made more scalable than TVA. For instance, if a router can send
rate-limit messages to an upstream neighbor when a request
queue identified by the neighbor’s tag is congested, the router
may reduce the impact of request flooding with a small number
of queues. Presently, without path spoofing, a TVA router
may require as many queues as the number of unique path
identifiers to separate legitimate users from attackers. With path
spoofing, the number of queues required for perfect isolation
is topology dependent, and may grow exponentially with the
network diameter. A router with a limited number of queues
may not be able to protect all legitimate users.

TVA assumes that end systems have effective policies to dif-
ferentiate attack traffic from legitimate traffic. Effective policies
are an area for future study.

C. Capabilities versus Filters

In [5], Argyraki et al. discussed the limitations of network
capabilities. Most design challenges faced by a capability-based
design are applicable to a filter-based design. For instance, in a
capability-based design, a router may fail to protect legitimate
traffic when it does not have enough request queues. Similarly,
in a filter-based design, a router may also fail to protect legiti-
mate traffic when it runs out of filters.

We see that the key difference between capability-based
designs and filter-based designs is the separation of the request
channel and the data channel. The request channel does not
need to operate at the wire speed. Intuitively, we think a slow
channel is easier to protect because it permits heavier protection
mechanisms. TVA uses hierarchical fair queuing to protect the
request channel in an effort to balance complexity and effec-
tiveness, but other work [32] may use different mechanisms for
different tradeoffs. Even in the case that the request channel is
not completely protected from attack traffic, collateral damage
only slows down the first request packet of a connection. If a
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connection involves more than one packet from each end, then
a capability-based design can protect the subsequent packets. In
contrast, in a filter-based design, if collateral damage exists due
to filter shortage, every packet will suffer.

IX. CONCLUSION

We have motivated the capability approach to limit the ef-
fects of network denial-of-service attacks, and presentedand
evaluated (a revised version of) TVA, the first comprehensive
and practical capability-based network architecture. As acom-
plete system, it details the operation of capabilities along with
protections for the initial request exchange, consideration of
destination policies for authorizing senders, and ways to bound
both router computation and state requirements. We evaluate
TVA using a combination of simulation, implementation, and
analysis. Our simulation results show that, when TVA is used,
even substantial floods of legacy traffic, request traffic, and
other authorized traffic have limited impact on the performance
of legitimate users. We have striven to keep our design practical.
We implemented a prototype of our design in the Linux kernel,
and used it to show that our design will be able to achieve a
peak throughput of 386-692 Kpps for minimum size packets on
a software router. We also constrained our design to be easy
to transition into practice. This can be done by placing inline
packet processing boxes near legacy routers, with incremen-
tal deployment providing incremental gain. We hope that our
results will take capability-based network architecturesa step
closer to reality.
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