
Graph	
  Algorithms	
  &	
  Itera2on	
  	
  
on	
  Map-­‐Reduce	
  

CompSci	
  590.04	
  
Instructor:	
  Ashwin	
  Machanavajjhala	
  

1	
  Lecture	
  13	
  :	
  590.04	
  Fall	
  15	
  



Recap:	
  Map-­‐Reduce	
  
	
  

	
  

	
  

Map	
  Phase	
  
(per	
  record	
  computa2on)	
  

Reduce	
  Phase	
  
(global	
  computa2on)	
  

Shuffle	
  

Lecture	
  13	
  :	
  590.04	
  Fall	
  15	
   2	
  



This	
  Class	
  
•  Graph	
  Processing	
  

•  Itera2ve-­‐aware	
  Map	
  Reduce	
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GRAPH	
  PROCESSING	
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Graph	
  Algorithms	
  
•  Diameter	
  Es2ma2on	
  

–  Length	
  of	
  the	
  longest	
  shortest	
  path	
  in	
  the	
  graph	
  

•  Connected	
  Components	
  
–  Undirected	
  s-­‐t	
  connec2vity	
  (USTCON):	
  check	
  whether	
  two	
  nodes	
  are	
  

connected.	
  	
  

•  PageRank	
  
–  Calculate	
  importance	
  of	
  nodes	
  in	
  a	
  graph	
  

•  Random	
  Walks	
  with	
  Restarts	
  
–  Similarity	
  func2on	
  that	
  encodes	
  proximity	
  of	
  nodes	
  in	
  a	
  graph	
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Connected	
  Components	
  
•  What	
  is	
  an	
  efficient	
  algorithm	
  for	
  compu2ng	
  the	
  connected	
  

components	
  in	
  a	
  graph?	
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HCC	
  [Kang	
  et	
  al	
  ICDM	
  ‘09]	
  

•  Each	
  node’s	
  label	
  l(v)	
  is	
  ini2alized	
  to	
  itself	
  
•  In	
  each	
  itera2on	
  

l(v)	
  =	
  min	
  {l(v),	
  min	
  y	
  ε	
  neigh(v)	
  l(y)}	
  

•  O(d)	
  itera2ons	
  (d	
  =	
  diameter	
  of	
  the	
  graph)	
  
O(|V|	
  +	
  |E|)	
  communica2on	
  per	
  itera2on	
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GIM-­‐V	
  
•  Generalized	
  Itera2ve	
  Matrix-­‐Vector	
  Mul2plica2on	
  

Connected	
  Components	
  
•  Let	
  ch	
  denote	
  the	
  component-­‐id	
  of	
  a	
  vertex	
  in	
  itera2on	
  h	
  

•  	
  ch+1	
  =	
  M	
  xG	
  ch	
  
–  	
  cnew[i]	
  	
  =	
  	
  minj(m[i,j]x	
  ch[j])	
  
–  	
  ch+1[i]	
  	
  =	
  	
  min(ch	
  [i],	
  	
  cnew[i])	
  
	
  	
  

•  Keep	
  itera2ng	
  2ll	
  ch+1	
  =	
  ch.	
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Step	
  1:	
  Generate	
  m[i,j]	
  x	
  c[j]	
  
Step	
  2:	
  Aggregate	
  to	
  find	
  the	
  	
  

min	
  for	
  each	
  node	
  	
  



GIM-­‐V	
  and	
  Page	
  Rank	
  

•  	
  pnext	
  =	
  	
  M	
  xG	
  	
  pcur	
  

•  	
  pnext[i]	
  =	
  	
  (1-­‐c)/n	
  +	
  sumj	
  (	
  c	
  x	
  m[i,j]x	
  pcur[j])	
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of the details of the data distribution, replication, load bal-
ancing etc. and furthermore (b) the programming concept is
familiar, i.e., the concept of functional programming. Briefly,
the programmer needs to provide only two functions, a map
and a reduce. The typical framework is as follows [29]: (a)
the map stage sequentially passes over the input file and
outputs (key, value) pairs; (b) the shuffling stage groups of
all values by key, (c) the reduce stage processes the values
with the same key and outputs the final result.
HADOOP is the open source implementation of MAPRE-

DUCE. HADOOP provides the Distributed File System
(HDFS) [30] and PIG, a high level language for data
analysis [31]. Due to its power, simplicity and the fact
that building a small cluster is relatively cheap, HADOOP
is a very promising tool for large scale graph mining
applications, something already reflected in academia, see
[32]. In addition to PIG, there are several high-level language
and environments for advanced MAPREDUCE-like systems,
including SCOPE [33], Sawzall [34], and Sphere [35].

III. PROPOSED METHOD

How can we quickly find connected components, diameter,
PageRank, node proximities of very large graphs fast? We
show that, even if they seem unrelated, eventually we
can unify them using the GIM-V primitive, standing for
Generalized Iterative Matrix-Vector multiplication, which
we describe in the next.

A. Main Idea
GIM-V, or ‘Generalized Iterative Matrix-Vector multipli-

cation’ is a generalization of normal matrix-vector multipli-
cation. Suppose we have a n by n matrix M and a vector v
of size n. Let mi,j denote the (i, j)-th element of M . Then
the usual matrix-vector multiplication is

M × v = v′ where v′i =
∑n

j=1 mi,jvj .
There are three operations in the previous formula, which,

if customized separately, will give a surprising number of
useful graph mining algorithms:
1) combine2: multiply mi,j and vj .
2) combineAll: sum n multiplication results for node

i.
3) assign: overwrite previous value of vi with new
result to make v′i.

In GIM-V, let’s define the operator ×G, where the three
operations can be defined arbitrarily. Formally, we have:

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j =
1..n, and xj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and
assign() have the following signatures (generalizing
the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):
1) combine2(mi,j, vj) : combine mi,j and vj .

2) combineAlli(x1, ..., xn) : combine all the results
from combine2() for node i.

3) assign(vi, vnew) : decide how to update vi with
vnew .

The ‘Iterative’ in the name of GIM-V denotes that
we apply the ×G operation until an algorithm-specific
convergence criterion is met. As we will see in a moment,
by customizing these operations, we can obtain different,
useful algorithms including PageRank, Random Walk with
Restart, connected components, and diameter estimation.
But first we want to highlight the strong connection of
GIM-V with SQL: When combineAlli() and assign()
can be implemented by user defined functions, the operator
×G can be expressed concisely in terms of SQL. This
viewpoint is important when we implement GIM-V in large
scale parallel processing platforms, including HADOOP, if
they can be customized to support several SQL primitives
including JOIN and GROUP BY. Suppose we have an edge
table E(sid, did, val) and a vector table V(id,
val), corresponding to a matrix and a vector, respectively.
Then, ×G corresponds to the following SQL statement -
we assume that we have (built-in or user-defined) functions
combineAlli() and combine2()) and we also assume
that the resulting table/vector will be fed into the assign()
function (omitted, for clarity):

SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

In the following sections we show how we can customize
GIM-V, to handle important graph mining operations in-
cluding PageRank, Random Walk with Restart, diameter
estimation, and connected components.

B. GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous
algorithm that was used by Google to calculate relative
importance of web pages [17]. The PageRank vector p of n
web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

where c is a damping factor (usually set to 0.85), E is the
row-normalized adjacency matrix (source, destination), and
U is a matrix with all elements set to 1/n.
To calculate the eigenvector p we can use the power

method, which multiplies an initial vector with the matrix,
several times. We initialize the current PageRank vector pcur

and set all its elements to 1/n. Then the next PageRank
pnext is calculated by pnext = (cET + (1 − c)U)pcur. We
continue to do the multiplication until p converges.
PageRank is a direct application of GIM-V. In this view,

we first construct a matrix M by column-normalize ET

such that every column of M sum to 1. Then the next



GIM-­‐V	
  BL	
  
•  We	
  assumed	
  each	
  edge	
  in	
  the	
  graph	
  is	
  represented	
  using	
  a	
  

different	
  row.	
  	
  
•  Can	
  speed	
  up	
  processing	
  if	
  each	
  row	
  represents	
  a	
  bxb	
  sub	
  matrix	
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Algorithm 1: GIM-V BASE Stage 1.
Input : Matrix M = {(idsrc, (iddst, mval))},

Vector V = {(id, vval)}
Output: Partial vector

V ′ = {(idsrc,combine2(mval, vval)}

Stage1-Map(Key k, Value v) ;1
begin2
if (k, v) is of type V then3

Output(k, v); // (k: id, v: vval)4

else if (k, v) is of type M then5
(iddst, mval)← v;6
Output(iddst, (k, mval)); // (k: idsrc)7

end8

Stage1-Reduce(Key k, Value v[1..m]) ;9
begin10

saved kv ←[ ];11
saved v ←[ ];12
foreach v ∈ v[1..m] do13
if (k, v) is of type V then14

saved v ← v;15
Output(k, (“self”, saved v));16

else if (k, v) is of type M then17
Add v to saved kv // (v: (idsrc, mval))18

end19
foreach (id′src, mval′) ∈ saved kv do20

Output(id′src, (“others”,combine2(mval′, saved v)));21

end22

end23

matrix(idsrc of M ) and the value is the partially combined
result(combine2(mval, vval)). This output of Stage1
becomes the input of Stage2. Stage2 combines all partial
results from Stage1 and assigns the new vector to the old
vector. The combineAlli() and assign() operations are
done in line 16 of Stage2, where the “self” and “others”
tags in line 16 and line 21 of Stage1 are used to make vi

and vnew of GIM-V, respectively.
This two-stage algorithm is run iteratively until

application-specific convergence criterion is met. In Algo-
rithm 1 and 2, Output(k, v) means to output data with the
key k and the value v.

B. GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is
based on block multiplication. The main idea is to group
elements of the input matrix into blocks or submatrices of
size b by b. Also we group elements of input vectors into
blocks of length b. Here the grouping means we put all the
elements in a group into one line of input file. Each block
contains only non-zero elements of the matrix or vector.
The format of a matrix block with k nonzero elements
is (rowblock, colblock, rowelem1

, colelem1
, mvalelem1

, ...,

Algorithm 2: GIM-V BASE Stage 2.
Input : Partial vector V ′ = {(idsrc, vval′)}
Output: Result Vector V = {(idsrc, vval)}

Stage2-Map(Key k, Value v) ;1
begin2

Output(k, v);3

end4

Stage2-Reduce(Key k, Value v[1..m]) ;5
begin6

others v ←[ ];7
self v ←[ ];8
foreach v ∈ v[1..m] do9

(tag, v′)← v;10
if tag == “same” then11

self v ← v′;12

else if tag == “others” then13
Add v′ to others v;14

end15
Output(k,assign(self v,combineAllk(others v)));16

end17

rowelemk
, colelemk

, mvalelemk
). Similarly, the format

of a vector block with k nonzero elements is
(idblock, idelem1

, vvalelem1
, ..., idelemk

, vvalelemk
). Only

blocks with at least one nonzero elements are saved to disk.
This block encoding forces nearby edges in the adjacency
matrix to be closely located; it is different from HADOOP’s
default behavior which do not guarantee co-locating them.
After grouping, GIM-V is performed on blocks, not on
individual elements. GIM-V BL is illustrated in Figure 1.

Figure 1. GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block,
and vi represents a vector block. The matrix and vector are joined block-
wise, not element-wise.

In our experiment at Section V, GIM-V BL is more than 5
times faster than GIM-V BASE. There are two main reasons
for this speed-up.

• Sorting Time Block encoding decrease the number
of items to sort in the shuffling stage of HADOOP.
We observed that the main bottleneck of programs in
HADOOP is its shuffling stage where network transfer,
sorting, and disk I/O happens. By encoding to blocks
of width b, the number of lines in the matrix and the
vector file decreases to 1/b2 and 1/b times of their
original size, respectively for full matrices and vectors.



Connected	
  Components	
  
•  Itera2ve	
  Matrix	
  Vector	
  products	
  need	
  O(d)	
  map	
  reduce	
  steps	
  to	
  

find	
  the	
  connected	
  components	
  in	
  a	
  graph.	
  	
  

•  Diameter	
  of	
  a	
  graph	
  can	
  be	
  large.	
  	
  	
  
–  >	
  20	
  for	
  many	
  real	
  world	
  graphs.	
  	
  

•  Each	
  map	
  reduce	
  step	
  requires	
  wri2ng	
  data	
  to	
  disk	
  +	
  remotely	
  
reading	
  data	
  from	
  disk	
  (I/O	
  +	
  communica2on)	
  

•  Can	
  we	
  find	
  connected	
  components	
  using	
  a	
  smaller	
  number	
  of	
  
itera2ons?	
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Hash-­‐to-­‐all	
  
•  Maintain	
  a	
  cluster	
  at	
  each	
  node	
  

–  Current	
  es2mate	
  of	
  connected	
  component	
  

•  Ini2alize	
  cluster(v)	
  =	
  Neighbors(v)	
  U	
  {v}	
  

•  Each	
  node	
  sends	
  its	
  cluster	
  to	
  all	
  nodes	
  in	
  the	
  cluster	
  
–  Map:	
  (v,	
  C(v))	
  à	
  {(u,	
  C(v))}	
  for	
  all	
  u	
  in	
  C(v)	
  

•  Union	
  all	
  the	
  clusters	
  sent	
  to	
  a	
  node	
  v	
  
–  Reduce:	
  (u,	
  {C1,	
  C2,	
  …,	
  Ck})	
  à	
  (u,	
  C1	
  U	
  C2	
  U	
  …	
  U	
  Ck)	
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Hash-­‐to-­‐all	
  
•  Number	
  of	
  rounds	
  	
  =	
  log	
  d	
  

–  Proof?	
  	
  

•  Communica2on	
  per	
  round	
  =	
  O(n|V|	
  +	
  |E|)	
  
–  Each	
  node	
  is	
  replicated	
  at	
  most	
  n	
  2mes,	
  where	
  n	
  is	
  the	
  maximum	
  size	
  of	
  a	
  

connected	
  component.	
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Hash-­‐to-­‐Min	
  
•  Each	
  node	
  v	
  maintains	
  a	
  cluster	
  C(v)	
  which	
  is	
  ini2alized	
  to	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  {v}	
  U	
  Neighbors(v)	
  

•  In	
  each	
  itera2on	
  
	
  
Map:	
  	
  	
  	
  	
  	
  
	
  	
   	
  vmin	
  =	
  min	
  {C(v)}	
  
	
  	
  	
  	
  	
  	
   	
  Send	
  C(v)	
  to	
  vmin	
  

	
  Send	
  vmin	
  to	
  nodes	
  in	
  C(v)	
  
	
  
Reduce:	
  	
  

	
  C(v)	
  is	
  the	
  union	
  of	
  all	
  incoming	
  clusters	
  

1	
  
2	
  

3	
  
4	
  

5	
  

6	
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Hash-­‐to-­‐Min	
  
•  Each	
  node	
  v	
  maintains	
  a	
  cluster	
  C(v)	
  which	
  is	
  ini2alized	
  to	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  {v}	
  U	
  Neighbors(v)	
  

•  In	
  each	
  itera2on	
  
	
  
Map:	
  	
  	
  	
  	
  	
  
	
  	
   	
  vmin	
  =	
  min	
  {C(v)}	
  
	
  	
  	
  	
  	
  	
   	
  Send	
  C(v)	
  to	
  vmin	
  

	
  Send	
  vmin	
  to	
  nodes	
  in	
  C(v)	
  
	
  
Reduce:	
  	
  

	
  C(v)	
  is	
  the	
  union	
  of	
  all	
  incoming	
  clusters	
  

1	
  
2	
  

3	
  
4	
  

5	
  

6	
  

	
  v	
   C(v)	
  

1	
   1,2	
  

2	
   1,2,3,4	
  

3	
   2,3	
  

4	
   2,4,5	
  

5	
   4,5,6	
  

6	
   5,6	
  

2	
  
2	
   5	
  

4	
  
1	
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Hash-­‐to-­‐Min	
  
•  Each	
  node	
  v	
  maintains	
  a	
  cluster	
  C(v)	
  which	
  is	
  ini2alized	
  to	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  {v}	
  U	
  Neighbors(v)	
  

•  In	
  each	
  itera2on	
  
	
  
Map:	
  	
  	
  	
  	
  	
  
	
  	
   	
  vmin	
  =	
  min	
  {C(v)}	
  
	
  	
  	
  	
  	
  	
   	
  Send	
  C(v)	
  to	
  vmin	
  

	
  Send	
  vmin	
  to	
  nodes	
  in	
  C(v)	
  
	
  
Reduce:	
  	
  

	
  C(v)	
  is	
  the	
  union	
  of	
  all	
  incoming	
  clusters	
  

1	
  
2	
  

3	
  
4	
  

5	
  

6	
  

	
  v	
   C(v)	
  

1	
   1,2,3,4	
  

2	
   1,2,3,4,5	
  

3	
   1	
  

4	
   1,4,5,6	
  

5	
   2	
  

6	
   4	
  

2	
  

2	
  

5	
  4	
  1	
  

1	
  

1	
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Hash-­‐to-­‐Min	
  
•  Each	
  node	
  v	
  maintains	
  a	
  cluster	
  C(v)	
  which	
  is	
  ini2alized	
  to	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  {v}	
  U	
  Neighbors(v)	
  

•  In	
  each	
  itera2on	
  
	
  
Map:	
  	
  	
  	
  	
  	
  
	
  	
   	
  vmin	
  =	
  min	
  {C(v)}	
  
	
  	
  	
  	
  	
  	
   	
  Send	
  C(v)	
  to	
  vmin	
  

	
  Send	
  vmin	
  to	
  nodes	
  in	
  C(v)	
  
	
  
Reduce:	
  	
  

	
  C(v)	
  is	
  the	
  union	
  of	
  all	
  incoming	
  clusters	
  

1	
  
2	
  

3	
  
4	
  

5	
  

6	
  

	
  v	
   C(v)	
  

1	
   1,2,3,4,5,6	
  

2	
   1	
  

3	
   1	
  

4	
   1	
  

5	
   1	
  

6	
   1	
  

2	
  
2	
   5	
  

4	
  
1	
  

1	
  
1	
  

1	
  

1	
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Hash-­‐to-­‐Min	
  
•  In	
  the	
  end,	
  cluster	
  of	
  vertex	
  with	
  minimum	
  id	
  contains	
  the	
  en2re	
  

connected	
  component.	
  	
  
Cluster	
  of	
  other	
  ver2ces	
  in	
  the	
  component	
  is	
  a	
  singleton	
  having	
  
the	
  minimum	
  vertex.	
  	
  

•  Communica2on	
  cost:	
  Assuming	
  a	
  random	
  assignment	
  of	
  ids	
  to	
  
ver2ces,	
  expected	
  communica2on	
  cost	
  is	
  O(k(|V|	
  +	
  |E|))	
  in	
  
itera2on	
  k	
  	
  

•  Number	
  of	
  itera2ons:	
  ???	
  
–  On	
  a	
  path	
  graph:	
  4	
  log	
  n	
  
–  In	
  a	
  general	
  graph:	
  Can	
  be	
  as	
  big	
  as	
  d	
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Leader	
  Algorithm	
  
•  Let	
  π	
  be	
  an	
  arbitrary	
  total	
  order	
  over	
  the	
  ver2ces.	
  	
  
•  Begin	
  with	
  l(v)	
  =	
  v,	
  and	
  all	
  nodes	
  ac2ve	
  

In	
  each	
  itera2on:	
  	
  
•  	
  Let	
  C(v)	
  be	
  the	
  connected	
  component	
  containing	
  v	
  
•  Let	
  Γ(v)	
  be	
  the	
  neighbors	
  of	
  C(v)	
  that	
  are	
  not	
  in	
  C(v)	
  
•  Call	
  each	
  ac2ve	
  node	
  a	
  leader	
  with	
  probability	
  ½.	
  	
  
•  For	
  each	
  ac2ve	
  non-­‐leader	
  w,	
  find	
  w*	
  =	
  min(Γ(w))	
  
•  If	
  w*	
  is	
  not	
  empty	
  and	
  l(w*)	
  is	
  a	
  leader,	
  	
  

then	
  mark	
  w	
  as	
  passive,	
  and	
  	
  
	
  relabel	
  each	
  node	
  with	
  label	
  w	
  by	
  l(w*)	
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Correctness	
  
•  If	
  at	
  any	
  point	
  of	
  2me	
  two	
  nodes	
  s	
  and	
  t	
  have	
  the	
  same	
  label,	
  

then	
  they	
  are	
  connected	
  in	
  G.	
  	
  

•  Consider	
  an	
  itera2on,	
  when	
  l(s)	
  ≠	
  l(t)	
  before	
  the	
  itera2on,	
  but	
  l(s)	
  
=	
  l(t)	
  azer.	
  	
  

•  This	
  means,	
  l(s)	
  =	
  w	
  (non-­‐leader	
  node),	
  l(t)	
  =	
  w*	
  
•  By	
  induc2on,	
  s	
  is	
  connected	
  to	
  all	
  nodes	
  in	
  Γ(w),	
  	
  

	
   	
  	
  	
  	
  t	
  is	
  connected	
  to	
  all	
  nodes	
  in	
  Γ(w*),	
  and	
  	
  
	
   	
  	
  	
  	
  w	
  is	
  connected	
  to	
  w*.	
  	
  

•  Therefore,	
  s	
  and	
  t	
  are	
  connected.	
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Number	
  of	
  Itera2ons	
  
•  Every	
  connected	
  component	
  has	
  a	
  unique	
  label	
  azer	
  O(log	
  N)	
  

rounds	
  with	
  high	
  probability	
  

•  Suppose	
  there	
  is	
  some	
  connected	
  component	
  with	
  two	
  ac2ve	
  
labels.	
  

•  An	
  ac2ve	
  label	
  w	
  survives	
  an	
  itera2on	
  if:	
  	
  
1.	
  w	
  is	
  marked	
  a	
  leader	
  
2.	
  w	
  is	
  not	
  marked	
  a	
  leader	
  and	
  l(w*)	
  is	
  not	
  marked	
  a	
  leader	
  
	
  

•  Hence,	
  in	
  every	
  itera2on,	
  the	
  expected	
  number	
  of	
  ac2ve	
  labels	
  
reduces	
  by	
  ¼.	
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ITERATION	
  AWARE	
  MAP-­‐REDUCE	
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Itera2ve	
  Computa2ons	
  
	
  PageRank:	
  	
  
	
  	
  	
  	
  	
  	
  	
  do	
  

	
  pnext	
  =	
  (cM	
  +	
  (1-­‐c)	
  U)pcur	
  
	
  	
  	
  	
  	
  	
  	
  while(pnext	
  !=	
  pcur)	
  
	
  
	
  
•  Loops	
  are	
  not	
  supported	
  in	
  Map-­‐Reduce	
  

–  Need	
  to	
  encode	
  itera2on	
  in	
  the	
  launching	
  script	
  
•  M	
  is	
  a	
  loop	
  invariant.	
  But	
  needs	
  to	
  wri}en	
  to	
  disk	
  and	
  read	
  from	
  

disk	
  in	
  every	
  step.	
  	
  
•  M	
  may	
  not	
  be	
  co-­‐located	
  with	
  mappers	
  and	
  reducers	
  running	
  the	
  

itera2ve	
  computa2on.	
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HaLoop	
  
•  Itera2ve	
  Programs	
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Identical to Hadoop New in HaLoop  

Local communication Remote communication

Modified from Hadoop

Figure 3: The HaLoop framework, a variant of Hadoop
MapReduce framework.

1, job 2, and job 3. Each job has three tasks running concurrently
on slave nodes.

In order to accommodate the requirements of iterative data anal-
ysis applications, we made several changes to the basic Hadoop
MapReduce framework. First, HaLoop exposes a new application
programming interface to users that simplifies the expression of
iterative MapReduce programs (Section 2.2). Second, HaLoop’s
master node contains a new loop control module that repeatedly
starts new map-reduce steps that compose the loop body, until
a user-specified stopping condition is met (Section 2.2). Third,
HaLoop uses a new task scheduler for iterative applications that
leverages data locality in these applications (Section 3). Fourth,
HaLoop caches and indexes application data on slave nodes (Sec-
tion 4). As shown in Figure 3, HaLoop relies on the same file
system and has the same task queue structure as Hadoop, but the
task scheduler and task tracker modules are modified, and the loop
control, caching, and indexing modules are new. The task tracker
not only manages task execution, but also manages caches and in-
dices on the slave node, and redirects each task’s cache and index
accesses to local file system.

2.2 Programming Model
The PageRank and descendant query examples are representative

of the types of iterative programs that HaLoop supports. Here, we
present the general form of the recursive programs we support and
a detailed API.

The iterative programs that HaLoop supports can be distilled into
the following core construct:

R
i+1

= R
0

[ (R
i

./ L)

where R
0

is an initial result and L is an invariant relation. A
program in this form terminates when a fixpoint is reached —
when the result does not change from one iteration to the next, i.e.
R

i+1

= R
i

. This formulation is sufficient to express a broad class
of recursive programs.1

1SQL (ANSI SQL 2003, ISO/IEC 9075-2:2003) queries using the
WITH clause can also express a variety of iterative applications, in-
cluding complex analytics that are not typically implemented in
SQL such as k-means and PageRank; see Section 9.5.

A fixpoint is typically defined by exact equality between iter-
ations, but HaLoop also supports the concept of an approximate
fixpoint, where the computation terminates when either the differ-
ence between two consecutive iterations is less than a user-specified
threshold, or the maximum number of iterations has been reached.
Both kinds of approximate fixpoints are useful for expressing con-
vergence conditions in machine learning and complex analytics.
For example, for PageRank, it is common to either use a user-
specified convergence threshold ✏ [15] or a fixed number of iter-
ations as the loop termination condition.

Although our recursive formulation describes the class of iter-
ative programs we intend to support, this work does not develop
a high-level declarative language for expressing recursive queries.
Rather, we focus on providing an efficient foundation API for it-
erative MapReduce programs; we posit that a variety of high-level
languages (e.g., Datalog) could be implemented on this foundation.

To write a HaLoop program, a programmer specifies the loop
body (as one or more map-reduce pairs) and optionally specifies
a termination condition and loop-invariant data. We now discuss
HaLoop’s API (see Figure 16 in the appendix for a summary). Map
and Reduce are similar to standard MapReduce and are required;
the rest of the API is new and is optional.

To specify the loop body, the programmer constructs a multi-step
MapReduce job, using the following functions:

• Map transforms an input hkey, valuei tuple into intermediate
hin key, in valuei tuples.

• Reduce processes intermediate tuples sharing the same in key,
to produce hout key, out valuei tuples. The interface contains
a new parameter for cached invariant values associated with the
in key.

• AddMap and AddReduce express a loop body that consists of
more than one MapReduce step. AddMap (AddReduce) asso-
ciates a Map (Reduce) function with an integer indicating the
order of the step.

HaLoop defaults to testing for equality from one iteration to the
next to determine when to terminate the computation. To specify an
approximate fixpoint termination condition, the programmer uses
the following functions.

• SetFixedPointThreshold sets a bound on the distance be-
tween one iteration and the next. If the threshold is exceeded,
then the approximate fixpoint has not yet been reached, and the
computation continues.

• The ResultDistance function calculates the distance between
two out value sets sharing the same out key. One out value set v

i

is from the reducer output of the current iteration, and the other
out value set v

i�1

is from the previous iteration’s reducer output.
The distance between the reducer outputs of the current iteration
i and the last iteration i � 1 is the sum of ResultDistance on
every key. (It is straightforward to support additional aggrega-
tions besides sum.)

• SetMaxNumOfIterations provides further control of the loop
termination condition. HaLoop terminates a job if the maxi-
mum number of iterations has been executed, regardless of the
distance between the current and previous iteration’s outputs.
SetMaxNumOfIterations can also be used to implement a
simple for-loop.

To specify and control inputs, the programmer uses:

• SetIterationInput associates an input source with a specific
iteration, since the input files to different iterations may be dif-
ferent. For example, in Example 1, at each iteration i + 1, the
input is R

i

[ L.

Ini2al	
  
Rela2on	
  

Invariant	
  
Rela2on	
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Figure 4: Boundary between an iterative application and the
framework (HaLoop vs. Hadoop). HaLoop knows and controls
the loop, while Hadoop only knows jobs with one map-reduce
pair.
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Figure 5: A schedule exhibiting inter-iteration locality. Tasks
processing the same inputs on consecutive iterations are sched-
uled to the same physical nodes.

• AddStepInput associates an additional input source with an in-
termediate map-reduce pair in the loop body. The output of pre-
ceding map-reduce pair is always in the input of the next map-
reduce pair.

• AddInvariantTable specifies an input table (an HDFS file)
that is loop-invariant. During job execution, HaLoop will cache
this table on cluster nodes.

This programming interface is sufficient to express a variety of
iterative applications. The appendix sketches the implementation
of PageRank (Section 9.2), descendant query (Section 9.3), and k-
means (Section 9.4) using this programming interface. Figure 4
shows the difference between HaLoop and Hadoop, from the appli-
cation’s perspective: in HaLoop, a user program specifies loop set-
tings and the framework controls the loop execution, but in Hadoop,
it is the application’s responsibility to control the loops.

3. LOOP-AWARE TASK SCHEDULING
This section introduces the HaLoop task scheduler. The sched-

uler provides potentially better schedules for iterative programs
than Hadoop’s scheduler. Sections 3.1 and 3.2 illustrate the desired
schedules and scheduling algorithm respectively.

3.1 Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place on the

same physical machines those map and reduce tasks that occur in
different iterations but access the same data. With this approach,
data can more easily be cached and re-used between iterations. For
example, Figure 5 is a sample schedule for the join step (MR

1

in
Figure 1(c)) of the PageRank application from Example 1. There
are two iterations and three slave nodes involved in the job.

The scheduling of iteration 1 is no different than in Hadoop. In
the join step of the first iteration, the input tables are L and R

0

.
Three map tasks are executed, each of which loads a part of one or
the other input data file (a.k.a., a file split). As in ordinary Hadoop,
the mapper output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned. Then,

three reduce tasks are executed, each of which loads a partition of
the collective mapper output. In Figure 5, reducer R

00

processes
mapper output keys whose hash value is 0, reducer R

10

processes
keys with hash value 1, and reducer R

20

processes keys with hash
value 2.

The scheduling of the join step of iteration 2 can take advantage
of inter-iteration locality: the task (either mapper or reducer) that
processes a specific data partition D is scheduled on the physical
node where D was processed in iteration 1. Note that the two file
inputs to the join step in iteration 2 are L and R

1

.
The schedule in Figure 5 provides the feasibility to reuse loop-

invariant data from past iterations. Because L is loop-invariant,
mappers M

01

and M
11

would compute identical results to M
00

and M
10

. There is no need to re-compute these mapper outputs,
nor to communicate them to the reducers. In iteration 1, if reducer
input partitions 0, 1, and 2 are stored on nodes n

3

, n
1

, and n
2

respectively, then in iteration 2, L need not be loaded, processed
or shuffled again. In that case, in iteration 2, only one mapper
M

21

for R
1

-split0 needs to be launched, and thus the three reducers
will only copy intermediate data from M

21

. With this strategy, the
reducer input is no different, but it now comes from two sources:
the output of the mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 5 as inter-
iteration locality. Let d be a file split (mapper input partition) or a
reducer input partition2, and let T i

d

be a task consuming d in itera-
tion i. Then we say that a schedule exhibits inter-iteration locality
if for all i > 1, T i

d

and T i�1

d

are assigned to the same physical node
if T i�1

d

exists.
The goal of task scheduling in HaLoop is to achieve inter-

iteration locality. To achieve this goal, the only restriction is that
HaLoop requires that the number of reduce tasks should be invari-
ant across iterations, so that the hash function assigning mapper
outputs to reducer nodes remains unchanged.

3.2 Scheduling Algorithm
HaLoop’s scheduler keeps track of the data partitions processed

by each map and reduce task on each physical machine, and it uses
that information to schedule subsequent tasks taking inter-iteration
locality into account.

More specifically, the HaLoop scheduler works as follows. Upon
receiving a heartbeat from a slave node, the master node tries to
assign the slave node an unassigned task that uses data cached on
that node. To support this assignment, the master node maintains a
mapping from each slave node to the data partitions that this node
processed in the previous iteration. If the slave node already has a
full load, the master re-assigns its tasks to a nearby slave node.

Figure 6 gives pseudocode for the scheduling algorithm. Before
each iteration, previous is set to current, and then current is
set to a new empty HashMap object. In a job’s first iteration, the
schedule is exactly the same as that produced by Hadoop (line 2).
After scheduling, the master remembers the association between
data and node (lines 3 and 13). In later iterations, the scheduler
tries to retain previous data-node associations (lines 11 and 12). If
the associations can no longer hold due to the load, the master node
will associate the data with another node (lines 6–8).

4. CACHING AND INDEXING
Thanks to the inter-iteration locality offered by the task sched-

uler, access to a particular loop-invariant data partition is usually
2Mapper input partitions are represented by an input file URL plus
an offset and length; reducer input partitions are represented by an
integer hash value. Two partitions are assumed to be equal if their
representations are equal.

Lecture	
  13	
  :	
  590.04	
  Fall	
  15	
   25	
  

•  Inter-­‐Itera2on	
  Locality	
  
•  Caching	
  and	
  Indexing	
  of	
  invariant	
  tables	
  



Summary	
  
•  No	
  na2ve	
  support	
  for	
  itera2on	
  in	
  Map-­‐Reduce	
  

–  Each	
  itera2on	
  writes/reads	
  data	
  from	
  disk	
  leading	
  to	
  overheads	
  

•  Many	
  graph	
  algorithms	
  need	
  itera2ve	
  computa2on	
  
–  Need	
  to	
  design	
  algorithms	
  that	
  can	
  minimize	
  number	
  of	
  itera2ons	
  

•  New	
  frameworks	
  that	
  minimize	
  overheads	
  by	
  caching	
  invariant	
  
tables	
  in	
  the	
  itera2ve	
  computa2on	
  
–  HaLoop	
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