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Recap:	  Map-‐Reduce	  
	  

	  

	  

Map	  Phase	  
(per	  record	  computa2on)	  

Reduce	  Phase	  
(global	  computa2on)	  

Shuffle	  
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This	  Class	  
•  Graph	  Processing	  

•  Itera2ve-‐aware	  Map	  Reduce	  
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GRAPH	  PROCESSING	  

Lecture	  13	  :	  590.04	  Fall	  15	   4	  



Graph	  Algorithms	  
•  Diameter	  Es2ma2on	  

–  Length	  of	  the	  longest	  shortest	  path	  in	  the	  graph	  

•  Connected	  Components	  
–  Undirected	  s-‐t	  connec2vity	  (USTCON):	  check	  whether	  two	  nodes	  are	  

connected.	  	  

•  PageRank	  
–  Calculate	  importance	  of	  nodes	  in	  a	  graph	  

•  Random	  Walks	  with	  Restarts	  
–  Similarity	  func2on	  that	  encodes	  proximity	  of	  nodes	  in	  a	  graph	  
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Connected	  Components	  
•  What	  is	  an	  efficient	  algorithm	  for	  compu2ng	  the	  connected	  

components	  in	  a	  graph?	  	  
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HCC	  [Kang	  et	  al	  ICDM	  ‘09]	  

•  Each	  node’s	  label	  l(v)	  is	  ini2alized	  to	  itself	  
•  In	  each	  itera2on	  

l(v)	  =	  min	  {l(v),	  min	  y	  ε	  neigh(v)	  l(y)}	  

•  O(d)	  itera2ons	  (d	  =	  diameter	  of	  the	  graph)	  
O(|V|	  +	  |E|)	  communica2on	  per	  itera2on	  
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GIM-‐V	  
•  Generalized	  Itera2ve	  Matrix-‐Vector	  Mul2plica2on	  

Connected	  Components	  
•  Let	  ch	  denote	  the	  component-‐id	  of	  a	  vertex	  in	  itera2on	  h	  

•  	  ch+1	  =	  M	  xG	  ch	  
–  	  cnew[i]	  	  =	  	  minj(m[i,j]x	  ch[j])	  
–  	  ch+1[i]	  	  =	  	  min(ch	  [i],	  	  cnew[i])	  
	  	  

•  Keep	  itera2ng	  2ll	  ch+1	  =	  ch.	  	  
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Step	  1:	  Generate	  m[i,j]	  x	  c[j]	  
Step	  2:	  Aggregate	  to	  find	  the	  	  

min	  for	  each	  node	  	  



GIM-‐V	  and	  Page	  Rank	  

•  	  pnext	  =	  	  M	  xG	  	  pcur	  

•  	  pnext[i]	  =	  	  (1-‐c)/n	  +	  sumj	  (	  c	  x	  m[i,j]x	  pcur[j])	  
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of the details of the data distribution, replication, load bal-
ancing etc. and furthermore (b) the programming concept is
familiar, i.e., the concept of functional programming. Briefly,
the programmer needs to provide only two functions, a map
and a reduce. The typical framework is as follows [29]: (a)
the map stage sequentially passes over the input file and
outputs (key, value) pairs; (b) the shuffling stage groups of
all values by key, (c) the reduce stage processes the values
with the same key and outputs the final result.
HADOOP is the open source implementation of MAPRE-

DUCE. HADOOP provides the Distributed File System
(HDFS) [30] and PIG, a high level language for data
analysis [31]. Due to its power, simplicity and the fact
that building a small cluster is relatively cheap, HADOOP
is a very promising tool for large scale graph mining
applications, something already reflected in academia, see
[32]. In addition to PIG, there are several high-level language
and environments for advanced MAPREDUCE-like systems,
including SCOPE [33], Sawzall [34], and Sphere [35].

III. PROPOSED METHOD

How can we quickly find connected components, diameter,
PageRank, node proximities of very large graphs fast? We
show that, even if they seem unrelated, eventually we
can unify them using the GIM-V primitive, standing for
Generalized Iterative Matrix-Vector multiplication, which
we describe in the next.

A. Main Idea
GIM-V, or ‘Generalized Iterative Matrix-Vector multipli-

cation’ is a generalization of normal matrix-vector multipli-
cation. Suppose we have a n by n matrix M and a vector v
of size n. Let mi,j denote the (i, j)-th element of M . Then
the usual matrix-vector multiplication is

M × v = v′ where v′i =
∑n

j=1 mi,jvj .
There are three operations in the previous formula, which,

if customized separately, will give a surprising number of
useful graph mining algorithms:
1) combine2: multiply mi,j and vj .
2) combineAll: sum n multiplication results for node

i.
3) assign: overwrite previous value of vi with new
result to make v′i.

In GIM-V, let’s define the operator ×G, where the three
operations can be defined arbitrarily. Formally, we have:

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j =
1..n, and xj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and
assign() have the following signatures (generalizing
the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):
1) combine2(mi,j, vj) : combine mi,j and vj .

2) combineAlli(x1, ..., xn) : combine all the results
from combine2() for node i.

3) assign(vi, vnew) : decide how to update vi with
vnew .

The ‘Iterative’ in the name of GIM-V denotes that
we apply the ×G operation until an algorithm-specific
convergence criterion is met. As we will see in a moment,
by customizing these operations, we can obtain different,
useful algorithms including PageRank, Random Walk with
Restart, connected components, and diameter estimation.
But first we want to highlight the strong connection of
GIM-V with SQL: When combineAlli() and assign()
can be implemented by user defined functions, the operator
×G can be expressed concisely in terms of SQL. This
viewpoint is important when we implement GIM-V in large
scale parallel processing platforms, including HADOOP, if
they can be customized to support several SQL primitives
including JOIN and GROUP BY. Suppose we have an edge
table E(sid, did, val) and a vector table V(id,
val), corresponding to a matrix and a vector, respectively.
Then, ×G corresponds to the following SQL statement -
we assume that we have (built-in or user-defined) functions
combineAlli() and combine2()) and we also assume
that the resulting table/vector will be fed into the assign()
function (omitted, for clarity):

SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

In the following sections we show how we can customize
GIM-V, to handle important graph mining operations in-
cluding PageRank, Random Walk with Restart, diameter
estimation, and connected components.

B. GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous
algorithm that was used by Google to calculate relative
importance of web pages [17]. The PageRank vector p of n
web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

where c is a damping factor (usually set to 0.85), E is the
row-normalized adjacency matrix (source, destination), and
U is a matrix with all elements set to 1/n.
To calculate the eigenvector p we can use the power

method, which multiplies an initial vector with the matrix,
several times. We initialize the current PageRank vector pcur

and set all its elements to 1/n. Then the next PageRank
pnext is calculated by pnext = (cET + (1 − c)U)pcur. We
continue to do the multiplication until p converges.
PageRank is a direct application of GIM-V. In this view,

we first construct a matrix M by column-normalize ET

such that every column of M sum to 1. Then the next



GIM-‐V	  BL	  
•  We	  assumed	  each	  edge	  in	  the	  graph	  is	  represented	  using	  a	  

different	  row.	  	  
•  Can	  speed	  up	  processing	  if	  each	  row	  represents	  a	  bxb	  sub	  matrix	  
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Algorithm 1: GIM-V BASE Stage 1.
Input : Matrix M = {(idsrc, (iddst, mval))},

Vector V = {(id, vval)}
Output: Partial vector

V ′ = {(idsrc,combine2(mval, vval)}

Stage1-Map(Key k, Value v) ;1
begin2
if (k, v) is of type V then3

Output(k, v); // (k: id, v: vval)4

else if (k, v) is of type M then5
(iddst, mval)← v;6
Output(iddst, (k, mval)); // (k: idsrc)7

end8

Stage1-Reduce(Key k, Value v[1..m]) ;9
begin10

saved kv ←[ ];11
saved v ←[ ];12
foreach v ∈ v[1..m] do13
if (k, v) is of type V then14

saved v ← v;15
Output(k, (“self”, saved v));16

else if (k, v) is of type M then17
Add v to saved kv // (v: (idsrc, mval))18

end19
foreach (id′src, mval′) ∈ saved kv do20

Output(id′src, (“others”,combine2(mval′, saved v)));21

end22

end23

matrix(idsrc of M ) and the value is the partially combined
result(combine2(mval, vval)). This output of Stage1
becomes the input of Stage2. Stage2 combines all partial
results from Stage1 and assigns the new vector to the old
vector. The combineAlli() and assign() operations are
done in line 16 of Stage2, where the “self” and “others”
tags in line 16 and line 21 of Stage1 are used to make vi

and vnew of GIM-V, respectively.
This two-stage algorithm is run iteratively until

application-specific convergence criterion is met. In Algo-
rithm 1 and 2, Output(k, v) means to output data with the
key k and the value v.

B. GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is
based on block multiplication. The main idea is to group
elements of the input matrix into blocks or submatrices of
size b by b. Also we group elements of input vectors into
blocks of length b. Here the grouping means we put all the
elements in a group into one line of input file. Each block
contains only non-zero elements of the matrix or vector.
The format of a matrix block with k nonzero elements
is (rowblock, colblock, rowelem1

, colelem1
, mvalelem1

, ...,

Algorithm 2: GIM-V BASE Stage 2.
Input : Partial vector V ′ = {(idsrc, vval′)}
Output: Result Vector V = {(idsrc, vval)}

Stage2-Map(Key k, Value v) ;1
begin2

Output(k, v);3

end4

Stage2-Reduce(Key k, Value v[1..m]) ;5
begin6

others v ←[ ];7
self v ←[ ];8
foreach v ∈ v[1..m] do9

(tag, v′)← v;10
if tag == “same” then11

self v ← v′;12

else if tag == “others” then13
Add v′ to others v;14

end15
Output(k,assign(self v,combineAllk(others v)));16

end17

rowelemk
, colelemk

, mvalelemk
). Similarly, the format

of a vector block with k nonzero elements is
(idblock, idelem1

, vvalelem1
, ..., idelemk

, vvalelemk
). Only

blocks with at least one nonzero elements are saved to disk.
This block encoding forces nearby edges in the adjacency
matrix to be closely located; it is different from HADOOP’s
default behavior which do not guarantee co-locating them.
After grouping, GIM-V is performed on blocks, not on
individual elements. GIM-V BL is illustrated in Figure 1.

Figure 1. GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block,
and vi represents a vector block. The matrix and vector are joined block-
wise, not element-wise.

In our experiment at Section V, GIM-V BL is more than 5
times faster than GIM-V BASE. There are two main reasons
for this speed-up.

• Sorting Time Block encoding decrease the number
of items to sort in the shuffling stage of HADOOP.
We observed that the main bottleneck of programs in
HADOOP is its shuffling stage where network transfer,
sorting, and disk I/O happens. By encoding to blocks
of width b, the number of lines in the matrix and the
vector file decreases to 1/b2 and 1/b times of their
original size, respectively for full matrices and vectors.



Connected	  Components	  
•  Itera2ve	  Matrix	  Vector	  products	  need	  O(d)	  map	  reduce	  steps	  to	  

find	  the	  connected	  components	  in	  a	  graph.	  	  

•  Diameter	  of	  a	  graph	  can	  be	  large.	  	  	  
–  >	  20	  for	  many	  real	  world	  graphs.	  	  

•  Each	  map	  reduce	  step	  requires	  wri2ng	  data	  to	  disk	  +	  remotely	  
reading	  data	  from	  disk	  (I/O	  +	  communica2on)	  

•  Can	  we	  find	  connected	  components	  using	  a	  smaller	  number	  of	  
itera2ons?	  
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Hash-‐to-‐all	  
•  Maintain	  a	  cluster	  at	  each	  node	  

–  Current	  es2mate	  of	  connected	  component	  

•  Ini2alize	  cluster(v)	  =	  Neighbors(v)	  U	  {v}	  

•  Each	  node	  sends	  its	  cluster	  to	  all	  nodes	  in	  the	  cluster	  
–  Map:	  (v,	  C(v))	  à	  {(u,	  C(v))}	  for	  all	  u	  in	  C(v)	  

•  Union	  all	  the	  clusters	  sent	  to	  a	  node	  v	  
–  Reduce:	  (u,	  {C1,	  C2,	  …,	  Ck})	  à	  (u,	  C1	  U	  C2	  U	  …	  U	  Ck)	  
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Hash-‐to-‐all	  
•  Number	  of	  rounds	  	  =	  log	  d	  

–  Proof?	  	  

•  Communica2on	  per	  round	  =	  O(n|V|	  +	  |E|)	  
–  Each	  node	  is	  replicated	  at	  most	  n	  2mes,	  where	  n	  is	  the	  maximum	  size	  of	  a	  

connected	  component.	  	  
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Hash-‐to-‐Min	  
•  Each	  node	  v	  maintains	  a	  cluster	  C(v)	  which	  is	  ini2alized	  to	  	  

	  	  	  	  	  	  	  	  {v}	  U	  Neighbors(v)	  

•  In	  each	  itera2on	  
	  
Map:	  	  	  	  	  	  
	  	   	  vmin	  =	  min	  {C(v)}	  
	  	  	  	  	  	   	  Send	  C(v)	  to	  vmin	  

	  Send	  vmin	  to	  nodes	  in	  C(v)	  
	  
Reduce:	  	  

	  C(v)	  is	  the	  union	  of	  all	  incoming	  clusters	  

1	  
2	  

3	  
4	  

5	  

6	  
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Hash-‐to-‐Min	  
•  Each	  node	  v	  maintains	  a	  cluster	  C(v)	  which	  is	  ini2alized	  to	  	  

	  	  	  	  	  	  	  	  {v}	  U	  Neighbors(v)	  

•  In	  each	  itera2on	  
	  
Map:	  	  	  	  	  	  
	  	   	  vmin	  =	  min	  {C(v)}	  
	  	  	  	  	  	   	  Send	  C(v)	  to	  vmin	  

	  Send	  vmin	  to	  nodes	  in	  C(v)	  
	  
Reduce:	  	  

	  C(v)	  is	  the	  union	  of	  all	  incoming	  clusters	  

1	  
2	  

3	  
4	  

5	  

6	  

	  v	   C(v)	  

1	   1,2	  

2	   1,2,3,4	  

3	   2,3	  

4	   2,4,5	  

5	   4,5,6	  

6	   5,6	  

2	  
2	   5	  

4	  
1	  
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Hash-‐to-‐Min	  
•  Each	  node	  v	  maintains	  a	  cluster	  C(v)	  which	  is	  ini2alized	  to	  	  

	  	  	  	  	  	  	  	  {v}	  U	  Neighbors(v)	  

•  In	  each	  itera2on	  
	  
Map:	  	  	  	  	  	  
	  	   	  vmin	  =	  min	  {C(v)}	  
	  	  	  	  	  	   	  Send	  C(v)	  to	  vmin	  

	  Send	  vmin	  to	  nodes	  in	  C(v)	  
	  
Reduce:	  	  

	  C(v)	  is	  the	  union	  of	  all	  incoming	  clusters	  

1	  
2	  

3	  
4	  

5	  

6	  

	  v	   C(v)	  

1	   1,2,3,4	  

2	   1,2,3,4,5	  

3	   1	  

4	   1,4,5,6	  

5	   2	  

6	   4	  

2	  

2	  

5	  4	  1	  

1	  

1	  
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Hash-‐to-‐Min	  
•  Each	  node	  v	  maintains	  a	  cluster	  C(v)	  which	  is	  ini2alized	  to	  	  

	  	  	  	  	  	  	  	  {v}	  U	  Neighbors(v)	  

•  In	  each	  itera2on	  
	  
Map:	  	  	  	  	  	  
	  	   	  vmin	  =	  min	  {C(v)}	  
	  	  	  	  	  	   	  Send	  C(v)	  to	  vmin	  

	  Send	  vmin	  to	  nodes	  in	  C(v)	  
	  
Reduce:	  	  

	  C(v)	  is	  the	  union	  of	  all	  incoming	  clusters	  

1	  
2	  

3	  
4	  

5	  

6	  

	  v	   C(v)	  

1	   1,2,3,4,5,6	  

2	   1	  

3	   1	  

4	   1	  

5	   1	  

6	   1	  

2	  
2	   5	  

4	  
1	  

1	  
1	  

1	  

1	  
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Hash-‐to-‐Min	  
•  In	  the	  end,	  cluster	  of	  vertex	  with	  minimum	  id	  contains	  the	  en2re	  

connected	  component.	  	  
Cluster	  of	  other	  ver2ces	  in	  the	  component	  is	  a	  singleton	  having	  
the	  minimum	  vertex.	  	  

•  Communica2on	  cost:	  Assuming	  a	  random	  assignment	  of	  ids	  to	  
ver2ces,	  expected	  communica2on	  cost	  is	  O(k(|V|	  +	  |E|))	  in	  
itera2on	  k	  	  

•  Number	  of	  itera2ons:	  ???	  
–  On	  a	  path	  graph:	  4	  log	  n	  
–  In	  a	  general	  graph:	  Can	  be	  as	  big	  as	  d	  
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Leader	  Algorithm	  
•  Let	  π	  be	  an	  arbitrary	  total	  order	  over	  the	  ver2ces.	  	  
•  Begin	  with	  l(v)	  =	  v,	  and	  all	  nodes	  ac2ve	  

In	  each	  itera2on:	  	  
•  	  Let	  C(v)	  be	  the	  connected	  component	  containing	  v	  
•  Let	  Γ(v)	  be	  the	  neighbors	  of	  C(v)	  that	  are	  not	  in	  C(v)	  
•  Call	  each	  ac2ve	  node	  a	  leader	  with	  probability	  ½.	  	  
•  For	  each	  ac2ve	  non-‐leader	  w,	  find	  w*	  =	  min(Γ(w))	  
•  If	  w*	  is	  not	  empty	  and	  l(w*)	  is	  a	  leader,	  	  

then	  mark	  w	  as	  passive,	  and	  	  
	  relabel	  each	  node	  with	  label	  w	  by	  l(w*)	  
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Correctness	  
•  If	  at	  any	  point	  of	  2me	  two	  nodes	  s	  and	  t	  have	  the	  same	  label,	  

then	  they	  are	  connected	  in	  G.	  	  

•  Consider	  an	  itera2on,	  when	  l(s)	  ≠	  l(t)	  before	  the	  itera2on,	  but	  l(s)	  
=	  l(t)	  azer.	  	  

•  This	  means,	  l(s)	  =	  w	  (non-‐leader	  node),	  l(t)	  =	  w*	  
•  By	  induc2on,	  s	  is	  connected	  to	  all	  nodes	  in	  Γ(w),	  	  

	   	  	  	  	  t	  is	  connected	  to	  all	  nodes	  in	  Γ(w*),	  and	  	  
	   	  	  	  	  w	  is	  connected	  to	  w*.	  	  

•  Therefore,	  s	  and	  t	  are	  connected.	  	  
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Number	  of	  Itera2ons	  
•  Every	  connected	  component	  has	  a	  unique	  label	  azer	  O(log	  N)	  

rounds	  with	  high	  probability	  

•  Suppose	  there	  is	  some	  connected	  component	  with	  two	  ac2ve	  
labels.	  

•  An	  ac2ve	  label	  w	  survives	  an	  itera2on	  if:	  	  
1.	  w	  is	  marked	  a	  leader	  
2.	  w	  is	  not	  marked	  a	  leader	  and	  l(w*)	  is	  not	  marked	  a	  leader	  
	  

•  Hence,	  in	  every	  itera2on,	  the	  expected	  number	  of	  ac2ve	  labels	  
reduces	  by	  ¼.	  	  
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ITERATION	  AWARE	  MAP-‐REDUCE	  
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Itera2ve	  Computa2ons	  
	  PageRank:	  	  
	  	  	  	  	  	  	  do	  

	  pnext	  =	  (cM	  +	  (1-‐c)	  U)pcur	  
	  	  	  	  	  	  	  while(pnext	  !=	  pcur)	  
	  
	  
•  Loops	  are	  not	  supported	  in	  Map-‐Reduce	  

–  Need	  to	  encode	  itera2on	  in	  the	  launching	  script	  
•  M	  is	  a	  loop	  invariant.	  But	  needs	  to	  wri}en	  to	  disk	  and	  read	  from	  

disk	  in	  every	  step.	  	  
•  M	  may	  not	  be	  co-‐located	  with	  mappers	  and	  reducers	  running	  the	  

itera2ve	  computa2on.	  
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HaLoop	  
•  Itera2ve	  Programs	  
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Figure 3: The HaLoop framework, a variant of Hadoop
MapReduce framework.

1, job 2, and job 3. Each job has three tasks running concurrently
on slave nodes.

In order to accommodate the requirements of iterative data anal-
ysis applications, we made several changes to the basic Hadoop
MapReduce framework. First, HaLoop exposes a new application
programming interface to users that simplifies the expression of
iterative MapReduce programs (Section 2.2). Second, HaLoop’s
master node contains a new loop control module that repeatedly
starts new map-reduce steps that compose the loop body, until
a user-specified stopping condition is met (Section 2.2). Third,
HaLoop uses a new task scheduler for iterative applications that
leverages data locality in these applications (Section 3). Fourth,
HaLoop caches and indexes application data on slave nodes (Sec-
tion 4). As shown in Figure 3, HaLoop relies on the same file
system and has the same task queue structure as Hadoop, but the
task scheduler and task tracker modules are modified, and the loop
control, caching, and indexing modules are new. The task tracker
not only manages task execution, but also manages caches and in-
dices on the slave node, and redirects each task’s cache and index
accesses to local file system.

2.2 Programming Model
The PageRank and descendant query examples are representative

of the types of iterative programs that HaLoop supports. Here, we
present the general form of the recursive programs we support and
a detailed API.

The iterative programs that HaLoop supports can be distilled into
the following core construct:

R
i+1

= R
0

[ (R
i

./ L)

where R
0

is an initial result and L is an invariant relation. A
program in this form terminates when a fixpoint is reached —
when the result does not change from one iteration to the next, i.e.
R

i+1

= R
i

. This formulation is sufficient to express a broad class
of recursive programs.1

1SQL (ANSI SQL 2003, ISO/IEC 9075-2:2003) queries using the
WITH clause can also express a variety of iterative applications, in-
cluding complex analytics that are not typically implemented in
SQL such as k-means and PageRank; see Section 9.5.

A fixpoint is typically defined by exact equality between iter-
ations, but HaLoop also supports the concept of an approximate
fixpoint, where the computation terminates when either the differ-
ence between two consecutive iterations is less than a user-specified
threshold, or the maximum number of iterations has been reached.
Both kinds of approximate fixpoints are useful for expressing con-
vergence conditions in machine learning and complex analytics.
For example, for PageRank, it is common to either use a user-
specified convergence threshold ✏ [15] or a fixed number of iter-
ations as the loop termination condition.

Although our recursive formulation describes the class of iter-
ative programs we intend to support, this work does not develop
a high-level declarative language for expressing recursive queries.
Rather, we focus on providing an efficient foundation API for it-
erative MapReduce programs; we posit that a variety of high-level
languages (e.g., Datalog) could be implemented on this foundation.

To write a HaLoop program, a programmer specifies the loop
body (as one or more map-reduce pairs) and optionally specifies
a termination condition and loop-invariant data. We now discuss
HaLoop’s API (see Figure 16 in the appendix for a summary). Map
and Reduce are similar to standard MapReduce and are required;
the rest of the API is new and is optional.

To specify the loop body, the programmer constructs a multi-step
MapReduce job, using the following functions:

• Map transforms an input hkey, valuei tuple into intermediate
hin key, in valuei tuples.

• Reduce processes intermediate tuples sharing the same in key,
to produce hout key, out valuei tuples. The interface contains
a new parameter for cached invariant values associated with the
in key.

• AddMap and AddReduce express a loop body that consists of
more than one MapReduce step. AddMap (AddReduce) asso-
ciates a Map (Reduce) function with an integer indicating the
order of the step.

HaLoop defaults to testing for equality from one iteration to the
next to determine when to terminate the computation. To specify an
approximate fixpoint termination condition, the programmer uses
the following functions.

• SetFixedPointThreshold sets a bound on the distance be-
tween one iteration and the next. If the threshold is exceeded,
then the approximate fixpoint has not yet been reached, and the
computation continues.

• The ResultDistance function calculates the distance between
two out value sets sharing the same out key. One out value set v

i

is from the reducer output of the current iteration, and the other
out value set v

i�1

is from the previous iteration’s reducer output.
The distance between the reducer outputs of the current iteration
i and the last iteration i � 1 is the sum of ResultDistance on
every key. (It is straightforward to support additional aggrega-
tions besides sum.)

• SetMaxNumOfIterations provides further control of the loop
termination condition. HaLoop terminates a job if the maxi-
mum number of iterations has been executed, regardless of the
distance between the current and previous iteration’s outputs.
SetMaxNumOfIterations can also be used to implement a
simple for-loop.

To specify and control inputs, the programmer uses:

• SetIterationInput associates an input source with a specific
iteration, since the input files to different iterations may be dif-
ferent. For example, in Example 1, at each iteration i + 1, the
input is R

i

[ L.

Ini2al	  
Rela2on	  

Invariant	  
Rela2on	  
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Figure 4: Boundary between an iterative application and the
framework (HaLoop vs. Hadoop). HaLoop knows and controls
the loop, while Hadoop only knows jobs with one map-reduce
pair.
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Figure 5: A schedule exhibiting inter-iteration locality. Tasks
processing the same inputs on consecutive iterations are sched-
uled to the same physical nodes.

• AddStepInput associates an additional input source with an in-
termediate map-reduce pair in the loop body. The output of pre-
ceding map-reduce pair is always in the input of the next map-
reduce pair.

• AddInvariantTable specifies an input table (an HDFS file)
that is loop-invariant. During job execution, HaLoop will cache
this table on cluster nodes.

This programming interface is sufficient to express a variety of
iterative applications. The appendix sketches the implementation
of PageRank (Section 9.2), descendant query (Section 9.3), and k-
means (Section 9.4) using this programming interface. Figure 4
shows the difference between HaLoop and Hadoop, from the appli-
cation’s perspective: in HaLoop, a user program specifies loop set-
tings and the framework controls the loop execution, but in Hadoop,
it is the application’s responsibility to control the loops.

3. LOOP-AWARE TASK SCHEDULING
This section introduces the HaLoop task scheduler. The sched-

uler provides potentially better schedules for iterative programs
than Hadoop’s scheduler. Sections 3.1 and 3.2 illustrate the desired
schedules and scheduling algorithm respectively.

3.1 Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place on the

same physical machines those map and reduce tasks that occur in
different iterations but access the same data. With this approach,
data can more easily be cached and re-used between iterations. For
example, Figure 5 is a sample schedule for the join step (MR

1

in
Figure 1(c)) of the PageRank application from Example 1. There
are two iterations and three slave nodes involved in the job.

The scheduling of iteration 1 is no different than in Hadoop. In
the join step of the first iteration, the input tables are L and R

0

.
Three map tasks are executed, each of which loads a part of one or
the other input data file (a.k.a., a file split). As in ordinary Hadoop,
the mapper output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned. Then,

three reduce tasks are executed, each of which loads a partition of
the collective mapper output. In Figure 5, reducer R

00

processes
mapper output keys whose hash value is 0, reducer R

10

processes
keys with hash value 1, and reducer R

20

processes keys with hash
value 2.

The scheduling of the join step of iteration 2 can take advantage
of inter-iteration locality: the task (either mapper or reducer) that
processes a specific data partition D is scheduled on the physical
node where D was processed in iteration 1. Note that the two file
inputs to the join step in iteration 2 are L and R

1

.
The schedule in Figure 5 provides the feasibility to reuse loop-

invariant data from past iterations. Because L is loop-invariant,
mappers M

01

and M
11

would compute identical results to M
00

and M
10

. There is no need to re-compute these mapper outputs,
nor to communicate them to the reducers. In iteration 1, if reducer
input partitions 0, 1, and 2 are stored on nodes n

3

, n
1

, and n
2

respectively, then in iteration 2, L need not be loaded, processed
or shuffled again. In that case, in iteration 2, only one mapper
M

21

for R
1

-split0 needs to be launched, and thus the three reducers
will only copy intermediate data from M

21

. With this strategy, the
reducer input is no different, but it now comes from two sources:
the output of the mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 5 as inter-
iteration locality. Let d be a file split (mapper input partition) or a
reducer input partition2, and let T i

d

be a task consuming d in itera-
tion i. Then we say that a schedule exhibits inter-iteration locality
if for all i > 1, T i

d

and T i�1

d

are assigned to the same physical node
if T i�1

d

exists.
The goal of task scheduling in HaLoop is to achieve inter-

iteration locality. To achieve this goal, the only restriction is that
HaLoop requires that the number of reduce tasks should be invari-
ant across iterations, so that the hash function assigning mapper
outputs to reducer nodes remains unchanged.

3.2 Scheduling Algorithm
HaLoop’s scheduler keeps track of the data partitions processed

by each map and reduce task on each physical machine, and it uses
that information to schedule subsequent tasks taking inter-iteration
locality into account.

More specifically, the HaLoop scheduler works as follows. Upon
receiving a heartbeat from a slave node, the master node tries to
assign the slave node an unassigned task that uses data cached on
that node. To support this assignment, the master node maintains a
mapping from each slave node to the data partitions that this node
processed in the previous iteration. If the slave node already has a
full load, the master re-assigns its tasks to a nearby slave node.

Figure 6 gives pseudocode for the scheduling algorithm. Before
each iteration, previous is set to current, and then current is
set to a new empty HashMap object. In a job’s first iteration, the
schedule is exactly the same as that produced by Hadoop (line 2).
After scheduling, the master remembers the association between
data and node (lines 3 and 13). In later iterations, the scheduler
tries to retain previous data-node associations (lines 11 and 12). If
the associations can no longer hold due to the load, the master node
will associate the data with another node (lines 6–8).

4. CACHING AND INDEXING
Thanks to the inter-iteration locality offered by the task sched-

uler, access to a particular loop-invariant data partition is usually
2Mapper input partitions are represented by an input file URL plus
an offset and length; reducer input partitions are represented by an
integer hash value. Two partitions are assumed to be equal if their
representations are equal.

Lecture	  13	  :	  590.04	  Fall	  15	   25	  

•  Inter-‐Itera2on	  Locality	  
•  Caching	  and	  Indexing	  of	  invariant	  tables	  



Summary	  
•  No	  na2ve	  support	  for	  itera2on	  in	  Map-‐Reduce	  

–  Each	  itera2on	  writes/reads	  data	  from	  disk	  leading	  to	  overheads	  

•  Many	  graph	  algorithms	  need	  itera2ve	  computa2on	  
–  Need	  to	  design	  algorithms	  that	  can	  minimize	  number	  of	  itera2ons	  

•  New	  frameworks	  that	  minimize	  overheads	  by	  caching	  invariant	  
tables	  in	  the	  itera2ve	  computa2on	  
–  HaLoop	  
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