
Graph	
 Algorithms	
 &	
 Itera2on	
 	

on	
 Map-­‐Reduce	

CompSci	
 590.04	

Instructor:	
 Ashwin	
 Machanavajjhala	

1	
 Lecture	
 13	
 :	
 590.04	
 Fall	
 15	

Recap:	
 Map-­‐Reduce	

	

	

	

Map	
 Phase	

(per	
 record	
 computa2on)	

Reduce	
 Phase	

(global	
 computa2on)	

Shuffle	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 2	

This	
 Class	

•  Graph	
 Processing	

•  Itera2ve-­‐aware	
 Map	
 Reduce	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 3	

GRAPH	
 PROCESSING	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 4	

Graph	
 Algorithms	

•  Diameter	
 Es2ma2on	

–  Length	
 of	
 the	
 longest	
 shortest	
 path	
 in	
 the	
 graph	

•  Connected	
 Components	

–  Undirected	
 s-­‐t	
 connec2vity	
 (USTCON):	
 check	
 whether	
 two	
 nodes	
 are	

connected.	
 	

•  PageRank	

–  Calculate	
 importance	
 of	
 nodes	
 in	
 a	
 graph	

•  Random	
 Walks	
 with	
 Restarts	

–  Similarity	
 func2on	
 that	
 encodes	
 proximity	
 of	
 nodes	
 in	
 a	
 graph	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 5	

Connected	
 Components	

•  What	
 is	
 an	
 efficient	
 algorithm	
 for	
 compu2ng	
 the	
 connected	

components	
 in	
 a	
 graph?	
 	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 6	

HCC	
 [Kang	
 et	
 al	
 ICDM	
 ‘09]	

•  Each	
 node’s	
 label	
 l(v)	
 is	
 ini2alized	
 to	
 itself	

•  In	
 each	
 itera2on	

l(v)	
 =	
 min	
 {l(v),	
 min	
 y	
 ε	
 neigh(v)	
 l(y)}	

•  O(d)	
 itera2ons	
 (d	
 =	
 diameter	
 of	
 the	
 graph)	

O(|V|	
 +	
 |E|)	
 communica2on	
 per	
 itera2on	

	

1	

2	

3	

4	

5	

6	

1	

2	

2	

4	

5	

1	

1	

2	

4	
 2	

1	

1	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 7	

GIM-­‐V	

•  Generalized	
 Itera2ve	
 Matrix-­‐Vector	
 Mul2plica2on	

Connected	
 Components	

•  Let	
 ch	
 denote	
 the	
 component-­‐id	
 of	
 a	
 vertex	
 in	
 itera2on	
 h	

•  	
 ch+1	
 =	
 M	
 xG	
 ch	

–  	
 cnew[i]	
 	
 =	
 	
 minj(m[i,j]x	
 ch[j])	

–  	
 ch+1[i]	
 	
 =	
 	
 min(ch	
 [i],	
 	
 cnew[i])	

	
 	

•  Keep	
 itera2ng	
 2ll	
 ch+1	
 =	
 ch.	
 	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 8	

Step	
 1:	
 Generate	
 m[i,j]	
 x	
 c[j]	

Step	
 2:	
 Aggregate	
 to	
 find	
 the	
 	

min	
 for	
 each	
 node	
 	

GIM-­‐V	
 and	
 Page	
 Rank	

•  	
 pnext	
 =	
 	
 M	
 xG	
 	
 pcur	

•  	
 pnext[i]	
 =	
 	
 (1-­‐c)/n	
 +	
 sumj	
 (
 c	
 x	
 m[i,j]x	
 pcur[j])	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 9	

of the details of the data distribution, replication, load bal-
ancing etc. and furthermore (b) the programming concept is
familiar, i.e., the concept of functional programming. Briefly,
the programmer needs to provide only two functions, a map
and a reduce. The typical framework is as follows [29]: (a)
the map stage sequentially passes over the input file and
outputs (key, value) pairs; (b) the shuffling stage groups of
all values by key, (c) the reduce stage processes the values
with the same key and outputs the final result.
HADOOP is the open source implementation of MAPRE-

DUCE. HADOOP provides the Distributed File System
(HDFS) [30] and PIG, a high level language for data
analysis [31]. Due to its power, simplicity and the fact
that building a small cluster is relatively cheap, HADOOP
is a very promising tool for large scale graph mining
applications, something already reflected in academia, see
[32]. In addition to PIG, there are several high-level language
and environments for advanced MAPREDUCE-like systems,
including SCOPE [33], Sawzall [34], and Sphere [35].

III. PROPOSED METHOD

How can we quickly find connected components, diameter,
PageRank, node proximities of very large graphs fast? We
show that, even if they seem unrelated, eventually we
can unify them using the GIM-V primitive, standing for
Generalized Iterative Matrix-Vector multiplication, which
we describe in the next.

A. Main Idea
GIM-V, or ‘Generalized Iterative Matrix-Vector multipli-

cation’ is a generalization of normal matrix-vector multipli-
cation. Suppose we have a n by n matrix M and a vector v
of size n. Let mi,j denote the (i, j)-th element of M . Then
the usual matrix-vector multiplication is

M × v = v′ where v′i =
∑n

j=1 mi,jvj .
There are three operations in the previous formula, which,

if customized separately, will give a surprising number of
useful graph mining algorithms:
1) combine2: multiply mi,j and vj .
2) combineAll: sum n multiplication results for node

i.
3) assign: overwrite previous value of vi with new
result to make v′i.

In GIM-V, let’s define the operator ×G, where the three
operations can be defined arbitrarily. Formally, we have:

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j =
1..n, and xj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and
assign() have the following signatures (generalizing
the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):
1) combine2(mi,j, vj) : combine mi,j and vj .

2) combineAlli(x1, ..., xn) : combine all the results
from combine2() for node i.

3) assign(vi, vnew) : decide how to update vi with
vnew .

The ‘Iterative’ in the name of GIM-V denotes that
we apply the ×G operation until an algorithm-specific
convergence criterion is met. As we will see in a moment,
by customizing these operations, we can obtain different,
useful algorithms including PageRank, Random Walk with
Restart, connected components, and diameter estimation.
But first we want to highlight the strong connection of
GIM-V with SQL: When combineAlli() and assign()
can be implemented by user defined functions, the operator
×G can be expressed concisely in terms of SQL. This
viewpoint is important when we implement GIM-V in large
scale parallel processing platforms, including HADOOP, if
they can be customized to support several SQL primitives
including JOIN and GROUP BY. Suppose we have an edge
table E(sid, did, val) and a vector table V(id,
val), corresponding to a matrix and a vector, respectively.
Then, ×G corresponds to the following SQL statement -
we assume that we have (built-in or user-defined) functions
combineAlli() and combine2()) and we also assume
that the resulting table/vector will be fed into the assign()
function (omitted, for clarity):

SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

In the following sections we show how we can customize
GIM-V, to handle important graph mining operations in-
cluding PageRank, Random Walk with Restart, diameter
estimation, and connected components.

B. GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous
algorithm that was used by Google to calculate relative
importance of web pages [17]. The PageRank vector p of n
web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

where c is a damping factor (usually set to 0.85), E is the
row-normalized adjacency matrix (source, destination), and
U is a matrix with all elements set to 1/n.
To calculate the eigenvector p we can use the power

method, which multiplies an initial vector with the matrix,
several times. We initialize the current PageRank vector pcur

and set all its elements to 1/n. Then the next PageRank
pnext is calculated by pnext = (cET + (1 − c)U)pcur. We
continue to do the multiplication until p converges.
PageRank is a direct application of GIM-V. In this view,

we first construct a matrix M by column-normalize ET

such that every column of M sum to 1. Then the next

GIM-­‐V	
 BL	

•  We	
 assumed	
 each	
 edge	
 in	
 the	
 graph	
 is	
 represented	
 using	
 a	

different	
 row.	
 	

•  Can	
 speed	
 up	
 processing	
 if	
 each	
 row	
 represents	
 a	
 bxb	
 sub	
 matrix	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 10	

Algorithm 1: GIM-V BASE Stage 1.
Input : Matrix M = {(idsrc, (iddst, mval))},

Vector V = {(id, vval)}
Output: Partial vector

V ′ = {(idsrc,combine2(mval, vval)}

Stage1-Map(Key k, Value v) ;1
begin2
if (k, v) is of type V then3

Output(k, v); // (k: id, v: vval)4

else if (k, v) is of type M then5
(iddst, mval)← v;6
Output(iddst, (k, mval)); // (k: idsrc)7

end8

Stage1-Reduce(Key k, Value v[1..m]) ;9
begin10

saved kv ←[];11
saved v ←[];12
foreach v ∈ v[1..m] do13
if (k, v) is of type V then14

saved v ← v;15
Output(k, (“self”, saved v));16

else if (k, v) is of type M then17
Add v to saved kv // (v: (idsrc, mval))18

end19
foreach (id′src, mval′) ∈ saved kv do20

Output(id′src, (“others”,combine2(mval′, saved v)));21

end22

end23

matrix(idsrc of M) and the value is the partially combined
result(combine2(mval, vval)). This output of Stage1
becomes the input of Stage2. Stage2 combines all partial
results from Stage1 and assigns the new vector to the old
vector. The combineAlli() and assign() operations are
done in line 16 of Stage2, where the “self” and “others”
tags in line 16 and line 21 of Stage1 are used to make vi

and vnew of GIM-V, respectively.
This two-stage algorithm is run iteratively until

application-specific convergence criterion is met. In Algo-
rithm 1 and 2, Output(k, v) means to output data with the
key k and the value v.

B. GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is
based on block multiplication. The main idea is to group
elements of the input matrix into blocks or submatrices of
size b by b. Also we group elements of input vectors into
blocks of length b. Here the grouping means we put all the
elements in a group into one line of input file. Each block
contains only non-zero elements of the matrix or vector.
The format of a matrix block with k nonzero elements
is (rowblock, colblock, rowelem1

, colelem1
, mvalelem1

, ...,

Algorithm 2: GIM-V BASE Stage 2.
Input : Partial vector V ′ = {(idsrc, vval′)}
Output: Result Vector V = {(idsrc, vval)}

Stage2-Map(Key k, Value v) ;1
begin2

Output(k, v);3

end4

Stage2-Reduce(Key k, Value v[1..m]) ;5
begin6

others v ←[];7
self v ←[];8
foreach v ∈ v[1..m] do9

(tag, v′)← v;10
if tag == “same” then11

self v ← v′;12

else if tag == “others” then13
Add v′ to others v;14

end15
Output(k,assign(self v,combineAllk(others v)));16

end17

rowelemk
, colelemk

, mvalelemk
). Similarly, the format

of a vector block with k nonzero elements is
(idblock, idelem1

, vvalelem1
, ..., idelemk

, vvalelemk
). Only

blocks with at least one nonzero elements are saved to disk.
This block encoding forces nearby edges in the adjacency
matrix to be closely located; it is different from HADOOP’s
default behavior which do not guarantee co-locating them.
After grouping, GIM-V is performed on blocks, not on
individual elements. GIM-V BL is illustrated in Figure 1.

Figure 1. GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block,
and vi represents a vector block. The matrix and vector are joined block-
wise, not element-wise.

In our experiment at Section V, GIM-V BL is more than 5
times faster than GIM-V BASE. There are two main reasons
for this speed-up.

• Sorting Time Block encoding decrease the number
of items to sort in the shuffling stage of HADOOP.
We observed that the main bottleneck of programs in
HADOOP is its shuffling stage where network transfer,
sorting, and disk I/O happens. By encoding to blocks
of width b, the number of lines in the matrix and the
vector file decreases to 1/b2 and 1/b times of their
original size, respectively for full matrices and vectors.

Connected	
 Components	

•  Itera2ve	
 Matrix	
 Vector	
 products	
 need	
 O(d)	
 map	
 reduce	
 steps	
 to	

find	
 the	
 connected	
 components	
 in	
 a	
 graph.	
 	

•  Diameter	
 of	
 a	
 graph	
 can	
 be	
 large.	
 	
 	

–  >	
 20	
 for	
 many	
 real	
 world	
 graphs.	
 	

•  Each	
 map	
 reduce	
 step	
 requires	
 wri2ng	
 data	
 to	
 disk	
 +	
 remotely	

reading	
 data	
 from	
 disk	
 (I/O	
 +	
 communica2on)	

•  Can	
 we	
 find	
 connected	
 components	
 using	
 a	
 smaller	
 number	
 of	

itera2ons?	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 11	

Hash-­‐to-­‐all	

•  Maintain	
 a	
 cluster	
 at	
 each	
 node	

–  Current	
 es2mate	
 of	
 connected	
 component	

•  Ini2alize	
 cluster(v)	
 =	
 Neighbors(v)	
 U	
 {v}	

•  Each	
 node	
 sends	
 its	
 cluster	
 to	
 all	
 nodes	
 in	
 the	
 cluster	

–  Map:	
 (v,	
 C(v))	
 à	
 {(u,	
 C(v))}	
 for	
 all	
 u	
 in	
 C(v)	

•  Union	
 all	
 the	
 clusters	
 sent	
 to	
 a	
 node	
 v	

–  Reduce:	
 (u,	
 {C1,	
 C2,	
 …,	
 Ck})	
 à	
 (u,	
 C1	
 U	
 C2	
 U	
 …	
 U	
 Ck)	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 12	

Hash-­‐to-­‐all	

•  Number	
 of	
 rounds	
 	
 =	
 log	
 d	

–  Proof?	
 	

•  Communica2on	
 per	
 round	
 =	
 O(n|V|	
 +	
 |E|)	

–  Each	
 node	
 is	
 replicated	
 at	
 most	
 n	
 2mes,	
 where	
 n	
 is	
 the	
 maximum	
 size	
 of	
 a	

connected	
 component.	
 	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 13	

Hash-­‐to-­‐Min	

•  Each	
 node	
 v	
 maintains	
 a	
 cluster	
 C(v)	
 which	
 is	
 ini2alized	
 to	
 	

	
 	
 	
 	
 	
 	
 	
 	
 {v}	
 U	
 Neighbors(v)	

•  In	
 each	
 itera2on	

	

Map:	
 	
 	
 	
 	
 	

	
 	
 	
 vmin	
 =	
 min	
 {C(v)}	

	
 	
 	
 	
 	
 	
 	
 Send	
 C(v)	
 to	
 vmin	

	
 Send	
 vmin	
 to	
 nodes	
 in	
 C(v)	

	

Reduce:	
 	

	
 C(v)	
 is	
 the	
 union	
 of	
 all	
 incoming	
 clusters	

1	

2	

3	

4	

5	

6	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 14	

Hash-­‐to-­‐Min	

•  Each	
 node	
 v	
 maintains	
 a	
 cluster	
 C(v)	
 which	
 is	
 ini2alized	
 to	
 	

	
 	
 	
 	
 	
 	
 	
 	
 {v}	
 U	
 Neighbors(v)	

•  In	
 each	
 itera2on	

	

Map:	
 	
 	
 	
 	
 	

	
 	
 	
 vmin	
 =	
 min	
 {C(v)}	

	
 	
 	
 	
 	
 	
 	
 Send	
 C(v)	
 to	
 vmin	

	
 Send	
 vmin	
 to	
 nodes	
 in	
 C(v)	

	

Reduce:	
 	

	
 C(v)	
 is	
 the	
 union	
 of	
 all	
 incoming	
 clusters	

1	

2	

3	

4	

5	

6	

	
 v	
 C(v)	

1	
 1,2	

2	
 1,2,3,4	

3	
 2,3	

4	
 2,4,5	

5	
 4,5,6	

6	
 5,6	

2	

2	
 5	

4	

1	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 15	

Hash-­‐to-­‐Min	

•  Each	
 node	
 v	
 maintains	
 a	
 cluster	
 C(v)	
 which	
 is	
 ini2alized	
 to	
 	

	
 	
 	
 	
 	
 	
 	
 	
 {v}	
 U	
 Neighbors(v)	

•  In	
 each	
 itera2on	

	

Map:	
 	
 	
 	
 	
 	

	
 	
 	
 vmin	
 =	
 min	
 {C(v)}	

	
 	
 	
 	
 	
 	
 	
 Send	
 C(v)	
 to	
 vmin	

	
 Send	
 vmin	
 to	
 nodes	
 in	
 C(v)	

	

Reduce:	
 	

	
 C(v)	
 is	
 the	
 union	
 of	
 all	
 incoming	
 clusters	

1	

2	

3	

4	

5	

6	

	
 v	
 C(v)	

1	
 1,2,3,4	

2	
 1,2,3,4,5	

3	
 1	

4	
 1,4,5,6	

5	
 2	

6	
 4	

2	

2	

5	
 4	
 1	

1	

1	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 16	

Hash-­‐to-­‐Min	

•  Each	
 node	
 v	
 maintains	
 a	
 cluster	
 C(v)	
 which	
 is	
 ini2alized	
 to	
 	

	
 	
 	
 	
 	
 	
 	
 	
 {v}	
 U	
 Neighbors(v)	

•  In	
 each	
 itera2on	

	

Map:	
 	
 	
 	
 	
 	

	
 	
 	
 vmin	
 =	
 min	
 {C(v)}	

	
 	
 	
 	
 	
 	
 	
 Send	
 C(v)	
 to	
 vmin	

	
 Send	
 vmin	
 to	
 nodes	
 in	
 C(v)	

	

Reduce:	
 	

	
 C(v)	
 is	
 the	
 union	
 of	
 all	
 incoming	
 clusters	

1	

2	

3	

4	

5	

6	

	
 v	
 C(v)	

1	
 1,2,3,4,5,6	

2	
 1	

3	
 1	

4	
 1	

5	
 1	

6	
 1	

2	

2	
 5	

4	

1	

1	

1	

1	

1	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 17	

Hash-­‐to-­‐Min	

•  In	
 the	
 end,	
 cluster	
 of	
 vertex	
 with	
 minimum	
 id	
 contains	
 the	
 en2re	

connected	
 component.	
 	

Cluster	
 of	
 other	
 ver2ces	
 in	
 the	
 component	
 is	
 a	
 singleton	
 having	

the	
 minimum	
 vertex.	
 	

•  Communica2on	
 cost:	
 Assuming	
 a	
 random	
 assignment	
 of	
 ids	
 to	

ver2ces,	
 expected	
 communica2on	
 cost	
 is	
 O(k(|V|	
 +	
 |E|))	
 in	

itera2on	
 k	
 	

•  Number	
 of	
 itera2ons:	
 ???	

–  On	
 a	
 path	
 graph:	
 4	
 log	
 n	

–  In	
 a	
 general	
 graph:	
 Can	
 be	
 as	
 big	
 as	
 d	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 18	

Leader	
 Algorithm	

•  Let	
 π	
 be	
 an	
 arbitrary	
 total	
 order	
 over	
 the	
 ver2ces.	
 	

•  Begin	
 with	
 l(v)	
 =	
 v,	
 and	
 all	
 nodes	
 ac2ve	

In	
 each	
 itera2on:	
 	

•  	
 Let	
 C(v)	
 be	
 the	
 connected	
 component	
 containing	
 v	

•  Let	
 Γ(v)	
 be	
 the	
 neighbors	
 of	
 C(v)	
 that	
 are	
 not	
 in	
 C(v)	

•  Call	
 each	
 ac2ve	
 node	
 a	
 leader	
 with	
 probability	
 ½.	
 	

•  For	
 each	
 ac2ve	
 non-­‐leader	
 w,	
 find	
 w*	
 =	
 min(Γ(w))	

•  If	
 w*	
 is	
 not	
 empty	
 and	
 l(w*)	
 is	
 a	
 leader,	
 	

then	
 mark	
 w	
 as	
 passive,	
 and	
 	

	
 relabel	
 each	
 node	
 with	
 label	
 w	
 by	
 l(w*)	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 19	

Correctness	

•  If	
 at	
 any	
 point	
 of	
 2me	
 two	
 nodes	
 s	
 and	
 t	
 have	
 the	
 same	
 label,	

then	
 they	
 are	
 connected	
 in	
 G.	
 	

•  Consider	
 an	
 itera2on,	
 when	
 l(s)	
 ≠	
 l(t)	
 before	
 the	
 itera2on,	
 but	
 l(s)	

=	
 l(t)	
 azer.	
 	

•  This	
 means,	
 l(s)	
 =	
 w	
 (non-­‐leader	
 node),	
 l(t)	
 =	
 w*	

•  By	
 induc2on,	
 s	
 is	
 connected	
 to	
 all	
 nodes	
 in	
 Γ(w),	
 	

	
 	
 	
 	
 	
 t	
 is	
 connected	
 to	
 all	
 nodes	
 in	
 Γ(w*),	
 and	
 	

	
 	
 	
 	
 	
 w	
 is	
 connected	
 to	
 w*.	
 	

•  Therefore,	
 s	
 and	
 t	
 are	
 connected.	
 	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 20	

Number	
 of	
 Itera2ons	

•  Every	
 connected	
 component	
 has	
 a	
 unique	
 label	
 azer	
 O(log	
 N)	

rounds	
 with	
 high	
 probability	

•  Suppose	
 there	
 is	
 some	
 connected	
 component	
 with	
 two	
 ac2ve	

labels.	

•  An	
 ac2ve	
 label	
 w	
 survives	
 an	
 itera2on	
 if:	
 	

1.	
 w	
 is	
 marked	
 a	
 leader	

2.	
 w	
 is	
 not	
 marked	
 a	
 leader	
 and	
 l(w*)	
 is	
 not	
 marked	
 a	
 leader	

	

•  Hence,	
 in	
 every	
 itera2on,	
 the	
 expected	
 number	
 of	
 ac2ve	
 labels	

reduces	
 by	
 ¼.	
 	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 21	

ITERATION	
 AWARE	
 MAP-­‐REDUCE	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 22	

Itera2ve	
 Computa2ons	

	
 PageRank:	
 	

	
 	
 	
 	
 	
 	
 	
 do	

	
 pnext	
 =	
 (cM	
 +	
 (1-­‐c)	
 U)pcur	

	
 	
 	
 	
 	
 	
 	
 while(pnext	
 !=	
 pcur)	

	

	

•  Loops	
 are	
 not	
 supported	
 in	
 Map-­‐Reduce	

–  Need	
 to	
 encode	
 itera2on	
 in	
 the	
 launching	
 script	

•  M	
 is	
 a	
 loop	
 invariant.	
 But	
 needs	
 to	
 wri}en	
 to	
 disk	
 and	
 read	
 from	

disk	
 in	
 every	
 step.	
 	

•  M	
 may	
 not	
 be	
 co-­‐located	
 with	
 mappers	
 and	
 reducers	
 running	
 the	

itera2ve	
 computa2on.	

	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 23	

HaLoop	

•  Itera2ve	
 Programs	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 24	

Task Queue

.

.

.

Task21 Task22 Task23

Task31 Task32 Task33

Task11 Task12 Task13
�

�

�

Identical to Hadoop New in HaLoop

Local communication Remote communication

Modified from Hadoop

Figure 3: The HaLoop framework, a variant of Hadoop
MapReduce framework.

1, job 2, and job 3. Each job has three tasks running concurrently
on slave nodes.

In order to accommodate the requirements of iterative data anal-
ysis applications, we made several changes to the basic Hadoop
MapReduce framework. First, HaLoop exposes a new application
programming interface to users that simplifies the expression of
iterative MapReduce programs (Section 2.2). Second, HaLoop’s
master node contains a new loop control module that repeatedly
starts new map-reduce steps that compose the loop body, until
a user-specified stopping condition is met (Section 2.2). Third,
HaLoop uses a new task scheduler for iterative applications that
leverages data locality in these applications (Section 3). Fourth,
HaLoop caches and indexes application data on slave nodes (Sec-
tion 4). As shown in Figure 3, HaLoop relies on the same file
system and has the same task queue structure as Hadoop, but the
task scheduler and task tracker modules are modified, and the loop
control, caching, and indexing modules are new. The task tracker
not only manages task execution, but also manages caches and in-
dices on the slave node, and redirects each task’s cache and index
accesses to local file system.

2.2 Programming Model
The PageRank and descendant query examples are representative

of the types of iterative programs that HaLoop supports. Here, we
present the general form of the recursive programs we support and
a detailed API.

The iterative programs that HaLoop supports can be distilled into
the following core construct:

R
i+1

= R
0

[(R
i

./ L)

where R
0

is an initial result and L is an invariant relation. A
program in this form terminates when a fixpoint is reached —
when the result does not change from one iteration to the next, i.e.
R

i+1

= R
i

. This formulation is sufficient to express a broad class
of recursive programs.1

1SQL (ANSI SQL 2003, ISO/IEC 9075-2:2003) queries using the
WITH clause can also express a variety of iterative applications, in-
cluding complex analytics that are not typically implemented in
SQL such as k-means and PageRank; see Section 9.5.

A fixpoint is typically defined by exact equality between iter-
ations, but HaLoop also supports the concept of an approximate
fixpoint, where the computation terminates when either the differ-
ence between two consecutive iterations is less than a user-specified
threshold, or the maximum number of iterations has been reached.
Both kinds of approximate fixpoints are useful for expressing con-
vergence conditions in machine learning and complex analytics.
For example, for PageRank, it is common to either use a user-
specified convergence threshold ✏ [15] or a fixed number of iter-
ations as the loop termination condition.

Although our recursive formulation describes the class of iter-
ative programs we intend to support, this work does not develop
a high-level declarative language for expressing recursive queries.
Rather, we focus on providing an efficient foundation API for it-
erative MapReduce programs; we posit that a variety of high-level
languages (e.g., Datalog) could be implemented on this foundation.

To write a HaLoop program, a programmer specifies the loop
body (as one or more map-reduce pairs) and optionally specifies
a termination condition and loop-invariant data. We now discuss
HaLoop’s API (see Figure 16 in the appendix for a summary). Map
and Reduce are similar to standard MapReduce and are required;
the rest of the API is new and is optional.

To specify the loop body, the programmer constructs a multi-step
MapReduce job, using the following functions:

• Map transforms an input hkey, valuei tuple into intermediate
hin key, in valuei tuples.

• Reduce processes intermediate tuples sharing the same in key,
to produce hout key, out valuei tuples. The interface contains
a new parameter for cached invariant values associated with the
in key.

• AddMap and AddReduce express a loop body that consists of
more than one MapReduce step. AddMap (AddReduce) asso-
ciates a Map (Reduce) function with an integer indicating the
order of the step.

HaLoop defaults to testing for equality from one iteration to the
next to determine when to terminate the computation. To specify an
approximate fixpoint termination condition, the programmer uses
the following functions.

• SetFixedPointThreshold sets a bound on the distance be-
tween one iteration and the next. If the threshold is exceeded,
then the approximate fixpoint has not yet been reached, and the
computation continues.

• The ResultDistance function calculates the distance between
two out value sets sharing the same out key. One out value set v

i

is from the reducer output of the current iteration, and the other
out value set v

i�1

is from the previous iteration’s reducer output.
The distance between the reducer outputs of the current iteration
i and the last iteration i � 1 is the sum of ResultDistance on
every key. (It is straightforward to support additional aggrega-
tions besides sum.)

• SetMaxNumOfIterations provides further control of the loop
termination condition. HaLoop terminates a job if the maxi-
mum number of iterations has been executed, regardless of the
distance between the current and previous iteration’s outputs.
SetMaxNumOfIterations can also be used to implement a
simple for-loop.

To specify and control inputs, the programmer uses:

• SetIterationInput associates an input source with a specific
iteration, since the input files to different iterations may be dif-
ferent. For example, in Example 1, at each iteration i + 1, the
input is R

i

[L.

Ini2al	

Rela2on	

Invariant	

Rela2on	

Loop	
 aware	
 task	
 scheduling	
 MapReduce

Stop?

Map Reduce Map Reduce

Application
Yes

No

Map function

Reduce function

Stop condition

Job Job

HaLoop

Stop?

Map Reduce Map Reduce

No

Application
Map function

Reduce function

Stop condition

Yes

Job

submit

Figure 4: Boundary between an iterative application and the
framework (HaLoop vs. Hadoop). HaLoop knows and controls
the loop, while Hadoop only knows jobs with one map-reduce
pair.

n3

n1

n2

n1

n2

n3

M20: R0-split0

M00: L-split0

M10: L-split1

R00: partition 0

R10: partition 1

R20: partition 2

n3

n1

n2

n1

n2

n3

M21: R1-split0

M01: L-split0

M11: L-split1

R01: partition 0

R11: partition 1

R21: partition 2

Unnecessary computation Unnecessary communication

Figure 5: A schedule exhibiting inter-iteration locality. Tasks
processing the same inputs on consecutive iterations are sched-
uled to the same physical nodes.

• AddStepInput associates an additional input source with an in-
termediate map-reduce pair in the loop body. The output of pre-
ceding map-reduce pair is always in the input of the next map-
reduce pair.

• AddInvariantTable specifies an input table (an HDFS file)
that is loop-invariant. During job execution, HaLoop will cache
this table on cluster nodes.

This programming interface is sufficient to express a variety of
iterative applications. The appendix sketches the implementation
of PageRank (Section 9.2), descendant query (Section 9.3), and k-
means (Section 9.4) using this programming interface. Figure 4
shows the difference between HaLoop and Hadoop, from the appli-
cation’s perspective: in HaLoop, a user program specifies loop set-
tings and the framework controls the loop execution, but in Hadoop,
it is the application’s responsibility to control the loops.

3. LOOP-AWARE TASK SCHEDULING
This section introduces the HaLoop task scheduler. The sched-

uler provides potentially better schedules for iterative programs
than Hadoop’s scheduler. Sections 3.1 and 3.2 illustrate the desired
schedules and scheduling algorithm respectively.

3.1 Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place on the

same physical machines those map and reduce tasks that occur in
different iterations but access the same data. With this approach,
data can more easily be cached and re-used between iterations. For
example, Figure 5 is a sample schedule for the join step (MR

1

in
Figure 1(c)) of the PageRank application from Example 1. There
are two iterations and three slave nodes involved in the job.

The scheduling of iteration 1 is no different than in Hadoop. In
the join step of the first iteration, the input tables are L and R

0

.
Three map tasks are executed, each of which loads a part of one or
the other input data file (a.k.a., a file split). As in ordinary Hadoop,
the mapper output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned. Then,

three reduce tasks are executed, each of which loads a partition of
the collective mapper output. In Figure 5, reducer R

00

processes
mapper output keys whose hash value is 0, reducer R

10

processes
keys with hash value 1, and reducer R

20

processes keys with hash
value 2.

The scheduling of the join step of iteration 2 can take advantage
of inter-iteration locality: the task (either mapper or reducer) that
processes a specific data partition D is scheduled on the physical
node where D was processed in iteration 1. Note that the two file
inputs to the join step in iteration 2 are L and R

1

.
The schedule in Figure 5 provides the feasibility to reuse loop-

invariant data from past iterations. Because L is loop-invariant,
mappers M

01

and M
11

would compute identical results to M
00

and M
10

. There is no need to re-compute these mapper outputs,
nor to communicate them to the reducers. In iteration 1, if reducer
input partitions 0, 1, and 2 are stored on nodes n

3

, n
1

, and n
2

respectively, then in iteration 2, L need not be loaded, processed
or shuffled again. In that case, in iteration 2, only one mapper
M

21

for R
1

-split0 needs to be launched, and thus the three reducers
will only copy intermediate data from M

21

. With this strategy, the
reducer input is no different, but it now comes from two sources:
the output of the mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 5 as inter-
iteration locality. Let d be a file split (mapper input partition) or a
reducer input partition2, and let T i

d

be a task consuming d in itera-
tion i. Then we say that a schedule exhibits inter-iteration locality
if for all i > 1, T i

d

and T i�1

d

are assigned to the same physical node
if T i�1

d

exists.
The goal of task scheduling in HaLoop is to achieve inter-

iteration locality. To achieve this goal, the only restriction is that
HaLoop requires that the number of reduce tasks should be invari-
ant across iterations, so that the hash function assigning mapper
outputs to reducer nodes remains unchanged.

3.2 Scheduling Algorithm
HaLoop’s scheduler keeps track of the data partitions processed

by each map and reduce task on each physical machine, and it uses
that information to schedule subsequent tasks taking inter-iteration
locality into account.

More specifically, the HaLoop scheduler works as follows. Upon
receiving a heartbeat from a slave node, the master node tries to
assign the slave node an unassigned task that uses data cached on
that node. To support this assignment, the master node maintains a
mapping from each slave node to the data partitions that this node
processed in the previous iteration. If the slave node already has a
full load, the master re-assigns its tasks to a nearby slave node.

Figure 6 gives pseudocode for the scheduling algorithm. Before
each iteration, previous is set to current, and then current is
set to a new empty HashMap object. In a job’s first iteration, the
schedule is exactly the same as that produced by Hadoop (line 2).
After scheduling, the master remembers the association between
data and node (lines 3 and 13). In later iterations, the scheduler
tries to retain previous data-node associations (lines 11 and 12). If
the associations can no longer hold due to the load, the master node
will associate the data with another node (lines 6–8).

4. CACHING AND INDEXING
Thanks to the inter-iteration locality offered by the task sched-

uler, access to a particular loop-invariant data partition is usually
2Mapper input partitions are represented by an input file URL plus
an offset and length; reducer input partitions are represented by an
integer hash value. Two partitions are assumed to be equal if their
representations are equal.

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 25	

•  Inter-­‐Itera2on	
 Locality	

•  Caching	
 and	
 Indexing	
 of	
 invariant	
 tables	

Summary	

•  No	
 na2ve	
 support	
 for	
 itera2on	
 in	
 Map-­‐Reduce	

–  Each	
 itera2on	
 writes/reads	
 data	
 from	
 disk	
 leading	
 to	
 overheads	

•  Many	
 graph	
 algorithms	
 need	
 itera2ve	
 computa2on	

–  Need	
 to	
 design	
 algorithms	
 that	
 can	
 minimize	
 number	
 of	
 itera2ons	

•  New	
 frameworks	
 that	
 minimize	
 overheads	
 by	
 caching	
 invariant	

tables	
 in	
 the	
 itera2ve	
 computa2on	

–  HaLoop	

Lecture	
 13	
 :	
 590.04	
 Fall	
 15	
 26	

