Graph Algorithms & Iteration
on Map-Reduce

CompSci 590.04
Instructor: Ashwin Machanavajjhala

Lecture 13 : 590.04 Fall 15 1 DUke

UNIVYERSITY



Recap: Map-Reduce

map (k1,v1) — list(k2,v2);
reduce (k2,list(v2)) — list(k3,v3).

Map Phase Reduce Phase
(per record computation) (global computation)

uke

Lecture 13 : 590.04 Fall 15
UNIYVYERSITY

2



This Class

* Graph Processing

* |terative-aware Map Reduce

Lecture 13 : 590.04 Fall 15 3 DUke

UNIVYERSITY



GRAPH PROCESSING

Lecture 13 : 590.04 Fall 15

IIIIIIIIII



Graph Algorithms

Diameter Estimation
— Length of the longest shortest path in the graph

Connected Components

— Undirected s-t connectivity (USTCON): check whether two nodes are
connected.

PageRank

— Calculate importance of nodes in a graph

Random Walks with Restarts

— Similarity function that encodes proximity of nodes in a graph

Lecture 13 : 590.04 Fall 15 5 Duke

UNIVYERSITY



Connected Components

 What is an efficient algorithm for computing the connected
components in a graph?

Lecture 13 : 590.04 Fall 15 6 DUke

UNIVYERSITY



HCC [Kang et al ICDM ‘09]

Each node’s label I(v) is initialized to itself

In each iteration
l(v) = min {I(v), min . ciohw H(Y)}

O(d) iterations (d = diameter of the graph)
O(|V] + |E|) communication per iteration

Duke

Lecture 13 : 590.04 Fall 15
UNIYVYERSITY



GIM-V

* Generalized Iterative Matrix-Vector Multiplication

Connected Components
* Let c" denote the component-id of a vertex in iteration h

¢ cMl=Mx;ch

— c"w[i] = min(m[i,jlx c"[j])

Step 1: Generate m[i,j] x c[j]

— cM1i] = min(c"[i], c"eW[i]) Step 2: Aggregate to find the
min for each node

« Keep iterating till c"*1 = ch.

Lecture 13 : 590.04 Fall 15 8 Duke

UNIVYERSITY



GIM-V and Page Rank
p=(cEY +(1—-c)U)p
pnext= MXG pcur

p"ei] = (1-c)/n + sum; (¢ x mi,j]x p«[j])

Lecture 13 : 590.04 Fall 15 9 DUke

UNIVYERSITY



GIM-V BL

* We assumed each edge in the graph is represented using a
different row.

e Can speed up processing if each row represents a bxb sub matrix

Vo V1 Va2
01 0o 1]0
B B
0,1 0,2 " " "
B o/1foY1]171 0 01 01 101
> \'
0,0 1 1 o(o0Q1 0 1 0 1 1 0|0 1 0
o|1fof1fo0]1 0 01 01 01
B1 o— X Vq= + +
olofJojof1]o0 0 0|0 0|0 1]0
o|/1fof1]0]1 1 0|1 0|1 0|1
B.o 1 V2
111010 0 11 11]0 100

Lecture 13 : 590.04 Fall 15 10 Duke

UNITWVYERSIT Y



Connected Components

Iterative Matrix Vector products need O(d) map reduce steps to
find the connected components in a graph.

Diameter of a graph can be large.
— > 20 for many real world graphs.

Each map reduce step requires writing data to disk + remotely
reading data from disk (I/O + communication)

Can we find connected components using a smaller number of
iterations?

Lecture 13 : 590.04 Fall 15 11 Duke

UNLVYVERSITX



Hash-to-all

Maintain a cluster at each node
— Current estimate of connected component

Initialize cluster(v) = Neighbors(v) U {v}

Each node sends its cluster to all nodes in the cluster
— Map: (v, C(v)) =2 {(u, C(v))} for all uin C(v)

Union all the clusters sent to a node v
— Reduce: (u, {C1,C2, ...,Ck}) 2 (u,C1UC2U.. UCk)

Lecture 13 : 590.04 Fall 15 12 Duke

UNITWVYERSIT Y



Hash-to-all

* Number of rounds =logd
— Proof?

« Communication per round = O(n|V| + | E|)
— Each node is replicated at most n times, where n is the maximum size of a
connected component.

Lecture 13 : 590.04 Fall 15 13 Duke

UNIVYERSITY



Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to

{v} U Neighbors(v) e
In each iteration W ;

Map:
Vi = Min {C(v)}

Send C(v) to v,
Send v, . tonodes in C(v)

Reduce:
C(v) is the union of all incoming clusters

Lecture 13 : 590.04 Fall 15 14 DUke

UNIVYERSITY



Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}

Send (V) 10 Vi, v | v

Send v, to nodes in C(v)

1 1,2
4 2 1,2,3,4
Reduce: | | | | 3 23
C(v) is the union of all incoming clusters 4 245
5 4,5,6 ]
Lecture 13 : 590.04 Fall 15 £ 5,6 .e

UENIT¥YERSI T X



Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}
Send C(v) to v,
Send v, to nodes in C(v)

1 1,2,3,4
2 1,2,3,4,5
Reduce: 5 .
C(v) is the union of all incoming clusters
4 1,4,5,6
5 2 )
Lecture 13 : 590.04 Fall 15 & 4 .e

UENIT¥YERSI T X



Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}

Send (V) 10 Vi, v | v

Send v, to nodes in C(v)

1 1,2,3,4,5,6
2 1
Reduce: 5 .
C(v) is the union of all incoming clusters 4 .
5 1 )
Lecture 13 : 590.04 Fall 15 6 1 .e

UENIT¥YERSI T X



Hash-to-Min

In the end, cluster of vertex with minimum id contains the entire

connected component.
Cluster of other vertices in the component is a singleton having

the minimum vertex.

Communication cost: Assuming a random assignment of ids to
vertices, expected communication cost is O(k(|V| + |E])) in
iteration k

Number of iterations: ??7?
— On apath graph: 4 logn
— In a general graph: Can be as bigas d

Duke

Lecture 13 : 590.04 Fall 15
UNIVERSITY



Leader Algorithm

* Letmtbe an arbitrary total order over the vertices.
e Begin with I(v) = v, and all nodes active

In each iteration:

 Let C(v) be the connected component containing v
e Let(v) be the neighbors of C(v) that are not in C(v)
e C(Call each active node a leader with probability %.

* For each active non-leader w, find w* = min(l'(w))

* If w*is notempty and I(w*) is a leader,
then mark w as passive, and
relabel each node with label w by [(w*)

Duke

Lecture 13 : 590.04 Fall 15
UNIVERSITY



Correctness

If at any point of time two nodes s and t have the same label,
then they are connected in G.

Consider an iteration, when I(s) # I(t) before the iteration, but I(s)
= |(t) after.

This means, I(s) = w (non-leader node), I(t) = w*

By induction, s is connected to all nodes in I'(w),
t is connected to all nodes in I'(w*), and

w is connected to w*.
Therefore, s and t are connected.

Lecture 13 : 590.04 Fall 15 20 Duke

UNITWVYERSIT Y



Number of Iterations

Every connected component has a unique label after O(log N)
rounds with high probability

Suppose there is some connected component with two active
labels.

An active label w survives an iteration if:
1. w is marked a leader
2. w is not marked a leader and |(w*) is not marked a leader

Hence, in every iteration, the expected number of active labels
reduces by %.

Lecture 13 : 590.04 Fall 15 21 Duke

UNLVYVERSITX



ITERATION AWARE MAP-REDUCE

Lecture 13 : 590.04 Fall 15 22 DUke

UNIVYERSITY



Iterative Computations

PageRank:

do
next (CM + (1 C) U)pcur
Whl|e(pnext |= cur)

* Loops are not supported in Map-Reduce
— Need to encode iteration in the launching script

* Mis aloop invariant. But needs to written to disk and read from
disk in every step.

* M may not be co-located with mappers and reducers running the
iterative computation

Lecture 13 : 590.04 Fall 15 23 Duke

UNIVYERSITY



Haloop

* |[terative Programs

Ri;+1 = Ro U (RZ > L)

Invariant

Initial

Relation Relation

Lecture 13 : 590.04 Fall 15 24 Duke

UNIVYERSITY



Loop aware task scheduling

* Inter-lteration Locality

* Caching and Indexing of invariant tables

M20: RO-split0 ROO: partition 0
M21: R1-split0 RO1: partition 0
n1
n1
MOO: L-splitO R10: partition 1
MO1: L-splitO
n2
n2
M10: L-split1 »
R20: partition 2 M11: L-split1
n3
n2 n3
Unnecessary computation <-——-—- Unnecessary communication

Lecture 13 : 590.04 Fall 15 25 Duke

UNIVYERSITY



Summary

No native support for iteration in Map-Reduce
— Each iteration writes/reads data from disk leading to overheads

Many graph algorithms need iterative computation
— Need to design algorithms that can minimize number of iterations

New frameworks that minimize overheads by caching invariant
tables in the iterative computation

— Haloop

Lecture 13 : 590.04 Fall 15 26 Duke

UNITWVYERSIT Y



