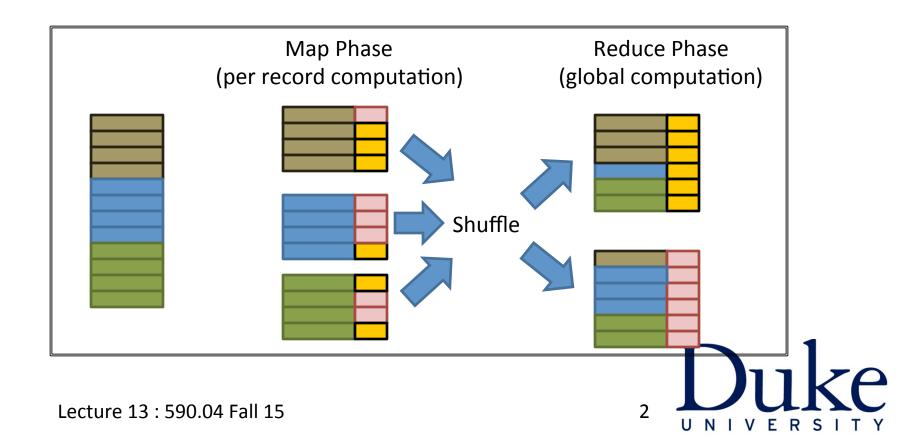
Graph Algorithms & Iteration on Map-Reduce

CompSci 590.04 Instructor: Ashwin Machanavajjhala

Recap: Map-Reduce



This Class

- Graph Processing
- Iterative-aware Map Reduce

GRAPH PROCESSING

Graph Algorithms

- Diameter Estimation
 - Length of the longest shortest path in the graph
- Connected Components
 - Undirected s-t connectivity (USTCON): check whether two nodes are connected.
- PageRank
 - Calculate importance of nodes in a graph
- Random Walks with Restarts
 - Similarity function that encodes proximity of nodes in a graph

Connected Components

• What is an efficient algorithm for computing the connected components in a graph?

HCC [Kang et al ICDM '09]

- Each node's label l(v) is initialized to itself
- In each iteration
 I(v) = min {I(v), min _{y ε neigh(v)} I(y)}

- O(d) iterations (d = diameter of the graph)
 O(|V| + |E|) communication per iteration

GIM-V

• Generalized Iterative Matrix-Vector Multiplication

Connected Components

- Let c^h denote the component-id of a vertex in iteration h
- $c^{h+1} = M x_G c^h$
 - $c^{new}[i] = min_j(m[i,j]x c^h[j])$
 - $c^{h+1}[i] = min(c^{h}[i], c^{new}[i])$
- Keep iterating till $c^{h+1} = c^h$.

Step 1: Generate m[i,j] x c[j] Step 2: Aggregate to find the min for each node

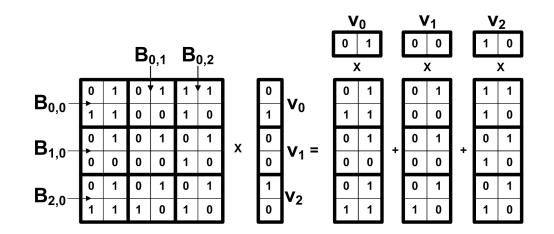
GIM-V and Page Rank

$$p = (cE^T + (1-c)U)p$$

- $p^{next} = M x_G p^{cur}$
- $p^{next}[i] = (1-c)/n + sum_i (c x m[i,j]x p^{cur}[j])$

GIM-V BL

- We assumed each edge in the graph is represented using a different row.
- Can speed up processing if each row represents a bxb sub matrix



Connected Components

- Iterative Matrix Vector products need O(d) map reduce steps to find the connected components in a graph.
- Diameter of a graph can be large.
 - > 20 for many real world graphs.
- Each map reduce step requires writing data to disk + remotely reading data from disk (I/O + communication)
- Can we find connected components using a smaller number of iterations?

Hash-to-all

- Maintain a cluster at each node
 - Current estimate of connected component
- Initialize cluster(v) = Neighbors(v) U {v}
- Each node sends its cluster to all nodes in the cluster
 Map: (v, C(v)) → {(u, C(v))} for all u in C(v)
- Union all the clusters sent to a node v
 - − Reduce: (u, {C1, C2, ..., Ck}) \rightarrow (u, C1 U C2 U ... U Ck)

Hash-to-all

- Number of rounds = log d
 - Proof?

- Communication per round = O(n|V| + |E|)
 - Each node is replicated at most n times, where n is the maximum size of a connected component.

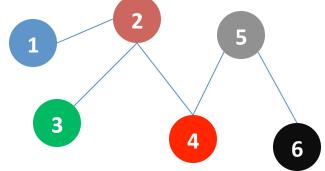
- Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)
- In each iteration

Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters



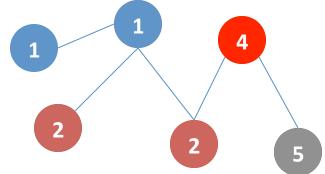
- Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)
- In each iteration

Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters



v	C(v)
1	1,2
2	1,2,3,4
3	2,3
4	2,4,5
5	4,5,6
ß	5,6
10	UNIVERSITY

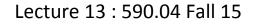
- Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)
- In each iteration

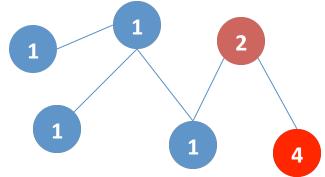
Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters





v	C(v)
1	1,2,3,4
2	1,2,3,4,5
3	1
4	1,4,5,6
5	2
fo	4 .C
	UNIVERSITY

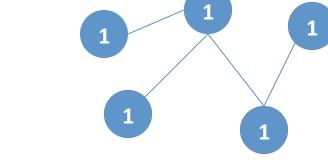
- Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)
- In each iteration

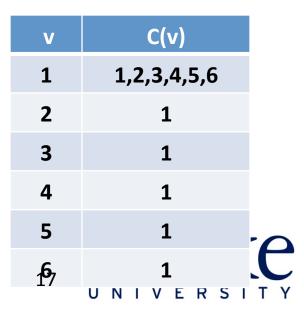
Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters





- In the end, cluster of vertex with minimum id contains the entire connected component.
 Cluster of other vertices in the component is a singleton having the minimum vertex.
- Communication cost: Assuming a random assignment of ids to vertices, expected communication cost is O(k(|V| + |E|)) in iteration k
- Number of iterations: ???
 - On a path graph: 4 log n
 - In a general graph: Can be as big as d

Leader Algorithm

- Let π be an arbitrary total order over the vertices.
- Begin with I(v) = v, and all nodes active

In each iteration:

- Let C(v) be the connected component containing v
- Let Γ(v) be the neighbors of C(v) that are not in C(v)
- Call each active node a leader with probability ¹/₂.
- For each active non-leader w, find w* = min(Γ(w))
- If w* is not empty and l(w*) is a leader, then mark w as passive, and relabel each node with label w by l(w*)

Correctness

- If at any point of time two nodes s and t have the same label, then they are connected in G.
- Consider an iteration, when l(s) ≠ l(t) before the iteration, but l(s) = l(t) after.
- This means, I(s) = w (non-leader node), I(t) = w*
- By induction, s is connected to all nodes in Γ(w), t is connected to all nodes in Γ(w*), and w is connected to w*.
- Therefore, s and t are connected.

Number of Iterations

- Every connected component has a unique label after O(log N) rounds with high probability
- Suppose there is some connected component with two active labels.
- An active label w survives an iteration if:
 - 1. w is marked a leader
 - 2. w is not marked a leader and $I(w^*)$ is not marked a leader
- Hence, in every iteration, the expected number of active labels reduces by ¼.

ITERATION AWARE MAP-REDUCE

Iterative Computations

PageRank:

```
do

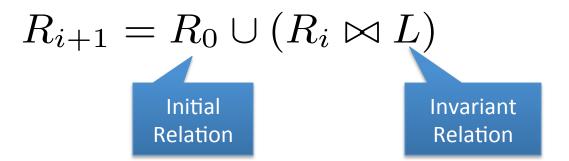
p<sup>next</sup> = (cM + (1-c) U)p<sup>cur</sup>

while(p<sup>next</sup> != p<sup>cur</sup>)
```

- Loops are not supported in Map-Reduce
 - Need to encode iteration in the launching script
- M is a loop invariant. But needs to written to disk and read from disk in every step.
- M may not be co-located with mappers and reducers running the iterative computation.

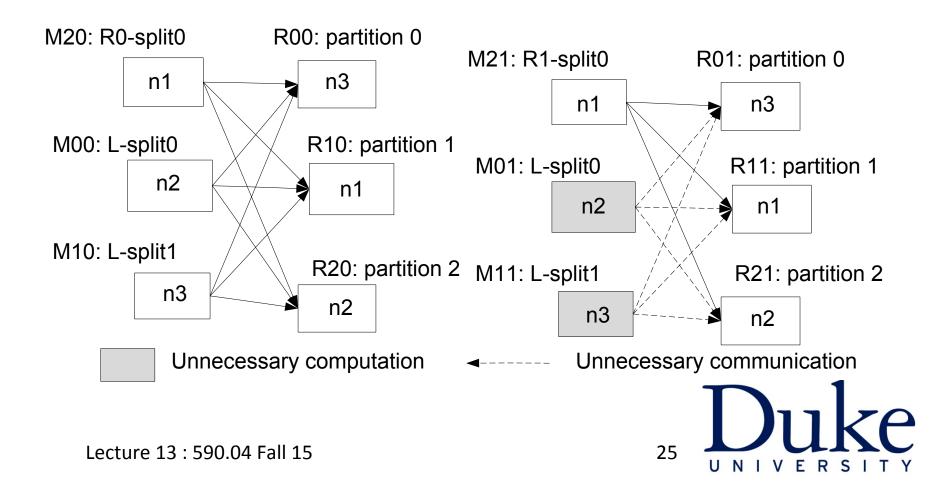
HaLoop

• Iterative Programs



Loop aware task scheduling

- Inter-Iteration Locality
- Caching and Indexing of invariant tables



Summary

- No native support for iteration in Map-Reduce
 - Each iteration writes/reads data from disk leading to overheads
- Many graph algorithms need iterative computation
 - Need to design algorithms that can minimize number of iterations
- New frameworks that minimize overheads by caching invariant tables in the iterative computation
 - HaLoop

