
Fault	
 Tolerant	
 Distributed	
 Main	

Memory	
 Systems	

CompSci	
 590.04	

Instructor:	
 Ashwin	
 Machanavajjhala	

1	
 Lecture	
 16	
 :	
 590.04	
 Fall	
 15	

Recap:	
 Map	
 Reduce	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 2	

Map	
 Phase	

(per	
 record	
 computaEon)	

Reduce	
 Phase	

(global	
 computaEon)	

Shuffle	

map
!

!!, !! ! list! !!, !! !
!reduce

!
!!, list(!!) ! list! !!, !! !

!

Split	

Recap:	
 Map	
 Reduce	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 3	

Programming	
 Model	
 Distributed	
 System	
 	

•  Simple	
 model	

	

•  Programmer	
 only	
 	

describes	
 the	
 logic	

•  Works	
 on	
 commodity	
 hardware	

•  Scales	
 to	
 thousands	
 of	
 machines	

•  Ship	
 code	
 to	
 the	
 data,	
 rather	
 	

than	
 ship	
 data	
 to	
 code	

•  Hides	
 all	
 the	
 hard	
 systems	
 	

problems	
 from	
 the	
 programmer	

•  Machine	
 failures	

•  Data	
 placement	

•  …	

+	

Recap:	
 Map	
 Reduce	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 4	

But	
 as	
 soon	
 as	
 it	
 got	
 popular,	
 users	
 wanted	
 more:	
 	

	

•  More	
 complex,	
 mulE-­‐stage	
 applicaEons	
 	

(e.g.	
 iteraEve	
 machine	
 learning	
 &	
 graph	
 processing)	
 	

•  More	
 interacEve	
 ad-­‐hoc	
 queries	
 	

	
 Examples(

iter."1" iter."2" .((.((.(

Input"

HDFS"
read"

HDFS"
write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"

Recap:	
 Map	
 Reduce	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 5	

But	
 as	
 soon	
 as	
 it	
 got	
 popular,	
 users	
 wanted	
 more:	
 	

	

•  More	
 complex,	
 mulE-­‐stage	
 applicaEons	
 	

(e.g.	
 iteraEve	
 machine	
 learning	
 &	
 graph	
 processing)	
 	

•  More	
 interacEve	
 ad-­‐hoc	
 queries	
 	

	
 Examples(

iter."1" iter."2" .((.((.(

Input"

HDFS"
read"

HDFS"
write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"

Thus	
 arose	
 many	
 specialized	
 frameworks	
 for	
 parallel	

processing	

Recap:	
 Pregel	

3 6 2 1

Superstep 0

6 6 2 6

Superstep 1

6 6 6 6

Superstep 2

6 6 6 6

Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 6	

GraphLab	

7	

Data	
 Graph	

Shared	
 Data	
 Table	

Scheduling	

Update	
 FuncEons	
 and	
 Scopes	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	

Problem	
 with	
 specialized	
 frameworks	

•  Running	
 mulE-­‐stage	
 workflows	
 is	
 hard	

–  Extract	
 a	
 menEons	
 of	
 celebriEes	
 from	
 news	
 arEcles	

–  Construct	
 a	
 co-­‐reference	
 graph	
 of	
 celebriEes	
 (based	
 on	
 cooccurence	
 in	
 the	

same	
 arEcle)	

–  Analyze	
 this	
 graph	
 (say	
 connected	
 components	
 /	
 page	
 rank)	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 8	

•  Graph	
 processing	
 on	
 Map	
 Reduce	
 is	
 slow.	

	

•  The	
 input	
 does	
 not	
 have	
 a	
 graph	
 abstracEon.	
 Map	

Reduce	
 is	
 a	
 good	
 candidate	
 to	
 construct	
 the	

graph	
 in	
 the	
 first	
 place.	
 	

Root	
 Cause	
 Analysis	

•  Why	
 do	
 graph	
 processing	
 algorithms	
 and	
 iteraEve	
 computaEon	

do	
 poorly	
 on	
 Map	
 Reduce?	
 	

•  There	
 is	
 usually	
 some	
 (large)	
 input	
 that	
 does	
 not	
 change	
 across	

iteraEons.	
 	

Map	
 reduce	
 unnecessarily	
 keeps	
 wriEng	
 to	
 and	
 reading	
 from	
 disk.	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 9	

Examples(

iter."1" iter."2" .((.((.(

Input"

HDFS"
read"

HDFS"
write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"

Examples	

•  Page	
 Rank	

Links	
 in	
 the	
 graph	
 do	
 not	
 change,	
 only	
 the	
 rank	
 of	
 each	
 node	

changes.	
 	

•  LogisEc	
 Regression	

The	
 original	
 set	
 of	
 points	
 do	
 not	
 change,	
 only	
 the	
 model	
 needs	
 to	

be	
 updated	

•  Connected	
 components	
 /	
 K-­‐means	
 clustering	

The	
 graph/dataset	
 does	
 not	
 change,	
 only	
 the	
 labels	
 on	
 the	
 nodes/
points	
 changes.	
 	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 10	

Examples	

•  Page	
 Rank	

Links	
 in	
 the	
 graph	
 do	
 not	
 change,	
 only	
 the	
 rank	
 of	
 each	
 node	

changes.	
 	

•  LogisEc	
 Regression	

The	
 original	
 set	
 of	
 points	
 do	
 not	
 change,	
 only	
 the	
 model	
 needs	
 to	

be	
 updated	

•  Connected	
 components	
 /	
 K-­‐means	
 clustering	

The	
 graph/dataset	
 does	
 not	
 change,	
 only	
 the	
 labels	
 on	
 the	
 nodes/
points	
 changes.	
 	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 11	

LARGE	

Examples	

•  Page	
 Rank	

Links	
 in	
 the	
 graph	
 do	
 not	
 change,	
 only	
 the	
 rank	
 of	
 each	
 node	

changes.	
 	

•  LogisEc	
 Regression	

The	
 original	
 set	
 of	
 points	
 do	
 not	
 change,	
 only	
 the	
 model	
 needs	
 to	

be	
 updated	

•  Connected	
 components	
 /	
 K-­‐means	
 clustering	

The	
 graph/dataset	
 does	
 not	
 change,	
 only	
 the	
 labels	
 on	
 the	
 nodes/
points	
 changes.	
 	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 12	

small	

Idea:	
 Load	
 the	
 “immutable”	
 part	
 into	

memory	

•  Twiger	
 follows	
 graph:	
 26GB	
 uncompressed	

•  Can	
 be	
 stored	
 in	
 memory	
 using	
 7	
 off	
 the	
 shelf	
 machines	
 each	

having	
 4	
 GB	
 memory	
 each.	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 13	

Idea:	
 Load	
 the	
 “immutable”	
 part	
 into	

memory	

•  Twiger	
 follows	
 graph:	
 26GB	
 uncompressed	

•  Can	
 be	
 stored	
 in	
 memory	
 using	
 7	
 off	
 the	
 shelf	
 machines	
 each	

having	
 4	
 GB	
 memory	
 each.	
 	

•  Problem:	
 Fault	
 Tolerance!	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 14	

Fault	
 Tolerant	
 Distributed	
 Memory	

•  SoluEon	
 1:	
 Global	
 CheckpoinEng	

•  E.g.,	
 Piccolo	
 (hgp://piccolo.news.cs.nyu.edu/)	

•  Problem:	
 need	
 to	
 redo	
 a	
 lot	
 of	
 computaEon.	
 	

(In	
 Map	
 Reduce:	
 need	
 to	
 only	
 to	
 redo	
 a	
 Mapper	
 or	
 Reducer)	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 15	

Fault	
 Tolerant	
 Distributed	
 Memory	

•  SoluEon	
 2:	
 ReplicaEon	
 (e.g.,	
 RAMCloud	
)	

	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 16	

7:10 J. Ousterhout et al.

Fig. 4. Each master organizes its main memory as a log, which is divided into 8MB segments. Each segment
is replicated on the secondary storage of several backups (e.g., segment 124 is replicated on backups 45, 7,
and 11). The master maintains a hash table to locate live objects quickly. To look up an object, a master
selects a hash table bucket using a hash of the object’s table identifier and key. A bucket occupies one cache
line (64 bytes) and contains eight entries, each holding a 48-bit pointer to an object in the log and 16 bits
of the object’s key hash. For each bucket entry that matches the desired key hash, the full key must be
compared against the key stored in the log entry. Small objects can typically be retrieved with two last-level
cache misses: one for the hash table bucket and one for the object in the log. If a hash bucket fills, its last
entry is used as a pointer to an overflow bucket.

log is the only storage for object data; a single log structure is used both for primary
copies in memory and backup copies on secondary storage.

Log-structured storage provides four attractive properties, which have been instru-
mental in meeting the requirements of performance, durability, and scalability:

—High throughput: Updates can be batched together in large blocks for efficient writing
to secondary storage.

—Crash recovery: If a master crashes, its log can be replayed to reconstruct the infor-
mation that was in the master’s DRAM.

—Efficient memory utilization: The log serves as the storage allocator for most of a
master’s DRAM, and it does this more efficiently than a traditional malloc-style
allocator or garbage collector.

—Consistency: The log provides a simple way of serializing operations. We have made
only limited use of this feature so far but expect it to become more important as we
implement higher-level features such as multiobject transactions.

We will discuss these properties in more detail throughout the rest of the article.

4.1. Log Basics
The log for each master is divided into 8MB segments as shown in Figure 4; log segments
occupy almost all of the master’s memory. New information is appended to the head
segment; segments other than the head are immutable. Figure 5 summarizes the types
of entries that are stored in the log.

In addition to the log, the only other major data structure on a master is a hash
table, which contains one entry for each live object stored on the master. During read
requests, the hash table allows the master to determine quickly whether there exists
an object corresponding to a particular table identifier and key and, if so, find its entry
in the log (see Figure 4).

Each log segment is replicated in secondary storage on a configurable number of
backups (typically three). The master chooses a different set of backups at random for
each segment; over time, its replicas tend to spread across all of the backups in the
cluster. Segment replicas are never read during normal operation; they are only read
if the master that wrote them crashes, at which time they are read in their entirety as

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 7, Publication date: August 2015.

RAMCloud	

•  Log	
 Structured	
 Storage	

•  Each	
 master	
 maintains	
 in	
 memory	
 	

–  An	
 append	
 only	
 log	

–  Hash	
 Table	
 (object	
 id,	
 locaEon	
 on	
 the	
 log)	

•  Every	
 write	
 becomes	
 an	
 append	
 on	
 the	
 log	

–  Plus	
 a	
 write	
 to	
 the	
 hash	
 table	

•  Log	
 is	
 divided	
 into	
 log	
 segments	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 17	

Durable	
 Writes 	
 	

•  Write	
 to	
 the	
 head	
 of	
 log	
 (in	
 master’s	
 memory)	

•  Write	
 to	
 hash	
 table	
 (in	
 master’s	
 memory)	

•  ReplicaEon	
 to	
 3	
 other	
 backups	

–  They	
 each	
 write	
 to	
 the	
 backup	
 log	
 in	
 memory	
 and	
 return	

•  Master	
 returns	
 as	
 soon	
 as	
 ACK	
 is	
 received	
 from	
 replicas.	
 	

•  Backups	
 write	
 to	
 disk	
 when	
 the	
 log	
 segment	
 becomes	
 full.	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 18	

Fault	
 Tolerant	
 Distributed	
 Memory	

•  SoluEon	
 2:	
 ReplicaEon	

•  Log	
 Structured	
 Storage	
 (e.g.,	
 RAMCloud)	
 +	
 ReplicaEon	

•  Problem:	
 	

–  Every	
 write	
 triggers	
 replicaEon	
 across	
 nodes,	
 which	
 can	
 become	
 expensive.	

–  Log	
 needs	
 constant	
 maintenance	
 and	
 garbage	
 cleaning.	
 	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 19	

Fault	
 Tolerant	
 Distributed	
 Memory	
 	

•  Moreover,	
 exisEng	
 soluEons	
 (Piccolo,	
 RAMCloud,	
 memcacheD)	

assume	
 that	
 objects	
 in	
 memory	
 can	
 be	
 read	
 as	
 well	
 as	
 wrigen	

•  But,	
 in	
 most	
 applicaEons	
 we	
 only	
 need	
 objects	
 in	
 memory	
 that	

are	
 read	
 (and	
 hence	
 immutable).	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 20	

Fault	
 Tolerant	
 Distributed	
 Memory	
 	

•  SoluEon	
 3:	
 Resilient	
 Distributed	
 Datasets	

Restricted	
 form	
 of	
 distributed	
 shared	
 memory	
 	

•  Data	
 in	
 memory	
 is	
 immutable	

•  ParEEoned	
 collecEon	
 of	
 records	
 	

•  Can	
 only	
 be	
 built	
 through	
 coarse	
 grained	
 determinisEc	

transformaEons	
 (map,	
 filter,	
 join,	
 etc)	

Fault	
 Tolerance	
 through	
 lineage	

•  Maintain	
 a	
 small	
 log	
 of	
 operaEons	

•  Recompute	
 lost	
 parEEons	
 when	
 failures	
 occur	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 21	

Example:	
 Log	
 Mining	

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.persist()

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 22	

Original	
 File	

This	
 is	
 the	
 RDD	
 that	
 is	
 stored	

First	
 acEon	
 triggers	
 RDD	

computaEon	
 and	
 load	
 into	

memory	

RDD	
 Fault	
 Tolerance	

•  RDDs	
 track	
 the	
 graph	
 of	
 operaEons	
 used	
 to	
 construct	
 them,	

called	
 lineage.	
 	

•  Lineage	
 is	
 used	
 to	
 rebuild	
 data	
 lost	
 due	
 to	
 failures	

lines = spark.textFile(“hdfs://...”)

HadoopRDD	

errors = lines.filter(_.startsWith(“ERROR”))

FilteredRDD	

messages = errors.map(_.split(‘\t’)(2))

MappedRDD	

	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 23	

RDDs"track"the"graph"of"transformations"that"
built"them"(their"lineage)"to"rebuild"lost"data"

E.g.:"

"

"

messages = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))

HadoopRDD"
"

path"="hdfs://…"

FilteredRDD"
"

func"="_.contains(...)"

MappedRDD"
"

func"="_.split(…)"

Fault(Recovery(

HadoopRDD" FilteredRDD" MappedRDD"

RDD	
 Fault	
 Tolerance	

•  The	
 larger	
 the	
 lineage,	
 more	
 computaEon	
 is	
 needed,	
 and	
 thus	

recovery	
 from	
 failure	
 will	
 be	
 longer.	
 	

•  Therefore,	
 RDDs	
 only	
 allow	
 operaEons	
 that	
 touch	
 a	
 large	
 number	

of	
 records	
 at	
 the	
 same	
 Eme.	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 24	

Spark(Operations(

Transformations(
(define"a"new"RDD)"

map"
filter"

sample"
groupByKey"
reduceByKey"
sortByKey"

flatMap"
union"
join"

cogroup"
cross"

mapValues"

Actions(
(return"a"result"to"
driver"program)"

collect"
reduce"
count"
save"

lookupKey"

RDD	
 Fault	
 Tolerance	

•  The	
 larger	
 the	
 lineage,	
 more	
 computaEon	
 is	
 needed,	
 and	
 thus	

recovery	
 from	
 failure	
 will	
 be	
 longer.	
 	

•  Therefore,	
 RDDs	
 only	
 allow	
 operaEons	
 that	
 touch	
 a	
 large	
 number	

of	
 records	
 at	
 the	
 same	
 Eme.	

–  Great	
 for	
 batch	
 operaEons	

–  Not	
 so	
 good	
 for	
 random	
 access	
 or	
 asynchronous	
 algorithms.	
 	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 25	

IteraEve	
 ComputaEon	

•  LogisEc	
 Regression	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 26	

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Page	
 Rank	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 27	

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Lineage	
 graphs	
 can	
 be	
 long.	
 Uses	

checkpoinEng	
 in	
 such	
 cases.	
 	

TransformaEons	
 and	
 Lineage	
 Graphs	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 28	

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

User	
 can	
 specify	
 how	
 data	
 is	
 parEEoned	
 to	
 ensure	
 narrow	

dependencies	

Scheduling	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 29	

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Can	
 pipeline	
 execuEon	
 as	
 long	
 as	

dependencies	
 are	
 narrow	

Summary	

•  Map	
 Reduce	
 requires	
 wriEng	
 to	
 disk	
 for	
 fault	
 tolerance	

•  Not	
 good	
 for	
 iteraEve	
 computaEon.	
 	

RDD:	
 Restricted	
 form	
 of	
 distributed	
 shared	
 memory	
 	

•  Data	
 in	
 memory	
 is	
 immutable	

•  ParEEoned	
 collecEon	
 of	
 records	
 	

•  Can	
 only	
 be	
 built	
 through	
 coarse	
 grained	
 determinisEc	

transformaEons	
 (map,	
 filter,	
 join,	
 etc)	

Fault	
 Tolerance	
 through	
 lineage	

•  Maintain	
 a	
 small	
 log	
 of	
 operaEons	

•  Recompute	
 lost	
 parEEons	
 when	
 failures	
 occur	

Lecture	
 16	
 :	
 590.04	
 Fall	
 15	
 30	

