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Programming	
  Model	
   Distributed	
  System	
  	
  

•  Simple	
  model	
  
	
  

•  Programmer	
  only	
  	
  
describes	
  the	
  logic	
  

•  Works	
  on	
  commodity	
  hardware	
  

•  Scales	
  to	
  thousands	
  of	
  machines	
  

•  Ship	
  code	
  to	
  the	
  data,	
  rather	
  	
  
than	
  ship	
  data	
  to	
  code	
  

•  Hides	
  all	
  the	
  hard	
  systems	
  	
  
problems	
  from	
  the	
  programmer	
  
•  Machine	
  failures	
  
•  Data	
  placement	
  
•  …	
  

+	
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But	
  as	
  soon	
  as	
  it	
  got	
  popular,	
  users	
  wanted	
  more:	
  	
  
	
  
•  More	
  complex,	
  mulE-­‐stage	
  applicaEons	
  	
  

(e.g.	
  iteraEve	
  machine	
  learning	
  &	
  graph	
  processing)	
  	
  
•  More	
  interacEve	
  ad-­‐hoc	
  queries	
  	
  
	
  Examples(
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Input"
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write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"
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Thus	
  arose	
  many	
  specialized	
  frameworks	
  for	
  parallel	
  
processing	
  



Recap:	
  Pregel	
  
3 6 2 1

Superstep 0
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Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137
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Data	
  Graph	
  
Shared	
  Data	
  Table	
  

Scheduling	
  

Update	
  FuncEons	
  and	
  Scopes	
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Problem	
  with	
  specialized	
  frameworks	
  
•  Running	
  mulE-­‐stage	
  workflows	
  is	
  hard	
  

–  Extract	
  a	
  menEons	
  of	
  celebriEes	
  from	
  news	
  arEcles	
  
–  Construct	
  a	
  co-­‐reference	
  graph	
  of	
  celebriEes	
  (based	
  on	
  cooccurence	
  in	
  the	
  

same	
  arEcle)	
  
–  Analyze	
  this	
  graph	
  (say	
  connected	
  components	
  /	
  page	
  rank)	
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•  Graph	
  processing	
  on	
  Map	
  Reduce	
  is	
  slow.	
  
	
  

•  The	
  input	
  does	
  not	
  have	
  a	
  graph	
  abstracEon.	
  Map	
  
Reduce	
  is	
  a	
  good	
  candidate	
  to	
  construct	
  the	
  
graph	
  in	
  the	
  first	
  place.	
  	
  



Root	
  Cause	
  Analysis	
  
•  Why	
  do	
  graph	
  processing	
  algorithms	
  and	
  iteraEve	
  computaEon	
  

do	
  poorly	
  on	
  Map	
  Reduce?	
  	
  

•  There	
  is	
  usually	
  some	
  (large)	
  input	
  that	
  does	
  not	
  change	
  across	
  
iteraEons.	
  	
  
Map	
  reduce	
  unnecessarily	
  keeps	
  wriEng	
  to	
  and	
  reading	
  from	
  disk.	
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Examples	
  
•  Page	
  Rank	
  

Links	
  in	
  the	
  graph	
  do	
  not	
  change,	
  only	
  the	
  rank	
  of	
  each	
  node	
  
changes.	
  	
  

•  LogisEc	
  Regression	
  
The	
  original	
  set	
  of	
  points	
  do	
  not	
  change,	
  only	
  the	
  model	
  needs	
  to	
  
be	
  updated	
  

•  Connected	
  components	
  /	
  K-­‐means	
  clustering	
  
The	
  graph/dataset	
  does	
  not	
  change,	
  only	
  the	
  labels	
  on	
  the	
  nodes/
points	
  changes.	
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Examples	
  
•  Page	
  Rank	
  

Links	
  in	
  the	
  graph	
  do	
  not	
  change,	
  only	
  the	
  rank	
  of	
  each	
  node	
  
changes.	
  	
  

•  LogisEc	
  Regression	
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  of	
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  do	
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Idea:	
  Load	
  the	
  “immutable”	
  part	
  into	
  
memory	
  

•  Twiger	
  follows	
  graph:	
  26GB	
  uncompressed	
  

•  Can	
  be	
  stored	
  in	
  memory	
  using	
  7	
  off	
  the	
  shelf	
  machines	
  each	
  
having	
  4	
  GB	
  memory	
  each.	
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Idea:	
  Load	
  the	
  “immutable”	
  part	
  into	
  
memory	
  

•  Twiger	
  follows	
  graph:	
  26GB	
  uncompressed	
  

•  Can	
  be	
  stored	
  in	
  memory	
  using	
  7	
  off	
  the	
  shelf	
  machines	
  each	
  
having	
  4	
  GB	
  memory	
  each.	
  	
  

•  Problem:	
  Fault	
  Tolerance!	
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Fault	
  Tolerant	
  Distributed	
  Memory	
  
•  SoluEon	
  1:	
  Global	
  CheckpoinEng	
  

•  E.g.,	
  Piccolo	
  (hgp://piccolo.news.cs.nyu.edu/)	
  

•  Problem:	
  need	
  to	
  redo	
  a	
  lot	
  of	
  computaEon.	
  	
  
(In	
  Map	
  Reduce:	
  need	
  to	
  only	
  to	
  redo	
  a	
  Mapper	
  or	
  Reducer)	
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Fault	
  Tolerant	
  Distributed	
  Memory	
  
•  SoluEon	
  2:	
  ReplicaEon	
  (e.g.,	
  RAMCloud	
  )	
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Fig. 4. Each master organizes its main memory as a log, which is divided into 8MB segments. Each segment
is replicated on the secondary storage of several backups (e.g., segment 124 is replicated on backups 45, 7,
and 11). The master maintains a hash table to locate live objects quickly. To look up an object, a master
selects a hash table bucket using a hash of the object’s table identifier and key. A bucket occupies one cache
line (64 bytes) and contains eight entries, each holding a 48-bit pointer to an object in the log and 16 bits
of the object’s key hash. For each bucket entry that matches the desired key hash, the full key must be
compared against the key stored in the log entry. Small objects can typically be retrieved with two last-level
cache misses: one for the hash table bucket and one for the object in the log. If a hash bucket fills, its last
entry is used as a pointer to an overflow bucket.

log is the only storage for object data; a single log structure is used both for primary
copies in memory and backup copies on secondary storage.

Log-structured storage provides four attractive properties, which have been instru-
mental in meeting the requirements of performance, durability, and scalability:

—High throughput: Updates can be batched together in large blocks for efficient writing
to secondary storage.

—Crash recovery: If a master crashes, its log can be replayed to reconstruct the infor-
mation that was in the master’s DRAM.

—Efficient memory utilization: The log serves as the storage allocator for most of a
master’s DRAM, and it does this more efficiently than a traditional malloc-style
allocator or garbage collector.

—Consistency: The log provides a simple way of serializing operations. We have made
only limited use of this feature so far but expect it to become more important as we
implement higher-level features such as multiobject transactions.

We will discuss these properties in more detail throughout the rest of the article.

4.1. Log Basics
The log for each master is divided into 8MB segments as shown in Figure 4; log segments
occupy almost all of the master’s memory. New information is appended to the head
segment; segments other than the head are immutable. Figure 5 summarizes the types
of entries that are stored in the log.

In addition to the log, the only other major data structure on a master is a hash
table, which contains one entry for each live object stored on the master. During read
requests, the hash table allows the master to determine quickly whether there exists
an object corresponding to a particular table identifier and key and, if so, find its entry
in the log (see Figure 4).

Each log segment is replicated in secondary storage on a configurable number of
backups (typically three). The master chooses a different set of backups at random for
each segment; over time, its replicas tend to spread across all of the backups in the
cluster. Segment replicas are never read during normal operation; they are only read
if the master that wrote them crashes, at which time they are read in their entirety as

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 7, Publication date: August 2015.



RAMCloud	
  
•  Log	
  Structured	
  Storage	
  
•  Each	
  master	
  maintains	
  in	
  memory	
  	
  

–  An	
  append	
  only	
  log	
  
–  Hash	
  Table	
  (object	
  id,	
  locaEon	
  on	
  the	
  log)	
  

•  Every	
  write	
  becomes	
  an	
  append	
  on	
  the	
  log	
  
–  Plus	
  a	
  write	
  to	
  the	
  hash	
  table	
  

•  Log	
  is	
  divided	
  into	
  log	
  segments	
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Durable	
  Writes 	
  	
  
•  Write	
  to	
  the	
  head	
  of	
  log	
  (in	
  master’s	
  memory)	
  
•  Write	
  to	
  hash	
  table	
  (in	
  master’s	
  memory)	
  
•  ReplicaEon	
  to	
  3	
  other	
  backups	
  

–  They	
  each	
  write	
  to	
  the	
  backup	
  log	
  in	
  memory	
  and	
  return	
  

•  Master	
  returns	
  as	
  soon	
  as	
  ACK	
  is	
  received	
  from	
  replicas.	
  	
  

•  Backups	
  write	
  to	
  disk	
  when	
  the	
  log	
  segment	
  becomes	
  full.	
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Fault	
  Tolerant	
  Distributed	
  Memory	
  
•  SoluEon	
  2:	
  ReplicaEon	
  

•  Log	
  Structured	
  Storage	
  (e.g.,	
  RAMCloud)	
  +	
  ReplicaEon	
  

•  Problem:	
  	
  
–  Every	
  write	
  triggers	
  replicaEon	
  across	
  nodes,	
  which	
  can	
  become	
  expensive.	
  
–  Log	
  needs	
  constant	
  maintenance	
  and	
  garbage	
  cleaning.	
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Fault	
  Tolerant	
  Distributed	
  Memory	
  	
  
•  Moreover,	
  exisEng	
  soluEons	
  (Piccolo,	
  RAMCloud,	
  memcacheD)	
  

assume	
  that	
  objects	
  in	
  memory	
  can	
  be	
  read	
  as	
  well	
  as	
  wrigen	
  

•  But,	
  in	
  most	
  applicaEons	
  we	
  only	
  need	
  objects	
  in	
  memory	
  that	
  
are	
  read	
  (and	
  hence	
  immutable).	
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Fault	
  Tolerant	
  Distributed	
  Memory	
  	
  
•  SoluEon	
  3:	
  Resilient	
  Distributed	
  Datasets	
  

Restricted	
  form	
  of	
  distributed	
  shared	
  memory	
  	
  
•  Data	
  in	
  memory	
  is	
  immutable	
  
•  ParEEoned	
  collecEon	
  of	
  records	
  	
  
•  Can	
  only	
  be	
  built	
  through	
  coarse	
  grained	
  determinisEc	
  

transformaEons	
  (map,	
  filter,	
  join,	
  etc)	
  

Fault	
  Tolerance	
  through	
  lineage	
  
•  Maintain	
  a	
  small	
  log	
  of	
  operaEons	
  
•  Recompute	
  lost	
  parEEons	
  when	
  failures	
  occur	
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Example:	
  Log	
  Mining	
  


lines = spark.textFile(“hdfs://...”) 

errors = lines.filter(_.startsWith(“ERROR”)) 

messages = errors.map(_.split(‘\t’)(2))



messages.persist()



messages.filter(_.contains(“foo”)).count 
messages.filter(_.contains(“bar”)).count 




Lecture	
  16	
  :	
  590.04	
  Fall	
  15	
   22	
  

Original	
  File	
  

This	
  is	
  the	
  RDD	
  that	
  is	
  stored	
  

First	
  acEon	
  triggers	
  RDD	
  
computaEon	
  and	
  load	
  into	
  

memory	
  



RDD	
  Fault	
  Tolerance	
  
•  RDDs	
  track	
  the	
  graph	
  of	
  operaEons	
  used	
  to	
  construct	
  them,	
  

called	
  lineage.	
  	
  
•  Lineage	
  is	
  used	
  to	
  rebuild	
  data	
  lost	
  due	
  to	
  failures	
  

lines = spark.textFile(“hdfs://...”) 
 
 
HadoopRDD	
  
errors = lines.filter(_.startsWith(“ERROR”)) 
 
FilteredRDD	
  
messages = errors.map(_.split(‘\t’)(2))
 
 
MappedRDD	
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RDDs"track"the"graph"of"transformations"that"
built"them"(their"lineage)"to"rebuild"lost"data"

E.g.:"

"

"

messages = textFile(...).filter(_.contains(“error”)) 
                        .map(_.split(‘\t’)(2)) 
                         

HadoopRDD"
"

path"="hdfs://…"

FilteredRDD"
"

func"="_.contains(...)"

MappedRDD"
"

func"="_.split(…)"

Fault(Recovery(

HadoopRDD" FilteredRDD" MappedRDD"



RDD	
  Fault	
  Tolerance	
  
•  The	
  larger	
  the	
  lineage,	
  more	
  computaEon	
  is	
  needed,	
  and	
  thus	
  

recovery	
  from	
  failure	
  will	
  be	
  longer.	
  	
  

•  Therefore,	
  RDDs	
  only	
  allow	
  operaEons	
  that	
  touch	
  a	
  large	
  number	
  
of	
  records	
  at	
  the	
  same	
  Eme.	
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Spark(Operations(

Transformations(
(define"a"new"RDD)"

map"
filter"

sample"
groupByKey"
reduceByKey"
sortByKey"

flatMap"
union"
join"

cogroup"
cross"

mapValues"

Actions(
(return"a"result"to"
driver"program)"

collect"
reduce"
count"
save"

lookupKey"



RDD	
  Fault	
  Tolerance	
  
•  The	
  larger	
  the	
  lineage,	
  more	
  computaEon	
  is	
  needed,	
  and	
  thus	
  

recovery	
  from	
  failure	
  will	
  be	
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Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.
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Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.
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Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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C: D: 
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

User	
  can	
  specify	
  how	
  data	
  is	
  parEEoned	
  to	
  ensure	
  narrow	
  
dependencies	
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Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.
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Summary	
  
•  Map	
  Reduce	
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  good	
  for	
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  computaEon.	
  	
  

RDD:	
  Restricted	
  form	
  of	
  distributed	
  shared	
  memory	
  	
  
•  Data	
  in	
  memory	
  is	
  immutable	
  
•  ParEEoned	
  collecEon	
  of	
  records	
  	
  
•  Can	
  only	
  be	
  built	
  through	
  coarse	
  grained	
  determinisEc	
  

transformaEons	
  (map,	
  filter,	
  join,	
  etc)	
  

Fault	
  Tolerance	
  through	
  lineage	
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  a	
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  log	
  of	
  operaEons	
  
•  Recompute	
  lost	
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