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Recap:	  Map	  Reduce	  

Lecture	  16	  :	  590.04	  Fall	  15	   2	  

Map	  Phase	  
(per	  record	  computaEon)	  

Reduce	  Phase	  
(global	  computaEon)	  

Shuffle	  

map
!

!!, !! ! list! !!, !! !
!reduce

!
!!, list(!!) ! list! !!, !! !

!

Split	  



Recap:	  Map	  Reduce	  
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Programming	  Model	   Distributed	  System	  	  

•  Simple	  model	  
	  

•  Programmer	  only	  	  
describes	  the	  logic	  

•  Works	  on	  commodity	  hardware	  

•  Scales	  to	  thousands	  of	  machines	  

•  Ship	  code	  to	  the	  data,	  rather	  	  
than	  ship	  data	  to	  code	  

•  Hides	  all	  the	  hard	  systems	  	  
problems	  from	  the	  programmer	  
•  Machine	  failures	  
•  Data	  placement	  
•  …	  

+	  



Recap:	  Map	  Reduce	  
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But	  as	  soon	  as	  it	  got	  popular,	  users	  wanted	  more:	  	  
	  
•  More	  complex,	  mulE-‐stage	  applicaEons	  	  

(e.g.	  iteraEve	  machine	  learning	  &	  graph	  processing)	  	  
•  More	  interacEve	  ad-‐hoc	  queries	  	  
	  Examples(

iter."1" iter."2" .((.((.(

Input"
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read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"
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Thus	  arose	  many	  specialized	  frameworks	  for	  parallel	  
processing	  



Recap:	  Pregel	  
3 6 2 1
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Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137
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GraphLab	  

7	  

Data	  Graph	  
Shared	  Data	  Table	  

Scheduling	  

Update	  FuncEons	  and	  Scopes	  
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Problem	  with	  specialized	  frameworks	  
•  Running	  mulE-‐stage	  workflows	  is	  hard	  

–  Extract	  a	  menEons	  of	  celebriEes	  from	  news	  arEcles	  
–  Construct	  a	  co-‐reference	  graph	  of	  celebriEes	  (based	  on	  cooccurence	  in	  the	  

same	  arEcle)	  
–  Analyze	  this	  graph	  (say	  connected	  components	  /	  page	  rank)	  
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•  Graph	  processing	  on	  Map	  Reduce	  is	  slow.	  
	  

•  The	  input	  does	  not	  have	  a	  graph	  abstracEon.	  Map	  
Reduce	  is	  a	  good	  candidate	  to	  construct	  the	  
graph	  in	  the	  first	  place.	  	  



Root	  Cause	  Analysis	  
•  Why	  do	  graph	  processing	  algorithms	  and	  iteraEve	  computaEon	  

do	  poorly	  on	  Map	  Reduce?	  	  

•  There	  is	  usually	  some	  (large)	  input	  that	  does	  not	  change	  across	  
iteraEons.	  	  
Map	  reduce	  unnecessarily	  keeps	  wriEng	  to	  and	  reading	  from	  disk.	  
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Examples	  
•  Page	  Rank	  

Links	  in	  the	  graph	  do	  not	  change,	  only	  the	  rank	  of	  each	  node	  
changes.	  	  

•  LogisEc	  Regression	  
The	  original	  set	  of	  points	  do	  not	  change,	  only	  the	  model	  needs	  to	  
be	  updated	  

•  Connected	  components	  /	  K-‐means	  clustering	  
The	  graph/dataset	  does	  not	  change,	  only	  the	  labels	  on	  the	  nodes/
points	  changes.	  	  	  
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Examples	  
•  Page	  Rank	  

Links	  in	  the	  graph	  do	  not	  change,	  only	  the	  rank	  of	  each	  node	  
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LARGE	  



Examples	  
•  Page	  Rank	  

Links	  in	  the	  graph	  do	  not	  change,	  only	  the	  rank	  of	  each	  node	  
changes.	  	  

•  LogisEc	  Regression	  
The	  original	  set	  of	  points	  do	  not	  change,	  only	  the	  model	  needs	  to	  
be	  updated	  

•  Connected	  components	  /	  K-‐means	  clustering	  
The	  graph/dataset	  does	  not	  change,	  only	  the	  labels	  on	  the	  nodes/
points	  changes.	  	  	  
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Idea:	  Load	  the	  “immutable”	  part	  into	  
memory	  

•  Twiger	  follows	  graph:	  26GB	  uncompressed	  

•  Can	  be	  stored	  in	  memory	  using	  7	  off	  the	  shelf	  machines	  each	  
having	  4	  GB	  memory	  each.	  	  
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Idea:	  Load	  the	  “immutable”	  part	  into	  
memory	  

•  Twiger	  follows	  graph:	  26GB	  uncompressed	  

•  Can	  be	  stored	  in	  memory	  using	  7	  off	  the	  shelf	  machines	  each	  
having	  4	  GB	  memory	  each.	  	  

•  Problem:	  Fault	  Tolerance!	  	  
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Fault	  Tolerant	  Distributed	  Memory	  
•  SoluEon	  1:	  Global	  CheckpoinEng	  

•  E.g.,	  Piccolo	  (hgp://piccolo.news.cs.nyu.edu/)	  

•  Problem:	  need	  to	  redo	  a	  lot	  of	  computaEon.	  	  
(In	  Map	  Reduce:	  need	  to	  only	  to	  redo	  a	  Mapper	  or	  Reducer)	  
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Fault	  Tolerant	  Distributed	  Memory	  
•  SoluEon	  2:	  ReplicaEon	  (e.g.,	  RAMCloud	  )	  
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7:10 J. Ousterhout et al.

Fig. 4. Each master organizes its main memory as a log, which is divided into 8MB segments. Each segment
is replicated on the secondary storage of several backups (e.g., segment 124 is replicated on backups 45, 7,
and 11). The master maintains a hash table to locate live objects quickly. To look up an object, a master
selects a hash table bucket using a hash of the object’s table identifier and key. A bucket occupies one cache
line (64 bytes) and contains eight entries, each holding a 48-bit pointer to an object in the log and 16 bits
of the object’s key hash. For each bucket entry that matches the desired key hash, the full key must be
compared against the key stored in the log entry. Small objects can typically be retrieved with two last-level
cache misses: one for the hash table bucket and one for the object in the log. If a hash bucket fills, its last
entry is used as a pointer to an overflow bucket.

log is the only storage for object data; a single log structure is used both for primary
copies in memory and backup copies on secondary storage.

Log-structured storage provides four attractive properties, which have been instru-
mental in meeting the requirements of performance, durability, and scalability:

—High throughput: Updates can be batched together in large blocks for efficient writing
to secondary storage.

—Crash recovery: If a master crashes, its log can be replayed to reconstruct the infor-
mation that was in the master’s DRAM.

—Efficient memory utilization: The log serves as the storage allocator for most of a
master’s DRAM, and it does this more efficiently than a traditional malloc-style
allocator or garbage collector.

—Consistency: The log provides a simple way of serializing operations. We have made
only limited use of this feature so far but expect it to become more important as we
implement higher-level features such as multiobject transactions.

We will discuss these properties in more detail throughout the rest of the article.

4.1. Log Basics
The log for each master is divided into 8MB segments as shown in Figure 4; log segments
occupy almost all of the master’s memory. New information is appended to the head
segment; segments other than the head are immutable. Figure 5 summarizes the types
of entries that are stored in the log.

In addition to the log, the only other major data structure on a master is a hash
table, which contains one entry for each live object stored on the master. During read
requests, the hash table allows the master to determine quickly whether there exists
an object corresponding to a particular table identifier and key and, if so, find its entry
in the log (see Figure 4).

Each log segment is replicated in secondary storage on a configurable number of
backups (typically three). The master chooses a different set of backups at random for
each segment; over time, its replicas tend to spread across all of the backups in the
cluster. Segment replicas are never read during normal operation; they are only read
if the master that wrote them crashes, at which time they are read in their entirety as

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 7, Publication date: August 2015.



RAMCloud	  
•  Log	  Structured	  Storage	  
•  Each	  master	  maintains	  in	  memory	  	  

–  An	  append	  only	  log	  
–  Hash	  Table	  (object	  id,	  locaEon	  on	  the	  log)	  

•  Every	  write	  becomes	  an	  append	  on	  the	  log	  
–  Plus	  a	  write	  to	  the	  hash	  table	  

•  Log	  is	  divided	  into	  log	  segments	  
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Durable	  Writes 	  	  
•  Write	  to	  the	  head	  of	  log	  (in	  master’s	  memory)	  
•  Write	  to	  hash	  table	  (in	  master’s	  memory)	  
•  ReplicaEon	  to	  3	  other	  backups	  

–  They	  each	  write	  to	  the	  backup	  log	  in	  memory	  and	  return	  

•  Master	  returns	  as	  soon	  as	  ACK	  is	  received	  from	  replicas.	  	  

•  Backups	  write	  to	  disk	  when	  the	  log	  segment	  becomes	  full.	  	  
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Fault	  Tolerant	  Distributed	  Memory	  
•  SoluEon	  2:	  ReplicaEon	  

•  Log	  Structured	  Storage	  (e.g.,	  RAMCloud)	  +	  ReplicaEon	  

•  Problem:	  	  
–  Every	  write	  triggers	  replicaEon	  across	  nodes,	  which	  can	  become	  expensive.	  
–  Log	  needs	  constant	  maintenance	  and	  garbage	  cleaning.	  	  	  
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Fault	  Tolerant	  Distributed	  Memory	  	  
•  Moreover,	  exisEng	  soluEons	  (Piccolo,	  RAMCloud,	  memcacheD)	  

assume	  that	  objects	  in	  memory	  can	  be	  read	  as	  well	  as	  wrigen	  

•  But,	  in	  most	  applicaEons	  we	  only	  need	  objects	  in	  memory	  that	  
are	  read	  (and	  hence	  immutable).	  	  
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Fault	  Tolerant	  Distributed	  Memory	  	  
•  SoluEon	  3:	  Resilient	  Distributed	  Datasets	  

Restricted	  form	  of	  distributed	  shared	  memory	  	  
•  Data	  in	  memory	  is	  immutable	  
•  ParEEoned	  collecEon	  of	  records	  	  
•  Can	  only	  be	  built	  through	  coarse	  grained	  determinisEc	  

transformaEons	  (map,	  filter,	  join,	  etc)	  

Fault	  Tolerance	  through	  lineage	  
•  Maintain	  a	  small	  log	  of	  operaEons	  
•  Recompute	  lost	  parEEons	  when	  failures	  occur	  
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Example:	  Log	  Mining	  

lines = spark.textFile(“hdfs://...”) 
errors = lines.filter(_.startsWith(“ERROR”)) 
messages = errors.map(_.split(‘\t’)(2))

messages.persist()

messages.filter(_.contains(“foo”)).count 
messages.filter(_.contains(“bar”)).count 
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Original	  File	  

This	  is	  the	  RDD	  that	  is	  stored	  

First	  acEon	  triggers	  RDD	  
computaEon	  and	  load	  into	  

memory	  



RDD	  Fault	  Tolerance	  
•  RDDs	  track	  the	  graph	  of	  operaEons	  used	  to	  construct	  them,	  

called	  lineage.	  	  
•  Lineage	  is	  used	  to	  rebuild	  data	  lost	  due	  to	  failures	  

lines = spark.textFile(“hdfs://...”)   HadoopRDD	  
errors = lines.filter(_.startsWith(“ERROR”))  FilteredRDD	  
messages = errors.map(_.split(‘\t’)(2))  MappedRDD	  
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RDDs"track"the"graph"of"transformations"that"
built"them"(their"lineage)"to"rebuild"lost"data"

E.g.:"

"

"

messages = textFile(...).filter(_.contains(“error”)) 
                        .map(_.split(‘\t’)(2)) 
                         

HadoopRDD"
"

path"="hdfs://…"

FilteredRDD"
"

func"="_.contains(...)"

MappedRDD"
"

func"="_.split(…)"

Fault(Recovery(

HadoopRDD" FilteredRDD" MappedRDD"



RDD	  Fault	  Tolerance	  
•  The	  larger	  the	  lineage,	  more	  computaEon	  is	  needed,	  and	  thus	  

recovery	  from	  failure	  will	  be	  longer.	  	  

•  Therefore,	  RDDs	  only	  allow	  operaEons	  that	  touch	  a	  large	  number	  
of	  records	  at	  the	  same	  Eme.	  	  
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Spark(Operations(

Transformations(
(define"a"new"RDD)"

map"
filter"

sample"
groupByKey"
reduceByKey"
sortByKey"

flatMap"
union"
join"

cogroup"
cross"

mapValues"

Actions(
(return"a"result"to"
driver"program)"

collect"
reduce"
count"
save"

lookupKey"



RDD	  Fault	  Tolerance	  
•  The	  larger	  the	  lineage,	  more	  computaEon	  is	  needed,	  and	  thus	  

recovery	  from	  failure	  will	  be	  longer.	  	  

•  Therefore,	  RDDs	  only	  allow	  operaEons	  that	  touch	  a	  large	  number	  
of	  records	  at	  the	  same	  Eme.	  
–  Great	  for	  batch	  operaEons	  
–  Not	  so	  good	  for	  random	  access	  or	  asynchronous	  algorithms.	  	  

Lecture	  16	  :	  590.04	  Fall	  15	   25	  



IteraEve	  ComputaEon	  
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Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.
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Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:
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Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 
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links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Lineage	  graphs	  can	  be	  long.	  Uses	  
checkpoinEng	  in	  such	  cases.	  	  
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Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

User	  can	  specify	  how	  data	  is	  parEEoned	  to	  ensure	  narrow	  
dependencies	  
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map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Can	  pipeline	  execuEon	  as	  long	  as	  
dependencies	  are	  narrow	  



Summary	  
•  Map	  Reduce	  requires	  wriEng	  to	  disk	  for	  fault	  tolerance	  
•  Not	  good	  for	  iteraEve	  computaEon.	  	  

RDD:	  Restricted	  form	  of	  distributed	  shared	  memory	  	  
•  Data	  in	  memory	  is	  immutable	  
•  ParEEoned	  collecEon	  of	  records	  	  
•  Can	  only	  be	  built	  through	  coarse	  grained	  determinisEc	  

transformaEons	  (map,	  filter,	  join,	  etc)	  

Fault	  Tolerance	  through	  lineage	  
•  Maintain	  a	  small	  log	  of	  operaEons	  
•  Recompute	  lost	  parEEons	  when	  failures	  occur	  
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