Fault Tolerant Distributed Main
Memory Systems

CompSci 590.04
Instructor: Ashwin Machanavajjhala

Lecture 16 : 590.04 Fall 15 1 DUke

UNIVYERSITY

Recap: Map Reduce

map(k,, v,) = list(k,,v,)
reduce(k,, list(v,)) = list(ks, v3)

Map Phase Reduce Phase
(per record computation) (global computation)

Split

uke

Lecture 16 : 590.04 Fall 15
UNIYVYERSITY

Recap: Map Reduce

Programming Model + Distributed System

* Simple model * Works on commodity hardware

* Programmer only * Scales to thousands of machines

describes the logic

* Ship code to the data, rather
than ship data to code

* Hides all the hard systems
problems from the programmer
* Machine failures

e Data placemen
Lecture 16 : 590.04 Fall 15 3

UNIVYERSITY

Recap: Map Reduce

But as soon as it got popular, users wanted more:

 More complex, multi-stage applications

(e.g. iterative machine learning & graph processing)
* More interactive ad-hoc queries

HDFS HDFS HDFS HDFS
read write read write
ﬁ é -é ﬁ é = = =
Input :
Lecture 16 : 590.04 Fall 15 4 LJ ul\.e

UNITWVYERSIT Y

Recap: Map Reduce

But as soon as it got popular, users wanted more:

 More complex, multi-stage applications
(e.g. iterative machine learning & graph processing)
* More interactive ad-hoc queries

Thus arose many specialized frameworks for parallel
processing

Lecture 16 : 590.04 Fall 15 5 A CLALXNG
UNIVERSITY

Recap: Pregel

@@ Superstep 0
‘—’@ Superstep 1
@ Superstep 2
@ Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

Lecture 16 : 590.04 Fall 15 6 DUke

UNIVYERSITY

Graphlab

Data Graph
O———=

Shared Data Table

| w | J O

Update Functions and Scopes

e Duke
Lecture 16 : 590.04 Fall 15 7

UNIVYERSITY

Problem with specialized frameworks

* Running multi-stage workflows is hard

— Extract a mentions of celebrities from news articles

— Construct a co-reference graph of celebrities (based on cooccurence in the
same article)

— Analyze this graph (say connected components / page rank)

* Graph processing on Map Reduce is slow.

* The input does not have a graph abstraction. Map
Reduce is a good candidate to construct the
oraph in the first place.

Lecture 16 : 590.04 Fall 15 g UuKe

UNITWVYERSIT Y

Root Cause Analysis

* Why do graph processing algorithms and iterative computation
do poorly on Map Reduce?

HDFS HDFS HDFS HDFS
read write read write
[::I;;]'__-)In--I-l'___:{;;l;;}“_)ln--l-l'___:{;;l;;}m_'> RN

Input

* There is usually some (large) input that does not change across
iterations.
Map reduce unnecessarily keeps writing to and reading from disk.

Lecture 16 : 590.04 Fall 15 9 DUke

UNIVYERSITY

Examples

Page Rank
Links in the graph do not change, only the rank of each node

changes.

Logistic Regression
The original set of points do not change, only the model needs to

be updated

Connected components / K-means clustering
The graph/dataset does not change, only the labels on the nodes/

points changes.
. Duke

Lecture 16 : 590.04 Fall 15 UNIVERSITY

Examples

Page Rank
Links in the graph do not change, only the rank of each node

changes.

LARGE
Logistic Regression

The original set of points do not change, only the model needs to
be updated

Connected components / K-means clustering
The graph/dataset does not change, only the labels on the nodes/

points changes.
. Duke

Lecture 16 : 590.04 Fall 15 UNIVERSITY

Examples

Page Rank
Links in the graph do not change, only the rank of each node

changes.

small

Logistic Regression
The original set of points do not change, only the model needs to

be updated

Connected components / K-means clustering
The graph/dataset does not change, only the labels on the nodes/

points changes.
. Duke

Lecture 16 : 590.04 Fall 15 UNIVERSITY

ldea: Load the “immutable” part into
memory

* Twitter follows graph: 26GB uncompressed

* Can be stored in memory using 7 off the shelf machines each
having 4 GB memory each.

Lecture 16 : 590.04 Fall 15 13 DUke

UNIVYERSITY

ldea: Load the “immutable” part into
memory

* Twitter follows graph: 26GB uncompressed

Can be stored in memory using 7 off the shelf machines each
having 4 GB memory each.

* Problem: Fault Tolerance!

Lecture 16 : 590.04 Fall 15 14 DUke

UNIVYERSITY

Fault Tolerant Distributed Memory

* Solution 1: Global Checkpointing

e E.g., Piccolo (http://piccolo.news.cs.nyu.edu/)

* Problem: need to redo a lot of computation.
(In Map Reduce: need to only to redo a Mapper or Reducer)

Lecture 16 : 590.04 Fall 15 15 DUke

UNIVYERSITY

Fault Tolerant Distributed Memory

e Solution 2: Replication (e.g., RAMCloud)

Hash
Table
Buckets

Head Segment

1__'_'______/_\1??____7/_;___1%1____/|_‘i5 ___________ |

(B3] [B24] [B19] [B4s] [B7]) [B11] [B12] [B3] [B28) Eﬁ%@ﬁgﬂ?ﬁeﬁ“ﬂﬂﬂ

Lecture 16 : 590.04 Fall 15 16 DUke

UNIVYERSITY

RAMCloud

Log Structured Storage

Each master maintains in memory
— An append only log
— Hash Table (object id, location on the log)

Every write becomes an append on the log
— Plus a write to the hash table

Log is divided into log segments

Lecture 16 : 590.04 Fall 15

Duke

UNLVYVERSITX

Durable Writes

Write to the head of log (in master’s memory)
Werite to hash table (in master’s memory)

Replication to 3 other backups
— They each write to the backup log in memory and return

Master returns as soon as ACK is received from replicas.

Backups write to disk when the log segment becomes full.

Lecture 16 : 590.04 Fall 15 18 Duke

UNLVYVERSITX

Fault Tolerant Distributed Memory

* Solution 2: Replication
e Log Structured Storage (e.g., RAMCloud) + Replication

* Problem:

— Every write triggers replication across nodes, which can become expensive.
— Log needs constant maintenance and garbage cleaning.

Lecture 16 : 590.04 Fall 15 19 DUke

UNIVYERSITY

Fault Tolerant Distributed Memory

Moreover, existing solutions (Piccolo, RAMCloud, memcacheD)
assume that objects in memory can be read as well as written

But, in most applications we only need objects in memory that
are read (and hence immutable).

Duke

Lecture 16 : 590.04 Fall 15
UNIVERSITY

Fault Tolerant Distributed Memory

e Solution 3: Resilient Distributed Datasets

Restricted form of distributed shared memory
 Data in memory is immutable
* Partitioned collection of records

* Can only be built through coarse grained deterministic
transformations (map, filter, join, etc)

Fault Tolerance through lineage
* Maintain a small log of operations
 Recompute lost partitions when failures occur

Duke

Lecture 16 : 590.04 Fall 15 UNIVERSITY

Example: Log Mining

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR"))
messages = errors.map(_.split(‘\t)(R))

This is the RDD that is stored
messages.persist()

First action triggers RDD

computation and load into
messages.filter(_.contains(“foo0”)).count memory

messages.filter(_.contains(“bar”)).count

Lecture 16 : 590.04 Fall 15 22 Duke

UNIVYERSITY

RDD Fault Tolerance

 RDDs track the graph of operations used to construct them,
called lineage.

* Lineage is used to rebuild data lost due to failures

lines = spark.textFile(“hdfs://...”) HadoopRDD
errors = lines.filter(_.startsWith(“ERROR")) FilteredRDD
messages = errors.map(_.split(‘\t")(2)) MappedRDD
HadoopRDD FilteredRDD MappedRDD

. - - o)

- C C

- C C k

L J @) KC

Lectt RS I TY

RDD Fault Tolerance

The larger the lineage, more computation is needed, and thus
recovery from failure will be longer.

Therefore, RDDs only allow operations that touch a large number

of records at the same time.

Transformations
(define a new RDD)

map
filter
sample
groupByKey
reduceByKey
sortByKey

flatMap
union
join
cogroup
Cross
mapValues

Actions
(return a result to
driver program)

collect
reduce
count
save
lookupKey

Lecture 16 : 590.04 Fall 15

__uke

UNIVYERSITY

RDD Fault Tolerance

The larger the lineage, more computation is needed, and thus
recovery from failure will be longer.

Therefore, RDDs only allow operations that touch a large number
of records at the same time.

— Great for batch operations

— Not so good for random access or asynchronous algorithms.

Lecture 16 : 590.04 Fall 15 25 Duke

UNIVYERSITY

Iterative Computation

* Logistic Regression

val points = spark.textFile(...)
.map (parsePoint) .persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(l+exp(-p.y*(w dot p.x)))-D)*p.y
}.reduce((a,b) => a+b)
w -= gradient

}

Lecture 16 : 590.04 Fall 15 26 DUke

UNIVYERSITY

Page Rank

input file \Wks ranks,

Lineage graphs can be long. Uses < join
checkpointing in such cases. contribs,,
reduce + map
ranks, |
val links = spark.textFile(...).map(...).persist() ~ connms1|
var ranks = // RDD of (URL, rank) pairs v
for (i <- 1 to ITERATIONS) { ranks,
// Build an RDD of (targetURL, float) pairs \\\\\\{———J%——j
// with the contributions sent by each page Conimsz

val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))
}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)
.mapValues(sum => a/N + (1-a)*sum)

Lecture 16 : 590.04 Fall 15 27 Duke

UNIVYERSITY

Transformations and Lineage Graphs

Narrow Dependencies:

(IT]

map, filter

union

join with inputs
co-partitioned

Wide Dependencies:

groupByKey

join with inputs not
co-partitioned

User can specify how data is partitioned to ensure narrow

dependencies

Lecture 16 : 590.04 Fall 15

UNIVYERSITY

Scheduling

‘c: ;_
-

‘. Stage 2

Can pipeline execution as long as
dependencies are narrow D
. uke

Lecture 16 : 590.04 Fall 15

[
I
I
I
I
[
I
I
|

UNIVYERSITY

Summary

 Map Reduce requires writing to disk for fault tolerance
* Not good for iterative computation.

RDD: Restricted form of distributed shared memory
 Data in memory is immutable
» Partitioned collection of records

e Can only be built through coarse grained deterministic
transformations (map, filter, join, etc)

Fault Tolerance through lineage
* Maintain a small log of operations
 Recompute lost partitions when failures occur

Duke

Lecture 16 : 590.04 Fall 15 UNIVERSITY

