
Fault	 Tolerant	 Distributed	 Main	
Memory	 Systems	

CompSci	 590.04	
Instructor:	 Ashwin	 Machanavajjhala	

1	 Lecture	 16	 :	 590.04	 Fall	 15	

Recap:	 Map	 Reduce	

Lecture	 16	 :	 590.04	 Fall	 15	 2	

Map	 Phase	
(per	 record	 computaEon)	

Reduce	 Phase	
(global	 computaEon)	

Shuffle	

map
!

!!, !! ! list! !!, !! !
!reduce

!
!!, list(!!) ! list! !!, !! !

!

Split	

Recap:	 Map	 Reduce	

Lecture	 16	 :	 590.04	 Fall	 15	 3	

Programming	 Model	 Distributed	 System	 	

•  Simple	 model	
	

•  Programmer	 only	 	
describes	 the	 logic	

•  Works	 on	 commodity	 hardware	

•  Scales	 to	 thousands	 of	 machines	

•  Ship	 code	 to	 the	 data,	 rather	 	
than	 ship	 data	 to	 code	

•  Hides	 all	 the	 hard	 systems	 	
problems	 from	 the	 programmer	
•  Machine	 failures	
•  Data	 placement	
•  …	

+	

Recap:	 Map	 Reduce	

Lecture	 16	 :	 590.04	 Fall	 15	 4	

But	 as	 soon	 as	 it	 got	 popular,	 users	 wanted	 more:	 	
	
•  More	 complex,	 mulE-‐stage	 applicaEons	 	

(e.g.	 iteraEve	 machine	 learning	 &	 graph	 processing)	 	
•  More	 interacEve	 ad-‐hoc	 queries	 	
	 Examples(

iter."1" iter."2" .((.((.(

Input"

HDFS"
read"

HDFS"
write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"

Recap:	 Map	 Reduce	

Lecture	 16	 :	 590.04	 Fall	 15	 5	

But	 as	 soon	 as	 it	 got	 popular,	 users	 wanted	 more:	 	
	
•  More	 complex,	 mulE-‐stage	 applicaEons	 	

(e.g.	 iteraEve	 machine	 learning	 &	 graph	 processing)	 	
•  More	 interacEve	 ad-‐hoc	 queries	 	
	 Examples(

iter."1" iter."2" .((.((.(

Input"

HDFS"
read"

HDFS"
write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"

Thus	 arose	 many	 specialized	 frameworks	 for	 parallel	
processing	

Recap:	 Pregel	
3 6 2 1

Superstep 0

6 6 2 6

Superstep 1

6 6 6 6

Superstep 2

6 6 6 6

Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Lecture	 16	 :	 590.04	 Fall	 15	 6	

GraphLab	

7	

Data	 Graph	
Shared	 Data	 Table	

Scheduling	

Update	 FuncEons	 and	 Scopes	

Lecture	 16	 :	 590.04	 Fall	 15	

Problem	 with	 specialized	 frameworks	
•  Running	 mulE-‐stage	 workflows	 is	 hard	

–  Extract	 a	 menEons	 of	 celebriEes	 from	 news	 arEcles	
–  Construct	 a	 co-‐reference	 graph	 of	 celebriEes	 (based	 on	 cooccurence	 in	 the	

same	 arEcle)	
–  Analyze	 this	 graph	 (say	 connected	 components	 /	 page	 rank)	

Lecture	 16	 :	 590.04	 Fall	 15	 8	

•  Graph	 processing	 on	 Map	 Reduce	 is	 slow.	
	

•  The	 input	 does	 not	 have	 a	 graph	 abstracEon.	 Map	
Reduce	 is	 a	 good	 candidate	 to	 construct	 the	
graph	 in	 the	 first	 place.	 	

Root	 Cause	 Analysis	
•  Why	 do	 graph	 processing	 algorithms	 and	 iteraEve	 computaEon	

do	 poorly	 on	 Map	 Reduce?	 	

•  There	 is	 usually	 some	 (large)	 input	 that	 does	 not	 change	 across	
iteraEons.	 	
Map	 reduce	 unnecessarily	 keeps	 wriEng	 to	 and	 reading	 from	 disk.	

Lecture	 16	 :	 590.04	 Fall	 15	 9	

Examples(

iter."1" iter."2" .((.((.(

Input"

HDFS"
read"

HDFS"
write"

HDFS"
read"

HDFS"
write"

Input"

query"1"

query"2"

query"3"

result"1"

result"2"

result"3"

.((.((.(

HDFS"
read"

Slow"due"to"replication"and"disk"I/O,"
but"necessary"for"fault"tolerance"

Examples	
•  Page	 Rank	

Links	 in	 the	 graph	 do	 not	 change,	 only	 the	 rank	 of	 each	 node	
changes.	 	

•  LogisEc	 Regression	
The	 original	 set	 of	 points	 do	 not	 change,	 only	 the	 model	 needs	 to	
be	 updated	

•  Connected	 components	 /	 K-‐means	 clustering	
The	 graph/dataset	 does	 not	 change,	 only	 the	 labels	 on	 the	 nodes/
points	 changes.	 	 	

Lecture	 16	 :	 590.04	 Fall	 15	 10	

Examples	
•  Page	 Rank	

Links	 in	 the	 graph	 do	 not	 change,	 only	 the	 rank	 of	 each	 node	
changes.	 	

•  LogisEc	 Regression	
The	 original	 set	 of	 points	 do	 not	 change,	 only	 the	 model	 needs	 to	
be	 updated	

•  Connected	 components	 /	 K-‐means	 clustering	
The	 graph/dataset	 does	 not	 change,	 only	 the	 labels	 on	 the	 nodes/
points	 changes.	 	 	

Lecture	 16	 :	 590.04	 Fall	 15	 11	

LARGE	

Examples	
•  Page	 Rank	

Links	 in	 the	 graph	 do	 not	 change,	 only	 the	 rank	 of	 each	 node	
changes.	 	

•  LogisEc	 Regression	
The	 original	 set	 of	 points	 do	 not	 change,	 only	 the	 model	 needs	 to	
be	 updated	

•  Connected	 components	 /	 K-‐means	 clustering	
The	 graph/dataset	 does	 not	 change,	 only	 the	 labels	 on	 the	 nodes/
points	 changes.	 	 	

Lecture	 16	 :	 590.04	 Fall	 15	 12	

small	

Idea:	 Load	 the	 “immutable”	 part	 into	
memory	

•  Twiger	 follows	 graph:	 26GB	 uncompressed	

•  Can	 be	 stored	 in	 memory	 using	 7	 off	 the	 shelf	 machines	 each	
having	 4	 GB	 memory	 each.	 	

Lecture	 16	 :	 590.04	 Fall	 15	 13	

Idea:	 Load	 the	 “immutable”	 part	 into	
memory	

•  Twiger	 follows	 graph:	 26GB	 uncompressed	

•  Can	 be	 stored	 in	 memory	 using	 7	 off	 the	 shelf	 machines	 each	
having	 4	 GB	 memory	 each.	 	

•  Problem:	 Fault	 Tolerance!	 	

Lecture	 16	 :	 590.04	 Fall	 15	 14	

Fault	 Tolerant	 Distributed	 Memory	
•  SoluEon	 1:	 Global	 CheckpoinEng	

•  E.g.,	 Piccolo	 (hgp://piccolo.news.cs.nyu.edu/)	

•  Problem:	 need	 to	 redo	 a	 lot	 of	 computaEon.	 	
(In	 Map	 Reduce:	 need	 to	 only	 to	 redo	 a	 Mapper	 or	 Reducer)	

Lecture	 16	 :	 590.04	 Fall	 15	 15	

Fault	 Tolerant	 Distributed	 Memory	
•  SoluEon	 2:	 ReplicaEon	 (e.g.,	 RAMCloud)	

	

Lecture	 16	 :	 590.04	 Fall	 15	 16	

7:10 J. Ousterhout et al.

Fig. 4. Each master organizes its main memory as a log, which is divided into 8MB segments. Each segment
is replicated on the secondary storage of several backups (e.g., segment 124 is replicated on backups 45, 7,
and 11). The master maintains a hash table to locate live objects quickly. To look up an object, a master
selects a hash table bucket using a hash of the object’s table identifier and key. A bucket occupies one cache
line (64 bytes) and contains eight entries, each holding a 48-bit pointer to an object in the log and 16 bits
of the object’s key hash. For each bucket entry that matches the desired key hash, the full key must be
compared against the key stored in the log entry. Small objects can typically be retrieved with two last-level
cache misses: one for the hash table bucket and one for the object in the log. If a hash bucket fills, its last
entry is used as a pointer to an overflow bucket.

log is the only storage for object data; a single log structure is used both for primary
copies in memory and backup copies on secondary storage.

Log-structured storage provides four attractive properties, which have been instru-
mental in meeting the requirements of performance, durability, and scalability:

—High throughput: Updates can be batched together in large blocks for efficient writing
to secondary storage.

—Crash recovery: If a master crashes, its log can be replayed to reconstruct the infor-
mation that was in the master’s DRAM.

—Efficient memory utilization: The log serves as the storage allocator for most of a
master’s DRAM, and it does this more efficiently than a traditional malloc-style
allocator or garbage collector.

—Consistency: The log provides a simple way of serializing operations. We have made
only limited use of this feature so far but expect it to become more important as we
implement higher-level features such as multiobject transactions.

We will discuss these properties in more detail throughout the rest of the article.

4.1. Log Basics
The log for each master is divided into 8MB segments as shown in Figure 4; log segments
occupy almost all of the master’s memory. New information is appended to the head
segment; segments other than the head are immutable. Figure 5 summarizes the types
of entries that are stored in the log.

In addition to the log, the only other major data structure on a master is a hash
table, which contains one entry for each live object stored on the master. During read
requests, the hash table allows the master to determine quickly whether there exists
an object corresponding to a particular table identifier and key and, if so, find its entry
in the log (see Figure 4).

Each log segment is replicated in secondary storage on a configurable number of
backups (typically three). The master chooses a different set of backups at random for
each segment; over time, its replicas tend to spread across all of the backups in the
cluster. Segment replicas are never read during normal operation; they are only read
if the master that wrote them crashes, at which time they are read in their entirety as

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 7, Publication date: August 2015.

RAMCloud	
•  Log	 Structured	 Storage	
•  Each	 master	 maintains	 in	 memory	 	

–  An	 append	 only	 log	
–  Hash	 Table	 (object	 id,	 locaEon	 on	 the	 log)	

•  Every	 write	 becomes	 an	 append	 on	 the	 log	
–  Plus	 a	 write	 to	 the	 hash	 table	

•  Log	 is	 divided	 into	 log	 segments	

Lecture	 16	 :	 590.04	 Fall	 15	 17	

Durable	 Writes 	 	
•  Write	 to	 the	 head	 of	 log	 (in	 master’s	 memory)	
•  Write	 to	 hash	 table	 (in	 master’s	 memory)	
•  ReplicaEon	 to	 3	 other	 backups	

–  They	 each	 write	 to	 the	 backup	 log	 in	 memory	 and	 return	

•  Master	 returns	 as	 soon	 as	 ACK	 is	 received	 from	 replicas.	 	

•  Backups	 write	 to	 disk	 when	 the	 log	 segment	 becomes	 full.	 	

Lecture	 16	 :	 590.04	 Fall	 15	 18	

Fault	 Tolerant	 Distributed	 Memory	
•  SoluEon	 2:	 ReplicaEon	

•  Log	 Structured	 Storage	 (e.g.,	 RAMCloud)	 +	 ReplicaEon	

•  Problem:	 	
–  Every	 write	 triggers	 replicaEon	 across	 nodes,	 which	 can	 become	 expensive.	
–  Log	 needs	 constant	 maintenance	 and	 garbage	 cleaning.	 	 	

Lecture	 16	 :	 590.04	 Fall	 15	 19	

Fault	 Tolerant	 Distributed	 Memory	 	
•  Moreover,	 exisEng	 soluEons	 (Piccolo,	 RAMCloud,	 memcacheD)	

assume	 that	 objects	 in	 memory	 can	 be	 read	 as	 well	 as	 wrigen	

•  But,	 in	 most	 applicaEons	 we	 only	 need	 objects	 in	 memory	 that	
are	 read	 (and	 hence	 immutable).	 	

Lecture	 16	 :	 590.04	 Fall	 15	 20	

Fault	 Tolerant	 Distributed	 Memory	 	
•  SoluEon	 3:	 Resilient	 Distributed	 Datasets	

Restricted	 form	 of	 distributed	 shared	 memory	 	
•  Data	 in	 memory	 is	 immutable	
•  ParEEoned	 collecEon	 of	 records	 	
•  Can	 only	 be	 built	 through	 coarse	 grained	 determinisEc	

transformaEons	 (map,	 filter,	 join,	 etc)	

Fault	 Tolerance	 through	 lineage	
•  Maintain	 a	 small	 log	 of	 operaEons	
•  Recompute	 lost	 parEEons	 when	 failures	 occur	

Lecture	 16	 :	 590.04	 Fall	 15	 21	

Example:	 Log	 Mining	

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

messages.persist()

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

Lecture	 16	 :	 590.04	 Fall	 15	 22	

Original	 File	

This	 is	 the	 RDD	 that	 is	 stored	

First	 acEon	 triggers	 RDD	
computaEon	 and	 load	 into	

memory	

RDD	 Fault	 Tolerance	
•  RDDs	 track	 the	 graph	 of	 operaEons	 used	 to	 construct	 them,	

called	 lineage.	 	
•  Lineage	 is	 used	 to	 rebuild	 data	 lost	 due	 to	 failures	

lines = spark.textFile(“hdfs://...”) HadoopRDD	
errors = lines.filter(_.startsWith(“ERROR”)) FilteredRDD	
messages = errors.map(_.split(‘\t’)(2)) MappedRDD	
	

Lecture	 16	 :	 590.04	 Fall	 15	 23	

RDDs"track"the"graph"of"transformations"that"
built"them"(their"lineage)"to"rebuild"lost"data"

E.g.:"

"

"

messages = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))

HadoopRDD"
"

path"="hdfs://…"

FilteredRDD"
"

func"="_.contains(...)"

MappedRDD"
"

func"="_.split(…)"

Fault(Recovery(

HadoopRDD" FilteredRDD" MappedRDD"

RDD	 Fault	 Tolerance	
•  The	 larger	 the	 lineage,	 more	 computaEon	 is	 needed,	 and	 thus	

recovery	 from	 failure	 will	 be	 longer.	 	

•  Therefore,	 RDDs	 only	 allow	 operaEons	 that	 touch	 a	 large	 number	
of	 records	 at	 the	 same	 Eme.	 	

Lecture	 16	 :	 590.04	 Fall	 15	 24	

Spark(Operations(

Transformations(
(define"a"new"RDD)"

map"
filter"

sample"
groupByKey"
reduceByKey"
sortByKey"

flatMap"
union"
join"

cogroup"
cross"

mapValues"

Actions(
(return"a"result"to"
driver"program)"

collect"
reduce"
count"
save"

lookupKey"

RDD	 Fault	 Tolerance	
•  The	 larger	 the	 lineage,	 more	 computaEon	 is	 needed,	 and	 thus	

recovery	 from	 failure	 will	 be	 longer.	 	

•  Therefore,	 RDDs	 only	 allow	 operaEons	 that	 touch	 a	 large	 number	
of	 records	 at	 the	 same	 Eme.	
–  Great	 for	 batch	 operaEons	
–  Not	 so	 good	 for	 random	 access	 or	 asynchronous	 algorithms.	 	

Lecture	 16	 :	 590.04	 Fall	 15	 25	

IteraEve	 ComputaEon	
•  LogisEc	 Regression	

Lecture	 16	 :	 590.04	 Fall	 15	 26	

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Page	 Rank	

Lecture	 16	 :	 590.04	 Fall	 15	 27	

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Lineage	 graphs	 can	 be	 long.	 Uses	
checkpoinEng	 in	 such	 cases.	 	

TransformaEons	 and	 Lineage	 Graphs	

Lecture	 16	 :	 590.04	 Fall	 15	 28	

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

User	 can	 specify	 how	 data	 is	 parEEoned	 to	 ensure	 narrow	
dependencies	

Scheduling	

Lecture	 16	 :	 590.04	 Fall	 15	 29	

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Can	 pipeline	 execuEon	 as	 long	 as	
dependencies	 are	 narrow	

Summary	
•  Map	 Reduce	 requires	 wriEng	 to	 disk	 for	 fault	 tolerance	
•  Not	 good	 for	 iteraEve	 computaEon.	 	

RDD:	 Restricted	 form	 of	 distributed	 shared	 memory	 	
•  Data	 in	 memory	 is	 immutable	
•  ParEEoned	 collecEon	 of	 records	 	
•  Can	 only	 be	 built	 through	 coarse	 grained	 determinisEc	

transformaEons	 (map,	 filter,	 join,	 etc)	

Fault	 Tolerance	 through	 lineage	
•  Maintain	 a	 small	 log	 of	 operaEons	
•  Recompute	 lost	 parEEons	 when	 failures	 occur	

Lecture	 16	 :	 590.04	 Fall	 15	 30	

