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Mul,-­‐way	
  Joins	
  
	
   	
   	
  J(a,b,c)	
  :-­‐	
  R(a,b)	
  S(b,c)	
  T(a,c)	
  

	
  
•  Historically	
  databases	
  designers	
  decided	
  that	
  the	
  best	
  way	
  to	
  

handle	
  mul,-­‐way	
  joins	
  is	
  to	
  do	
  them	
  one	
  pair	
  at	
  a	
  ,me.	
  	
  
–  For	
  efficiency	
  reasons.	
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CSE 444: Database Internals 

Lectures 11-12  

Query Optimization (part 2) 

1 Magda Balazinska - CSE 444, Spring 2012 2 

Query Optimization Algorithm 

•  Enumerate alternative plans (logical & physical) 

•  Compute estimated cost of each plan 
–  Compute number of I/Os 

–  Compute CPU cost 

•  Choose plan with lowest cost 
–  This is called cost-based optimization 

Magda Balazinska - CSE 444, Spring 2012 
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Lessons 

•  Need to consider several physical plans 
–  Even for one, simple logical plan 

•  No magic �best� plan: depends on the data 

•  In order to make the right choice 
–  Need to have statistics over the data 

–  The B�s, the T�s, the V�s 

Magda Balazinska - CSE 444, Spring 2012 4 

Outline 

•  Search space 

•  Algorithm for enumerating query plans 

 

Magda Balazinska - CSE 444, Spring 2012 
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Relational Algebra Equivalences 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 

–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 
–  Commutative : R � S same as S � R  

–  Associative: R � (S � T) same as (R � S) � T 
Magda Balazinska - CSE 444, Spring 2012 

Left-Deep Plans and 
Bushy Plans 

6 

R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 

Magda Balazinska - CSE 444, Spring 2012 



How	
  fast	
  is	
  this	
  approach?	
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R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors
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We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0
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The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection
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How	
  fast	
  is	
  this	
  approach?	
  

•  Each	
  instance	
  has	
  2m+1	
  rows.	
  	
  
•  J(a,	
  b,	
  c)	
  has	
  3m+1	
  rows	
  
•  Any	
  pairwise	
  join	
  (e.g.,	
  J1(a,b,c)	
  =	
  R(a,b),	
  S(b,c))	
  has	
  size	
  m2	
  +	
  m	
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a similar analysis to illustrate the recursive structure of
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Now we present a second way to compute Q�rais that
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a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
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What	
  does	
  this	
  mean	
  for	
  triangle	
  
coun,ng?	
  

•  Every	
  database	
  system	
  necessarily	
  takes	
  O(N2)	
  
–  Ignoring	
  log	
  terms	
  

•  Find	
  all	
  pairs	
  (b,c)	
  are	
  connected	
  with	
  a	
  
•  Check	
  if	
  (b,c)	
  is	
  an	
  edge.	
  	
  

•  Is	
  this	
  the	
  best	
  we	
  can	
  do?	
  	
  

Lecture	
  19	
  :	
  590.04	
  Fall	
  15	
   5	
  



Detour:	
  Can	
  Sampling	
  Help	
  Joins?	
  
•  Sample(Join(R,S))	
  ≠	
  Join(Sample(R),	
  Sample(S))	
  

•  In	
  R	
  x	
  S:	
  Half	
  the	
  records	
  have	
  ‘a’	
  and	
  half	
  the	
  records	
  have	
  ‘b’	
  

•  In	
  Sample(R):	
  probability	
  ‘a’	
  appears	
  is	
  very	
  small.	
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Back	
  to	
  triangle	
  coun,ng?	
  
•  Every	
  database	
  system	
  necessarily	
  takes	
  O(N2)	
  

–  Ignoring	
  log	
  terms	
  

•  Find	
  all	
  pairs	
  (b,c)	
  are	
  connected	
  with	
  a	
  
•  Check	
  if	
  (b,c)	
  is	
  an	
  edge.	
  	
  

•  Is	
  this	
  the	
  best	
  we	
  can	
  do?	
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We	
  can	
  do	
  becer!	
  
	
  
•  …	
  not	
  only	
  for	
  triangle	
  counBng,	
  but	
  it	
  seems	
  database	
  systems	
  

have	
  been	
  doing	
  mulB-­‐way	
  joins	
  subopBmally	
  for	
  40	
  years!!!	
  

•  Triangle	
  coun,ng	
  can	
  be	
  solved	
  in	
  O(N1.5),	
  and	
  so	
  can	
  any	
  join	
  of	
  
the	
  form	
  R(a,b)	
  S(b,c)	
  T(a,c).	
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How?	
  	
  
•  Is	
  there	
  an	
  O(N)	
  algorithm	
  for	
  the	
  following	
  join	
  problem:	
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want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of
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thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors
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If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection
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Power	
  of	
  Two	
  Choices:	
  Heavy	
  vs	
  Light	
  
•  Consider	
  acribute	
  A	
  

•  For	
  all	
  ai	
  not	
  equal	
  to	
  a0,	
  there	
  is	
  exactly	
  one	
  tuple	
  in	
  R	
  (ai,	
  b0)	
  
and	
  one	
  tuple	
  in	
  T	
  (ai,	
  c0)	
  

•  The	
  above	
  strategy	
  is	
  bad	
  for	
  a0	
  
–  Joining	
  tables	
  R	
  and	
  T	
  on	
  a0	
  results	
  in	
  an	
  intermediate	
  of	
  N2.	
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same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.
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Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we
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same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.
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Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we
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same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.
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Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we
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same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.
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Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we
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same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.
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Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

Such	
  ai’s	
  are	
  called	
  light	
  	
  nodes.	
  Tradi,onal	
  join	
  
processing	
  works	
  here.	
  	
  

	
  

Such	
  ai’s	
  are	
  called	
  heavy	
  nodes.	
  Need	
  to	
  
compute	
  the	
  join	
  jointly.	
  	
  



Power	
  of	
  Two	
  Choices	
  Algorithm	
  

Lecture	
  19	
  :	
  590.04	
  Fall	
  15	
   13	
  

Algorithm 1 Computing Q� with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q� � H
2: L � �ApRq X �ApT q
3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | � |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q�
8: else
9: For each b P �Bp�A“aRq ^ c P �Cp�A“aT q

do
10: If pb, cq P S then
11: Add pa, b, cq to Q�
12: Return Q

of two sorted sets takes time at most the minimum of the
two sizes. Sort-merge join has this runtime guarantee,
because its inputs are already sorted. Note that the sort-
merge join algorithm also makes use of the power of
two choices idea implicitly to deal with skew. If one
set represents high skew, having very large size, and the
other set has very small size, then their intersection us-
ing sort-merge join only takes time proportional to the
smaller size.

For a0, we consider all b P {b0, b1, . . . , bm}. When
b “ b0, we have

�Cp�B“b0 S q “ �Cp�A“a0 T q “ {c0, . . . , cm},
so we output the m ` 1 triangles in total time Opmq. For
the pairs pa0, biq when i � 1, we have |�B“bi S | “ 1 and
hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i � 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
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2. A USER’S GUIDE TO THE AGM BOUND
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����
���x |

�

F:vPF

xF � 1,@v P V, x � 0
����
��� .

Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | �FPE RF | �
�

FPE
|RF |xF . (6)
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�
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cover is also marked in Figure 3). This is a valid cover,
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5SIGMOD Record, December 2013 (Vol. 42, No. 4) 9

Heavy	
  value	
  

Light	
  value	
  



Run,me	
  Analysis	
  
•  Compu,ng	
  L	
  takes:	
  	
  

•  Rest	
  of	
  the	
  algorithm	
  takes:	
  	
  

Lecture	
  19	
  :	
  590.04	
  Fall	
  15	
   14	
  

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
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�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection
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rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
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If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
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above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
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in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
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a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
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want to compute Q�rais for i � 1, we realize that these
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vertices and thus Opmq “ OpNq overall which is the
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appropriately, computing L in line 2 can easily be done
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the generic worst-case join algorithm described in Sec-
tion 3.
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a di�erent way. We don’t try to estimate the heaviness
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what pairs pb, cq can go along with ai in the output by
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Algorithm 2 works as follows. By computing the in-
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candidates b that can possibly participate with ai in the
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Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with
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Algorithm 1 Computing Q� with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q� � H
2: L � �ApRq X �ApT q
3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | � |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q�
8: else
9: For each b P �Bp�A“aRq ^ c P �Cp�A“aT q

do
10: If pb, cq P S then
11: Add pa, b, cq to Q�
12: Return Q

of two sorted sets takes time at most the minimum of the
two sizes. Sort-merge join has this runtime guarantee,
because its inputs are already sorted. Note that the sort-
merge join algorithm also makes use of the power of
two choices idea implicitly to deal with skew. If one
set represents high skew, having very large size, and the
other set has very small size, then their intersection us-
ing sort-merge join only takes time proportional to the
smaller size.

For a0, we consider all b P {b0, b1, . . . , bm}. When
b “ b0, we have

�Cp�B“b0 S q “ �Cp�A“a0 T q “ {c0, . . . , cm},
so we output the m ` 1 triangles in total time Opmq. For
the pairs pa0, biq when i � 1, we have |�B“bi S | “ 1 and
hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i � 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
1, so we can handle each such ai in Op1q time leading to
an overall run time of Opmq. Thus on this bad example
Algorithm 2 runs in OpNq time.

We present the full analysis of Algorithm 2 in [30]: its
worst-case runtime is exactly the same as that of Algo-
rithm 1. What is remarkable is that both of these algo-
rithms follow exactly the same recursive structure and
they are special cases of a generic worst-case optimal
join algorithm.

2. A USER’S GUIDE TO THE AGM BOUND
We now describe one way to generalize the bound of

the output size of a join (mirroring the OpN3{2q bound
we saw for the triangle query) and illustrate its use with
a few examples.

2.1 AGM Bound

Algorithm 2 Computing Q� by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q � H
2: LA � �ApRq X �ApT q
3: For each a P LA do
4: La

B � �Bp�A“apRqq X �BpS q
5: For each b P La

B do
6: La,b

C � �Cp�B“bpS qq X �Cp�A“apT qq
7: For each c P La,b

C do
8: Add pa, b, cq to Q
9: Return Q

To state the AGM bound, we need some notation. The
natural join problem can be defined as follows. We are
given a collection of m relations. Each relation is over
a collection of attributes. We useV to denote the set of
attributes; let n “ |V|. The join query Q is modeled as
a hypergraph H “ pV,Eq, where for each hyperedge
F P E there is a relation RF on attribute set F. Figure 3
shows several example join queries, their associated hy-
pergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [2] and Grohe-Marx [20] proved
the following remarkable inequality, which shall be re-
ferred to as the AGM’s inequality henceforth. Let x “
pxFqFPE be any point in the following polyhedron:

����
���x |

�

F:vPF

xF � 1,@v P V, x � 0
����
��� .

Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | �FPE RF | �
�

FPE
|RF |xF . (6)

2.2 Example Bounds
We now illustrate the AGM bound on some specific

join queries. We begin with the triangle query Q�. In
this case the corresponding hypergraph H is as in the
left part of Figure 3. We consider two covers (which are
also marked in Figure 3). The first one is xR “ xT “
xS “ 1

2 . This is a valid cover since the required in-
equalities are satisfied for every vertex. For example,
for vertex C, the two edges incident on it are S and T
and we have xS ` xT “ 1 � 1 as required. In this case
the bound (6) states that

|Q�| �
�

|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this
cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 � 1 and for vertex
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hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i � 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
1, so we can handle each such ai in Op1q time leading to
an overall run time of Opmq. Thus on this bad example
Algorithm 2 runs in OpNq time.

We present the full analysis of Algorithm 2 in [30]: its
worst-case runtime is exactly the same as that of Algo-
rithm 1. What is remarkable is that both of these algo-
rithms follow exactly the same recursive structure and
they are special cases of a generic worst-case optimal
join algorithm.

2. A USER’S GUIDE TO THE AGM BOUND
We now describe one way to generalize the bound of

the output size of a join (mirroring the OpN3{2q bound
we saw for the triangle query) and illustrate its use with
a few examples.

2.1 AGM Bound

Algorithm 2 Computing Q� by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q � H
2: LA � �ApRq X �ApT q
3: For each a P LA do
4: La
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5: For each b P La

B do
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C � �Cp�B“bpS qq X �Cp�A“apT qq
7: For each c P La,b

C do
8: Add pa, b, cq to Q
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To state the AGM bound, we need some notation. The
natural join problem can be defined as follows. We are
given a collection of m relations. Each relation is over
a collection of attributes. We useV to denote the set of
attributes; let n “ |V|. The join query Q is modeled as
a hypergraph H “ pV,Eq, where for each hyperedge
F P E there is a relation RF on attribute set F. Figure 3
shows several example join queries, their associated hy-
pergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [2] and Grohe-Marx [20] proved
the following remarkable inequality, which shall be re-
ferred to as the AGM’s inequality henceforth. Let x “
pxFqFPE be any point in the following polyhedron:
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���x |

�

F:vPF

xF � 1,@v P V, x � 0
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Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | �FPE RF | �
�

FPE
|RF |xF . (6)

2.2 Example Bounds
We now illustrate the AGM bound on some specific

join queries. We begin with the triangle query Q�. In
this case the corresponding hypergraph H is as in the
left part of Figure 3. We consider two covers (which are
also marked in Figure 3). The first one is xR “ xT “
xS “ 1

2 . This is a valid cover since the required in-
equalities are satisfied for every vertex. For example,
for vertex C, the two edges incident on it are S and T
and we have xS ` xT “ 1 � 1 as required. In this case
the bound (6) states that

|Q�| �
�

|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this
cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 � 1 and for vertex
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A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with
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A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with
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A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with
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A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1
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cover since every attribute is contained in n´1 relations.
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��
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which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with
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A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of
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N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “
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n
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relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1
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i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1
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which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
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F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with
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Mul,-­‐way	
  Joins	
  in	
  Parallel	
  Systems	
  
	
   	
   	
  J(a,b,c)	
  :-­‐	
  R(a,b)	
  S(b,c)	
  T(a,c)	
  

	
  
•  Historically	
  databases	
  designers	
  decided	
  that	
  the	
  best	
  way	
  to	
  

handle	
  mul,-­‐way	
  joins	
  is	
  to	
  do	
  them	
  one	
  pair	
  at	
  a	
  ,me.	
  	
  
–  For	
  efficiency	
  reasons.	
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CSE 444: Database Internals 

Lectures 11-12  

Query Optimization (part 2) 

1 Magda Balazinska - CSE 444, Spring 2012 2 

Query Optimization Algorithm 

•  Enumerate alternative plans (logical & physical) 

•  Compute estimated cost of each plan 
–  Compute number of I/Os 

–  Compute CPU cost 

•  Choose plan with lowest cost 
–  This is called cost-based optimization 

Magda Balazinska - CSE 444, Spring 2012 

3!

Lessons 

•  Need to consider several physical plans 
–  Even for one, simple logical plan 

•  No magic �best� plan: depends on the data 

•  In order to make the right choice 
–  Need to have statistics over the data 

–  The B�s, the T�s, the V�s 

Magda Balazinska - CSE 444, Spring 2012 4 

Outline 

•  Search space 

•  Algorithm for enumerating query plans 

 

Magda Balazinska - CSE 444, Spring 2012 

5 

Relational Algebra Equivalences 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 

–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 
–  Commutative : R � S same as S � R  

–  Associative: R � (S � T) same as (R � S) � T 
Magda Balazinska - CSE 444, Spring 2012 

Left-Deep Plans and 
Bushy Plans 

6 

R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 

Magda Balazinska - CSE 444, Spring 2012 
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Summary	
  
•  We	
  have	
  been	
  doing	
  mul,way	
  joins	
  wrong	
  for	
  4	
  decades.	
  

•  Worstcase	
  op,mal	
  joins	
  work	
  by	
  carefully	
  iden,fying	
  skew	
  in	
  the	
  
data	
  and	
  using	
  different	
  algorithms	
  depending	
  on	
  the	
  skew	
  of	
  the	
  
tuple.	
  

•  Bushy	
  mul,way	
  joins	
  maybe	
  useful	
  in	
  parallel	
  serngs.	
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