
Worst	
 Case	
 Op,mal	
 Joins	

CompSci	
 590.04	

Instructor:	
 Ashwin	
 Machanavajjhala	

	

1	
 Lecture	
 19	
 :	
 590.04	
 Fall	
 15	

Mul,-­‐way	
 Joins	

	
 	
 	
 J(a,b,c)	
 :-­‐	
 R(a,b)	
 S(b,c)	
 T(a,c)	

	

•  Historically	
 databases	
 designers	
 decided	
 that	
 the	
 best	
 way	
 to	

handle	
 mul,-­‐way	
 joins	
 is	
 to	
 do	
 them	
 one	
 pair	
 at	
 a	
 ,me.	
 	

–  For	
 efficiency	
 reasons.	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 2	

1

CSE 444: Database Internals

Lectures 11-12

Query Optimization (part 2)

1 Magda Balazinska - CSE 444, Spring 2012 2

Query Optimization Algorithm

•  Enumerate alternative plans (logical & physical)

•  Compute estimated cost of each plan
–  Compute number of I/Os

–  Compute CPU cost

•  Choose plan with lowest cost
–  This is called cost-based optimization

Magda Balazinska - CSE 444, Spring 2012

3!

Lessons

•  Need to consider several physical plans
–  Even for one, simple logical plan

•  No magic �best� plan: depends on the data

•  In order to make the right choice
–  Need to have statistics over the data

–  The B�s, the T�s, the V�s

Magda Balazinska - CSE 444, Spring 2012 4

Outline

•  Search space

•  Algorithm for enumerating query plans

Magda Balazinska - CSE 444, Spring 2012

5

Relational Algebra Equivalences

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))

–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R � S same as S � R

–  Associative: R � (S � T) same as (R � S) � T
Magda Balazinska - CSE 444, Spring 2012

Left-Deep Plans and
Bushy Plans

6

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

Magda Balazinska - CSE 444, Spring 2012

How	
 fast	
 is	
 this	
 approach?	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 3	

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

How	
 fast	
 is	
 this	
 approach?	

•  Each	
 instance	
 has	
 2m+1	
 rows.	
 	

•  J(a,	
 b,	
 c)	
 has	
 3m+1	
 rows	

•  Any	
 pairwise	
 join	
 (e.g.,	
 J1(a,b,c)	
 =	
 R(a,b),	
 S(b,c))	
 has	
 size	
 m2	
 +	
 m	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 4	

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

What	
 does	
 this	
 mean	
 for	
 triangle	

coun,ng?	

•  Every	
 database	
 system	
 necessarily	
 takes	
 O(N2)	

–  Ignoring	
 log	
 terms	

•  Find	
 all	
 pairs	
 (b,c)	
 are	
 connected	
 with	
 a	

•  Check	
 if	
 (b,c)	
 is	
 an	
 edge.	
 	

•  Is	
 this	
 the	
 best	
 we	
 can	
 do?	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 5	

Detour:	
 Can	
 Sampling	
 Help	
 Joins?	

•  Sample(Join(R,S))	
 ≠	
 Join(Sample(R),	
 Sample(S))	

•  In	
 R	
 x	
 S:	
 Half	
 the	
 records	
 have	
 ‘a’	
 and	
 half	
 the	
 records	
 have	
 ‘b’	

•  In	
 Sample(R):	
 probability	
 ‘a’	
 appears	
 is	
 very	
 small.	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 6	

Back	
 to	
 triangle	
 coun,ng?	

•  Every	
 database	
 system	
 necessarily	
 takes	
 O(N2)	

–  Ignoring	
 log	
 terms	

•  Find	
 all	
 pairs	
 (b,c)	
 are	
 connected	
 with	
 a	

•  Check	
 if	
 (b,c)	
 is	
 an	
 edge.	
 	

•  Is	
 this	
 the	
 best	
 we	
 can	
 do?	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 7	

We	
 can	
 do	
 becer!	

	

•  …	
 not	
 only	
 for	
 triangle	
 counBng,	
 but	
 it	
 seems	
 database	
 systems	

have	
 been	
 doing	
 mulB-­‐way	
 joins	
 subopBmally	
 for	
 40	
 years!!!	

•  Triangle	
 coun,ng	
 can	
 be	
 solved	
 in	
 O(N1.5),	
 and	
 so	
 can	
 any	
 join	
 of	

the	
 form	
 R(a,b)	
 S(b,c)	
 T(a,c).	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 8	

How?	
 	

•  Is	
 there	
 an	
 O(N)	
 algorithm	
 for	
 the	
 following	
 join	
 problem:	
 	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 9	

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Power	
 of	
 Two	
 Choices:	
 Heavy	
 vs	
 Light	

•  Consider	
 acribute	
 A	

•  For	
 all	
 ai	
 not	
 equal	
 to	
 a0,	
 there	
 is	
 exactly	
 one	
 tuple	
 in	
 R	
 (ai,	
 b0)	

and	
 one	
 tuple	
 in	
 T	
 (ai,	
 c0)	

•  The	
 above	
 strategy	
 is	
 bad	
 for	
 a0	

–  Joining	
 tables	
 R	
 and	
 T	
 on	
 a0	
 results	
 in	
 an	
 intermediate	
 of	
 N2.	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 10	

same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.

�

S�

TR

�

T�

SR

�

R�

TS

Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

Power	
 of	
 Two	
 Choices:	
 Heavy	
 vs	
 Light	

•  Consider	
 acribute	
 A	

•  For	
 all	
 ai	
 not	
 equal	
 to	
 a0,	
 there	
 is	
 exactly	
 one	
 tuple	
 in	
 R	
 (ai,	
 b0)	

and	
 one	
 tuple	
 in	
 T	
 (ai,	
 c0)	

•  For	
 ai	
 =	
 a0:	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 11	

same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.

�

S�

TR

�

T�

SR

�

R�

TS

Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.

�

S�

TR

�

T�

SR

�

R�

TS

Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

There	
 are	
 O(N)	
 values	
 ai,	
 each	
 resul,ng	
 in	
 a	

single	
 join	
 record	
 (ai,	
 b0,	
 c0).	
 Checking	
 whether	

(b0,	
 c0)	
 is	
 in	
 S	
 is	
 O(1)	
 …	
 assuming	
 an	
 index	

There	
 are	
 N	
 rows	
 in	
 S.	
 Again,	
 checking	
 (ai,	
 b)	
 is	
 in	

R	
 and	
 (ai,	
 c)	
 is	
 in	
 T	
 takes	
 O(1)	
 …	
 	

assuming	
 an	
 index	

Power	
 of	
 Two	
 Choices:	
 Heavy	
 vs	
 Light	

•  Consider	
 acribute	
 A	

•  For	
 all	
 ai	
 not	
 equal	
 to	
 a0,	
 there	
 is	
 exactly	
 one	
 tuple	
 in	
 R	
 (ai,	
 b0)	

and	
 one	
 tuple	
 in	
 T	
 (ai,	
 c0)	

•  For	
 ai	
 =	
 a0:	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 12	

same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.

�

S�

TR

�

T�

SR

�

R�

TS

Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.

�

S�

TR

�

T�

SR

�

R�

TS

Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

Such	
 ai’s	
 are	
 called	
 light	
 	
 nodes.	
 Tradi,onal	
 join	

processing	
 works	
 here.	
 	

	

Such	
 ai’s	
 are	
 called	
 heavy	
 nodes.	
 Need	
 to	

compute	
 the	
 join	
 jointly.	
 	

Power	
 of	
 Two	
 Choices	
 Algorithm	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 13	

Algorithm 1 Computing Q� with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q� � H
2: L � �ApRq X �ApT q
3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | � |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q�
8: else
9: For each b P �Bp�A“aRq ^ c P �Cp�A“aT q

do
10: If pb, cq P S then
11: Add pa, b, cq to Q�
12: Return Q

of two sorted sets takes time at most the minimum of the
two sizes. Sort-merge join has this runtime guarantee,
because its inputs are already sorted. Note that the sort-
merge join algorithm also makes use of the power of
two choices idea implicitly to deal with skew. If one
set represents high skew, having very large size, and the
other set has very small size, then their intersection us-
ing sort-merge join only takes time proportional to the
smaller size.

For a0, we consider all b P {b0, b1, . . . , bm}. When
b “ b0, we have

�Cp�B“b0 S q “ �Cp�A“a0 T q “ {c0, . . . , cm},
so we output the m ` 1 triangles in total time Opmq. For
the pairs pa0, biq when i � 1, we have |�B“bi S | “ 1 and
hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i � 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
1, so we can handle each such ai in Op1q time leading to
an overall run time of Opmq. Thus on this bad example
Algorithm 2 runs in OpNq time.

We present the full analysis of Algorithm 2 in [30]: its
worst-case runtime is exactly the same as that of Algo-
rithm 1. What is remarkable is that both of these algo-
rithms follow exactly the same recursive structure and
they are special cases of a generic worst-case optimal
join algorithm.

2. A USER’S GUIDE TO THE AGM BOUND
We now describe one way to generalize the bound of

the output size of a join (mirroring the OpN3{2q bound
we saw for the triangle query) and illustrate its use with
a few examples.

2.1 AGM Bound

Algorithm 2 Computing Q� by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q � H
2: LA � �ApRq X �ApT q
3: For each a P LA do
4: La

B � �Bp�A“apRqq X �BpS q
5: For each b P La

B do
6: La,b

C � �Cp�B“bpS qq X �Cp�A“apT qq
7: For each c P La,b

C do
8: Add pa, b, cq to Q
9: Return Q

To state the AGM bound, we need some notation. The
natural join problem can be defined as follows. We are
given a collection of m relations. Each relation is over
a collection of attributes. We useV to denote the set of
attributes; let n “ |V|. The join query Q is modeled as
a hypergraph H “ pV,Eq, where for each hyperedge
F P E there is a relation RF on attribute set F. Figure 3
shows several example join queries, their associated hy-
pergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [2] and Grohe-Marx [20] proved
the following remarkable inequality, which shall be re-
ferred to as the AGM’s inequality henceforth. Let x “
pxFqFPE be any point in the following polyhedron:

����
���x |

�

F:vPF

xF � 1,@v P V, x � 0
����
��� .

Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | �FPE RF | �
�

FPE
|RF |xF . (6)

2.2 Example Bounds
We now illustrate the AGM bound on some specific

join queries. We begin with the triangle query Q�. In
this case the corresponding hypergraph H is as in the
left part of Figure 3. We consider two covers (which are
also marked in Figure 3). The first one is xR “ xT “
xS “ 1

2 . This is a valid cover since the required in-
equalities are satisfied for every vertex. For example,
for vertex C, the two edges incident on it are S and T
and we have xS ` xT “ 1 � 1 as required. In this case
the bound (6) states that

|Q�| �
�

|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this
cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 � 1 and for vertex

5SIGMOD Record, December 2013 (Vol. 42, No. 4) 9

Heavy	
 value	

Light	
 value	

Run,me	
 Analysis	

•  Compu,ng	
 L	
 takes:	
 	

•  Rest	
 of	
 the	
 algorithm	
 takes:	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 14	

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q�. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q�ra0s takes Opmq time. On the other hand, when we
want to compute Q�rais for i � 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is �pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q� using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

�

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y � 0

minpx, yq � �xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

�

aPL

xa ¨ ya �
��

aPL

x2
a ¨
��

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-
3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
�

aPL

�
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
�

|S | ¨
�

aPL

�
|�A“aR| ¨

�
|�A“aT | (5)

�
�

|S | ¨
��

aPL

|�A“aR| ¨
��

aPL

|�A“aT |

�
�

|S | ¨
� �

aP�ApRq
|�A“aR| ¨

� �

aP�ApTq
|�A“aT |

“
�

|S | ¨
�

|R| ¨
�

|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q�rais that

di�erentiates between heavy and light values ai P A in
a di�erent way. We don’t try to estimate the heaviness
of ai right o� the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection �Bp�A“ai pRqq X �BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is �Cp�B“bpS qqX
�Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q�.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Can	
 we	
 do	
 becer?	
 	

•  NO!	
 	

•  A	
 matching	
 lower	
 bound	
 by	
 Atserias	
 Grohe	
 and	
 Marx	
 (or	
 the	

AGM	
 bound)	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 15	

AGM	
 Bound	

•  Let	
 V	
 denote	
 the	
 set	
 of	
 rela,ons	

•  Every	
 rela,on	
 is	
 a	
 subset	
 of	
 acributes	
 F	
 (or	
 a	
 hyper	
 edge)	

•  Let	
 x	
 be	
 a	
 vector	
 of	
 weights	
 associated	

with	
 each	
 rela,on	
 (hyperedge)	

•  Frac%onal	
 Edge	
 Cover:	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 16	

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q�

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Algorithm 1 Computing Q� with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q� � H
2: L � �ApRq X �ApT q
3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | � |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q�
8: else
9: For each b P �Bp�A“aRq ^ c P �Cp�A“aT q

do
10: If pb, cq P S then
11: Add pa, b, cq to Q�
12: Return Q

of two sorted sets takes time at most the minimum of the
two sizes. Sort-merge join has this runtime guarantee,
because its inputs are already sorted. Note that the sort-
merge join algorithm also makes use of the power of
two choices idea implicitly to deal with skew. If one
set represents high skew, having very large size, and the
other set has very small size, then their intersection us-
ing sort-merge join only takes time proportional to the
smaller size.

For a0, we consider all b P {b0, b1, . . . , bm}. When
b “ b0, we have

�Cp�B“b0 S q “ �Cp�A“a0 T q “ {c0, . . . , cm},
so we output the m ` 1 triangles in total time Opmq. For
the pairs pa0, biq when i � 1, we have |�B“bi S | “ 1 and
hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i � 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
1, so we can handle each such ai in Op1q time leading to
an overall run time of Opmq. Thus on this bad example
Algorithm 2 runs in OpNq time.

We present the full analysis of Algorithm 2 in [30]: its
worst-case runtime is exactly the same as that of Algo-
rithm 1. What is remarkable is that both of these algo-
rithms follow exactly the same recursive structure and
they are special cases of a generic worst-case optimal
join algorithm.

2. A USER’S GUIDE TO THE AGM BOUND
We now describe one way to generalize the bound of

the output size of a join (mirroring the OpN3{2q bound
we saw for the triangle query) and illustrate its use with
a few examples.

2.1 AGM Bound

Algorithm 2 Computing Q� by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q � H
2: LA � �ApRq X �ApT q
3: For each a P LA do
4: La

B � �Bp�A“apRqq X �BpS q
5: For each b P La

B do
6: La,b

C � �Cp�B“bpS qq X �Cp�A“apT qq
7: For each c P La,b

C do
8: Add pa, b, cq to Q
9: Return Q

To state the AGM bound, we need some notation. The
natural join problem can be defined as follows. We are
given a collection of m relations. Each relation is over
a collection of attributes. We useV to denote the set of
attributes; let n “ |V|. The join query Q is modeled as
a hypergraph H “ pV,Eq, where for each hyperedge
F P E there is a relation RF on attribute set F. Figure 3
shows several example join queries, their associated hy-
pergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [2] and Grohe-Marx [20] proved
the following remarkable inequality, which shall be re-
ferred to as the AGM’s inequality henceforth. Let x “
pxFqFPE be any point in the following polyhedron:

����
���x |

�

F:vPF

xF � 1,@v P V, x � 0
����
��� .

Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | �FPE RF | �
�

FPE
|RF |xF . (6)

2.2 Example Bounds
We now illustrate the AGM bound on some specific

join queries. We begin with the triangle query Q�. In
this case the corresponding hypergraph H is as in the
left part of Figure 3. We consider two covers (which are
also marked in Figure 3). The first one is xR “ xT “
xS “ 1

2 . This is a valid cover since the required in-
equalities are satisfied for every vertex. For example,
for vertex C, the two edges incident on it are S and T
and we have xS ` xT “ 1 � 1 as required. In this case
the bound (6) states that

|Q�| �
�

|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this
cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 � 1 and for vertex

5SIGMOD Record, December 2013 (Vol. 42, No. 4) 9

AGM	
 Bound	

Algorithm 1 Computing Q� with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q� � H
2: L � �ApRq X �ApT q
3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | � |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q�
8: else
9: For each b P �Bp�A“aRq ^ c P �Cp�A“aT q

do
10: If pb, cq P S then
11: Add pa, b, cq to Q�
12: Return Q

of two sorted sets takes time at most the minimum of the
two sizes. Sort-merge join has this runtime guarantee,
because its inputs are already sorted. Note that the sort-
merge join algorithm also makes use of the power of
two choices idea implicitly to deal with skew. If one
set represents high skew, having very large size, and the
other set has very small size, then their intersection us-
ing sort-merge join only takes time proportional to the
smaller size.

For a0, we consider all b P {b0, b1, . . . , bm}. When
b “ b0, we have

�Cp�B“b0 S q “ �Cp�A“a0 T q “ {c0, . . . , cm},
so we output the m ` 1 triangles in total time Opmq. For
the pairs pa0, biq when i � 1, we have |�B“bi S | “ 1 and
hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i � 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
1, so we can handle each such ai in Op1q time leading to
an overall run time of Opmq. Thus on this bad example
Algorithm 2 runs in OpNq time.

We present the full analysis of Algorithm 2 in [30]: its
worst-case runtime is exactly the same as that of Algo-
rithm 1. What is remarkable is that both of these algo-
rithms follow exactly the same recursive structure and
they are special cases of a generic worst-case optimal
join algorithm.

2. A USER’S GUIDE TO THE AGM BOUND
We now describe one way to generalize the bound of

the output size of a join (mirroring the OpN3{2q bound
we saw for the triangle query) and illustrate its use with
a few examples.

2.1 AGM Bound

Algorithm 2 Computing Q� by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q � H
2: LA � �ApRq X �ApT q
3: For each a P LA do
4: La

B � �Bp�A“apRqq X �BpS q
5: For each b P La

B do
6: La,b

C � �Cp�B“bpS qq X �Cp�A“apT qq
7: For each c P La,b

C do
8: Add pa, b, cq to Q
9: Return Q

To state the AGM bound, we need some notation. The
natural join problem can be defined as follows. We are
given a collection of m relations. Each relation is over
a collection of attributes. We useV to denote the set of
attributes; let n “ |V|. The join query Q is modeled as
a hypergraph H “ pV,Eq, where for each hyperedge
F P E there is a relation RF on attribute set F. Figure 3
shows several example join queries, their associated hy-
pergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [2] and Grohe-Marx [20] proved
the following remarkable inequality, which shall be re-
ferred to as the AGM’s inequality henceforth. Let x “
pxFqFPE be any point in the following polyhedron:

����
���x |

�

F:vPF

xF � 1,@v P V, x � 0
����
��� .

Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | �FPE RF | �
�

FPE
|RF |xF . (6)

2.2 Example Bounds
We now illustrate the AGM bound on some specific

join queries. We begin with the triangle query Q�. In
this case the corresponding hypergraph H is as in the
left part of Figure 3. We consider two covers (which are
also marked in Figure 3). The first one is xR “ xT “
xS “ 1

2 . This is a valid cover since the required in-
equalities are satisfied for every vertex. For example,
for vertex C, the two edges incident on it are S and T
and we have xS ` xT “ 1 � 1 as required. In this case
the bound (6) states that

|Q�| �
�

|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this
cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 � 1 and for vertex

5SIGMOD Record, December 2013 (Vol. 42, No. 4) 9

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 17	

Examples	

•  Triples	
 query	

•  Best	
 frac,onal	
 cover	
 assigns	
 weight	
 0.5	
 to	
 each	
 rela,on	

•  Join	
 size	
 is	
 at	
 most	
 (|R|.	
 |S|.	
 |T|)0.5	

•  Another	
 frac,onal	
 cover	
 assings	
 	

0	
 to	
 rela,on	
 S	
 and	
 1	
 each	
 to	
 R	
 and	
 T	

•  Join	
 size	
 is	
 at	
 most	
 |R|.|T|	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 18	

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q�

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Examples	

•  J(a,b,c,d)	
 :-­‐	
 R(a,b,)	
 S(b,c)	
 T(c,d)	
 U(a,c)	
 X(a,d)	
 Y(b,d)	
 Z(c,d)	

•  One	
 cover	
 is	
 assigning	
 weight	
 of	
 1/(n-­‐1)	
 to	
 all	
 rela,ons	

•  If	
 all	
 rela,ons	
 have	
 size	
 N,	
 	

Join	
 size	
 is	
 at	
 most	
 Nn/2	
 	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 19	

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q�

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Tightest	
 AGM	
 Bound	

•  Answer	
 to	
 the	
 following	
 program	

•  Answer	
 is	
 called	
 the	
 fracBonal	
 edge	
 cover	
 number	

	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 20	

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q�

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q�

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q�

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 � 1 as required. For this cover,
bound (6) gives

|Q�| � |R| ¨ |T |. (8)

These two bounds can be better in di�erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

�
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n � 3 attributes and m “

�
n
2

�

relations: one Ri, j for every i � j P rns: we will call
this query Kn. Note that K3 is Q�. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i � j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-
ther, in this case (6) gives a bound of n´1

��
i� j |Ri, j|,

which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q�. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i � j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

��
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
�

FPE
plog2 |RF |q ¨ xF

s.t.
�

F:vPF

xF � 1, v P V

x � 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
�˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to �˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| � 2�˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q � R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 � varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq � S pWXYq ^ S pWWWq ^ T pYZq
R0pZq � S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Mul,-­‐way	
 Joins	
 in	
 Parallel	
 Systems	

	
 	
 	
 J(a,b,c)	
 :-­‐	
 R(a,b)	
 S(b,c)	
 T(a,c)	

	

•  Historically	
 databases	
 designers	
 decided	
 that	
 the	
 best	
 way	
 to	

handle	
 mul,-­‐way	
 joins	
 is	
 to	
 do	
 them	
 one	
 pair	
 at	
 a	
 ,me.	
 	

–  For	
 efficiency	
 reasons.	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 21	

1

CSE 444: Database Internals

Lectures 11-12

Query Optimization (part 2)

1 Magda Balazinska - CSE 444, Spring 2012 2

Query Optimization Algorithm

•  Enumerate alternative plans (logical & physical)

•  Compute estimated cost of each plan
–  Compute number of I/Os

–  Compute CPU cost

•  Choose plan with lowest cost
–  This is called cost-based optimization

Magda Balazinska - CSE 444, Spring 2012

3!

Lessons

•  Need to consider several physical plans
–  Even for one, simple logical plan

•  No magic �best� plan: depends on the data

•  In order to make the right choice
–  Need to have statistics over the data

–  The B�s, the T�s, the V�s

Magda Balazinska - CSE 444, Spring 2012 4

Outline

•  Search space

•  Algorithm for enumerating query plans

Magda Balazinska - CSE 444, Spring 2012

5

Relational Algebra Equivalences

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))

–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R � S same as S � R

–  Associative: R � (S � T) same as (R � S) � T
Magda Balazinska - CSE 444, Spring 2012

Left-Deep Plans and
Bushy Plans

6

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

Magda Balazinska - CSE 444, Spring 2012

?	

Summary	

•  We	
 have	
 been	
 doing	
 mul,way	
 joins	
 wrong	
 for	
 4	
 decades.	

•  Worstcase	
 op,mal	
 joins	
 work	
 by	
 carefully	
 iden,fying	
 skew	
 in	
 the	

data	
 and	
 using	
 different	
 algorithms	
 depending	
 on	
 the	
 skew	
 of	
 the	

tuple.	

•  Bushy	
 mul,way	
 joins	
 maybe	
 useful	
 in	
 parallel	
 serngs.	
 	

Lecture	
 19	
 :	
 590.04	
 Fall	
 15	
 22	

