Sampling from Databases

CompSci 590.04
Instructor: AshwinMachanavajjhala
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Recap

* Given a set of elements, random sampling when number of
elements N is known is easy if you have random access to any
arbitrary element

— Pick nindexes at random from 1 ... N
— Read the corresponding n elements

e Reservoir Sampling: If N is unknown, or if you are only allowed
sequential access to the data

— Read elements one at a time. Include tth element into a reservoir of size n
with probability n/t.
— Need to access at most n(1+In(N/n)) elements to get a sample of size n
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— Optimal for any reservoir based algorithm
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Today’s Class

* In general, sampling from a database where elements are only
accessed using indexes.
— B*-Trees
— Nearest neighbor indexes

e Estimating the number of restaurants in Google Places.
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B+ Tree

Data values only appear in the leaves
Internal nodes only contain keys

Each node has between f,_ /2 and f__ children

— f,.« = maximum fan-out of the tree

Root has 2 or more children
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Problem

* How to pick an element uniformly at random from the B* Tree?
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Attempt 1: Random Path

Choose a random path

e Start from the root

* Choose a child uniformly at random

* Uniformly sample from the resulting leaf node

e Will this result in a random sample?
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Attempt 1: Random Path

Choose a random path

e Start from the root

* Choose a child uniformly at random

* Uniformly sample from the resulting leaf node

e Will this result in a random sample?

NO. 7 23 .';1 43
Elements reachable from = ALY
internal nodes with low /—// il AN

fanout are more likely.
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Attempt 2 : Random Path with Rejection

* Attempt 1 will work if all internal nodes have the same fan-out

e Choose a random path
— Start from the root
— Choose a child uniformly at random
— Uniformly sample from the resulting leaf node

* Accept the sample with probability l_[ fi/fm_ax

L Epath
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Attempt 2 : Correctness

fi
* Any root to leaf path is picked with probability: l_[ /fmax

L Epath
* The probability of including a record ‘ ‘ ey
. _ | fi
given the path: i Epath
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Attempt 2 : Correctness

fi
Any root to leaf path is picked with probability: 1_[ /fm.ax

L Epath
X
The probability of including a record l_[ 1/f-
given the path: i epath
s : , 1 1
The probability of including a record: l_[ /fmax - /ﬁgax

L Epath
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Attempt 3 : Early Abort

|dea: Perform acceptance/rejection test at each node.

e Start from the root

* Choose a child uniformly at random

* Continue the traversal with probability: fi/f
max

* Atthe leaf, pick an element uniformly at  # of elements in leaf
random, and accept it with probability :  max # elements in leaf

Proof of correctness: same as previous algorithm
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Attempt 4: Batch Sampling

 Repeatedly sampling n elements will require accessing the
internal nodes many times.
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Attempt 4: Batch Sampling

* Repeatedly sampling n elements will require accessing the internal nodes
many times.

Perform random walks simultaneously:

* At the root node, assign each of the n samples to one of its
children uniformly at random

— n=2>(n, N, ..., N

At each internal node,
— Divide incoming samples uniformly across children.

 Each leaf node receives s samples. Include each sample with
acceptance probability f
ﬂ /fmax

L Epath D ]
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Attempt 4 : Batch Sampling

* Problem: If we start the algorithm with n, we might end up with
fewer than n samples (due to rejection)
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Attempt 4 : Batch Sampling

* Problem: If we start the algorithm with n, we might end up with
fewer than n samples (due to rejection)

* Solution: Start with a larger set

* n’=n/B"?, where B is the ratio of average fanout and f_,
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Summary of B*tree sampling

 Randomly choosing a path weights elements differently

— Elements in the subtree rooted at nodes with lower fan-out are more likely
to be picked than those under higher fan-out internal nodes

* Accept/Reject sampling helps remove this bias.
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Problem Statement

Input:

A database D that can’t be accessed directly, and where each
element is associated with a geo location.

* A nearest neighbor index (elements in D near <x, y>)
— Assumption: index returns k elements closest to the point <x,y>

Output .
* Estimate —Z f(d)
D]
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Problem Statement

Input:

A database D that can’t be accessed directly, and where each element is
associated with a geo location.

* A nearest neighbor index (elements in D near <x, y>)
— Assumption: index returns k elements closest to the point <x,y>
Output
. 1
Estimate ﬁz £(d)

Applications

* Estimate the size of a population in a region

* Estimate the size of a competing business’ database
* Estimate the prevalence of a disease in a region
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Attempt 1: Naive geo sampling

Fori=1to N
* Pick a random point p; = <x,y>
* Find element d, |n D that is closes to p,

+ Return f(D) = —Z £(d)
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Problem?

Elements d, and dg are much more

likely to be picked than d,
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Voronoi Cell:
Points for which d, is
the closest element
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Voronoi Decomposition
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Perpendicular
el s Dbisector of d,, d;
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Voronoi Decomposition

area(Vor(d;))

Plsampling d;] = total area
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Voronoi decomposition of
Restaurants in US
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Attempt 2: Weighted sampling

Fori=1toN
* Pick a random point p, = <x,y>
* Find element d;in D that is closes to p;

total area )

) 1
* Return f(D) = NZ (f(di) “area(Vor(d,))
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Attempt 2: Weighted sampling

Fori=1toN
* Pick a random point p, = <x,y>
* Find element d;in D that is closes to p;

total area )

) 1
* Return f(D) =NZ(f () rea(vor@))

Problem:
We need to compute the area of the Voronoi cell.

We do not have access to other elements in the database.
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Using index to estimate Voronoi cell
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Find nearest point

Compute perpendicular
bisector

a0 is a point on the
Voronoi cell.
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Using index to estimate Voronoi cell
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Find a point on (a,, b,)
which is just inside the
Voronoi cell.

— Use binary search

— Recursively check
whether mid pointisin
the Voronoi cell
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Using index to estimate Voronoi cell
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Find nearest points to
d;

— a, has to be equidistant
to one point other than
e,and d

Next direction is
perpendicular to (e,,d)
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Using index to estimate Voronoi cell

* Find nearest points to
d;
— a, has to be equidistant

to one point other than
e,and d

* Next direction is
perpendicular to (e,,d)

* Find next point ...

¢ ...andsoon..
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Using index to estimate Voronoi cell

* Find nearest points to
d;
— a, has to be equidistant

to one point other than
e,and d

* Next direction is
perpendicular to (e,,d)

* Find next point ...

~l* ...andsoon..
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Number of samples

Identifying each a, requires a binary search

— If Lis the max length of (ai, bi),
then a,,; can be computed with € error in O(log (L/€)) calls to the index

|dentifying the next direction requires another call to the index

If number of edges of Voronoi cell =k,
total number of calls to the index = O(K log(L/¢))

Average number of edges of a Voronoi cell < 6
— Assuming general position ...
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Summary

Many web services allow access to databases using nearest
neighbor indexes.

Showed a method to sample uniformly from such databases.

Next class: Monte Carlo Estimation for #P-hard problems.
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