Sampling from Databases

CompSci 590.04 Instructor: AshwinMachanavajjhala

Recap

- Given a set of elements, random sampling when number of elements N is known is easy if you have random access to any arbitrary element
 - Pick n indexes at random from 1 ... N
 - Read the corresponding n elements
- Reservoir Sampling: If N is unknown, or if you are only allowed sequential access to the data
 - Read elements one at a time. Include tth element into a reservoir of size n with probability n/t.
 - Need to access at most $n(1+\ln(N/n))$ elements to get a sample of size n
 - Optimal for any reservoir based algorithm

Today's Class

- In general, sampling from a database where elements are only accessed using indexes.
 - B+-Trees
 - Nearest neighbor indexes
- Estimating the number of restaurants in Google Places.

B+ Tree

- Data values only appear in the leaves
- Internal nodes only contain keys
- Each node has between f_{max}/2 and f_{max} children
 - $f_{max} = maximum fan-out of the tree$
- Root has 2 or more children

Problem

How to pick an element uniformly at random from the B⁺ Tree?

Attempt 1: Random Path

Choose a random path

- Start from the root
- Choose a child uniformly at random
- Uniformly sample from the resulting leaf node

Will this result in a random sample?

Attempt 1: Random Path

Choose a random path

- Start from the root
- Choose a child uniformly at random
- Uniformly sample from the resulting leaf node
- Will this result in a random sample?

NO.

Elements reachable from internal nodes with low fanout are more likely.

Attempt 2: Random Path with Rejection

- Attempt 1 will work if all internal nodes have the same fan-out
- Choose a random path
 - Start from the root
 - Choose a child uniformly at random
 - Uniformly sample from the resulting leaf node
- Accept the sample with probability $\prod_{i \in path} f_i/f_{max}$

Attempt 2 : Correctness

• Any root to leaf path is picked with probability: $\prod_{i \in path}^{f_i/f_{max}}$

 The probability of including a record given the path:

$$\prod_{i \in nath} \frac{1}{f_i}$$

Attempt 2 : Correctness

• Any root to leaf path is picked with probability: $\prod_{i \in path}^{f_i/f_{max}}$

- The probability of including a record given the path:
- The probability of including a record:

$$\prod_{i \in path} 1/f_i$$

$$\prod_{f \in nath} \frac{1}{f_{max}} = \frac{1}{f_{max}^h}$$

Attempt 3: Early Abort

Idea: Perform acceptance/rejection test at each node.

- Start from the root
- Choose a child uniformly at random
- Continue the traversal with probability: f_i/f_{max}
- At the leaf, pick an element uniformly at random, and accept it with probability : # of elements in leaf

 # of elements in leaf

Proof of correctness: same as previous algorithm

 Repeatedly sampling n elements will require accessing the internal nodes many times.

 Repeatedly sampling n elements will require accessing the internal nodes many times.

Perform random walks simultaneously:

- At the root node, assign each of the n samples to one of its children uniformly at random
 - $n \rightarrow (n_1, n_2, ..., n_k)$
- At each internal node,
 - Divide incoming samples uniformly across children.
- Each leaf node receives s samples. Include each sample with acceptance probability $\mathbf{r}_{f_{s,t}}$

 Problem: If we start the algorithm with n, we might end up with fewer than n samples (due to rejection)

- Problem: If we start the algorithm with n, we might end up with fewer than n samples (due to rejection)
- Solution: Start with a larger set
- $n' = n/\beta^{h-1}$, where β is the ratio of average fanout and f_{max}

Summary of B⁺tree sampling

- Randomly choosing a path weights elements differently
 - Elements in the subtree rooted at nodes with lower fan-out are more likely to be picked than those under higher fan-out internal nodes
- Accept/Reject sampling helps remove this bias.

Nearest Neighbor indexes

Problem Statement

Input:

- A database D that can't be accessed directly, and where each element is associated with a geo location.
- A nearest neighbor index (elements in D near <x, y>)
 - Assumption: index returns k elements closest to the point <x,y>

Output

• Estimate
$$\frac{1}{|D|} \sum_{d \in D} f(d)$$

Problem Statement

Input:

- A database D that can't be accessed directly, and where each element is associated with a geo location.
- A nearest neighbor index (elements in D near <x, y>)
 - Assumption: index returns k elements closest to the point <x,y>

Output

• Estimate $\frac{1}{|D|} \sum_{d \in D} f(d)$

Applications

- Estimate the size of a population in a region
- Estimate the size of a competing business' database
- Estimate the prevalence of a disease in a region

Attempt 1: Naïve geo sampling

For i = 1 to N

- Pick a random point $p_i = \langle x, y \rangle$
- Find element d_i in D that is closes to p_i Return $\hat{f}(D) = \frac{1}{N} \sum_i f(d_i)$

Problem?

Elements d₇ and d₈ are much more likely to be picked than d₁

Voronoi Decomposition

22

Voronoi Decomposition

$$P[sampling d_i] = \frac{area(Vor(d_i))}{total \ area}$$

Voronoi decomposition of Restaurants in US

Attempt 2: Weighted sampling

For i = 1 to N

- Pick a random point $p_i = \langle x, y \rangle$
- Find element d_i in D that is closes to p_i

• Return
$$\hat{f}(D) = \frac{1}{N} \sum_{i} \left(f(d_i) \cdot \frac{total\ area}{area(Vor(d_i))} \right)$$

Attempt 2: Weighted sampling

For i = 1 to N

- Pick a random point $p_i = \langle x, y \rangle$
- Find element d_i in D that is closes to p_i

• Return
$$\hat{f}(D) = \frac{1}{N} \sum_{i} \left(f(d_i) \cdot \frac{total\ area}{area(Vor(d_i))} \right)$$

Problem:

We need to compute the area of the Voronoi cell. We do not have access to other elements in the database.

- Find nearest point
- Compute perpendicular bisector
- a0 is a point on the Voronoi cell.

- Find a point on (a_0, b_0) which is just inside the Voronoi cell.
 - Use binary search

28

Recursively check
 whether mid point is in
 the Voronoi cell

- Find nearest points to a₁
 - a_1 has to be equidistant to one point other than e_0 and d
- Next direction is perpendicular to (e₁,d)

- Find nearest points to a₁
 - a_1 has to be equidistant to one point other than e_0 and d
- Next direction is perpendicular to (e₁,d)
 - Find next point ...
 - ... and so on ...

- Find nearest points to a₁
 - a_1 has to be equidistant to one point other than e_0 and d
- Next direction is perpendicular to (e₁,d)
- Find next point ...
 - ... and so on ...

Number of samples

- Identifying each a_i requires a binary search
 - If L is the max length of (ai, bi), then a_{i+1} can be computed with ε error in O(log (L/ε)) calls to the index
- Identifying the next direction requires another call to the index
- If number of edges of Voronoi cell = k, total number of calls to the index = $O(K \log(L/\epsilon))$
- Average number of edges of a Voronoi cell < 6
 - Assuming general position ...

Summary

- Many web services allow access to databases using nearest neighbor indexes.
- Showed a method to sample uniformly from such databases.
- Next class: Monte Carlo Estimation for #P-hard problems.

References

- F. Olken, "Random Sampling from Databases", PhD Thesis, U C Berkeley, 1993
- N. Dalvi, R. Kumar, A. Machanavajjhala, V. Rastogi, "Sampling Hidden Objects using Nearest Neighbor Oracles", KDD 2011

