CompSci 590.6 Understanding Data: Theory and Applications

Lecture 4

Data Warehousing and lceberg Queries

Instructor: Sudeepa Roy

Email: sudeepa@cs.duke.edu

Today's Paper(s)

Chaudhuri-Dayal
An Overview of Data Warehousing and OLAP Technology
SIGMOD Record 1997

Book: Database Management Systems
Ramakrishnan-Gehrke
Chapter#25
Data Warehousing and Decision Support

Fang-Shivakumar- Garcia-Molina -Motwani-Ullman Computing Iceberg Queries Efficiently VLDB 1998

Data Warehousing (DW)

- A collection of decision support technologies
- To enable people in industry/organizations to make better decisions
 - Supports OLAP (On-Line Analytical Processing)
- Applications in
 - Manufacturing
 - Retail
 - Finance
 - Transportation
 - Healthcare
 - **—** ...
- Typically maintained separately from "Operational Databases"
 - Operational Databases support OLTP (On-Line Transaction Processing)

OLTP	Data Warehousing/OLAP
Applications: Order entry, sales update, banking transactions	Applications: Decision support in industry/organization
Detailed, up-to-date data	Summarized, historical data (from multiple operational db, grows over time)
Structured, repetitive, short tasks	Query intensive, ad hoc, complex queries
Each transaction reads/updates only a few tuples (tens of)	Each query can accesses many records, and perform many joins, scans, aggregates
Important: Consistency, recoverability, Maximizing transaction throughput	Important: Query throughput Response times

Terminology

- Multidimensional Data
 - Some dimensions are hierarchical (day-month-year)
- Operations
 - Roll-ups, Drill-down
 - Pivot (re-orient view) attr value becomes row/col header
 - Slice-and-dice (selection and projection) reduces dimensionality
- Data marts
 - subsets of data on selected subjects
 - e.g. Marketing data mart can include customer, product, sales
 - Department-focused, no enterprise-wide consensus needed
 - But may lead to complex integration problems in the long run
- Relational OLAP (ROLAP)
 - On top of standard relational DBMS
 - Data is stored in relational DBMS
 - Supports extensions to SQL to access multi-dimn. data
- Multidimensional OLAP (MOLAP)
 - Directly stores multidimensional data in special data structures (e.g. arrays)

DW Architecture

- Extract data from multiple operational DB and external sources
- Clean/integrate/transform/store
- refresh periodically
 - update base and derived data
 - admin decides when and how
- Main DW and several data marts (possibly)
- Managed by one or more servers and front end tools
- Additional meta data and monitoring/admin tools

Figure 1. Data Warehousing Architecture

ROLAP: Star Schema

- To reflect multi-dimensional views of data
- Single fact table
- Single table for every dimension
- Each tuple in the fact table consists of
 - pointers (foreign key) to each of the dimensions (multidimensional coordinates)
 - numeric value for those coordinates

Figure 3. A Star Schema.

 Each dimension table contains attributes of that dimension No support for attribute hierarchies

ROLAP: Snowflake Schema

- Refines star-schema
- Dimensional hierarchy is explicitly represented
- (+) Dimension tables easier to maintain
 - suppose the "category description is being changed
- (-) Denormalized structure may be easier to browse
- Fact Constellations
 - Multiple fact tables share some dimensional tables
 - e.g. Projected and Actual Expenses may share many dimensions

Figure 4. A Snowflake Schema.

Issues to consider

- Index (Lecture 5: Sudeepa)
- Materialization
- Un-nest Queries
- Parallel processing
- Storing meta data

Computing Iceberg Queries Efficiently

Acknowledgement: Some slides have been taken from Erik Gribkoff's paper presentation, 590q, Winter'14, U. Washington

What is an iceberg query?

SELECT target1, target2, ..., targetk, count(rest)
FROM R
GROUPBY target1, target2, ..., targetk
HAVING count(rest) >= T

• (Computes	an aggre	egate o	ver a	attributes
-----	----------	----------	---------	-------	------------

- Only output aggregate values above a certain threshold
- Usually, the number of above-threshold results is very small
- The "tip of the iceberg"

•	The answer	is <a,< th=""><th>e,</th><th>3> for</th><th>k = 2</th><th>T = 3</th></a,<>	e,	3> for	k = 2	T = 3
---	------------	---	----	--------	-------	-------

target1	target2	rest
a	e	joe
ь	f	fred
a	e	sally
Ь	d	sally
а	e	bob
С	f	tom

Table 1: Example relation R.

Why should we care about Iceberg Queries?

- Many queries in data mining are fundamentally lceberg queries
- e.g. Market Basket Data Analysis
 - which items are bought together "frequently"
- e.g. find similar documents on web
 - If the number of overlapping chunks >= T
- e.g. Enterprise sales analysis
 - Find the parts-regions pairs where the total sales amount is >= 1M
 - So that the company can order more such parts in those regions

Naïve Approaches

1. Maintain an array of counters in main memory

- one for each target
- answer the query in a single pass
- (-) not always possible R may not fit in memory

2. Sort R on disk

many passes needed to sort

3. Materialization

- {a, b, c} => [a, b], [a, c], [b, c]
- A good algorithm uses virtual R

Solutions are "over-kill"

 do the same amount of work irrespective of the query output size

Iceberg Query Example

LineItem - <partKey, price, numsales, region>

CREATE VIEW PopularItems as

SELECT partKey, region, SUM(numSales * price)

FROM LineItem

GROUP BY partKey, region

HAVING SUM(numSales * price) >= \$1,000,000

Iceberg Query Example

- Avoiding (near) replicated documents in search engine queries
- Consider table DocSign <doc, sig>
 - doc is the document id
 - sig is a signature of a chunk

```
SELECT D1.doc, D2.doc, COUNT(D1.sig)
FROM DocSign D1, DocSign D2
WHERE D1.sig = D2.sig
AND D1.doc <> D2.doc
GROUP BY D1.doc, D2.doc
HAVING COUNT( D1.sig) >= T2
```

Document Overlap– Previous Approach

- Broeder et al'97
- Consider table DocSign <doc, sig>
 - doc is the document id
 - sig is a signature of a chunk
- Sort <di, sk> by sk tuples for a chunk are contiguous
- for each pair <d_i,s_k> and <d_i,s_k>, add <d_i,d_i> to SignSign
- sort SignSign tuples for a doc are contiguous
- scan SignSign, count, and check against T2
- Case study in the paper:
 - DocSign of size 500MB
 - SignSign size of 40GB
 - although output can only be 1MB!

Terminology

- R = a materialized relation with <target, rest> pairs
 - 1 target, 1 rest, for simplicity
- N = |R|
- V = ordered list of all targets in R
- V[r] is the r-th most frequent target in R
- n = |V|
- Freq(r) = frequency of V[r] in R

Figure 1: A graphical view of terminology.

Terminology

- T = threshold
- r_t = max{ r | Freq(r) >= T}
- H = answer to iceberg query, {V[1], V[2], ..., V[r_t]}
- "Heavy targets" values in H
- The algorithms calculate a "candidate set"

F = potentially heavy targets

Figure 1: A graphical view of terminology.

Goal: F = H

False positives and false negatives

- If F H is non-empty, the algorithm reports false positives
 - If F is small, we can eliminate false positives by counting the frequency of targets in F.
 - As $|F| \rightarrow n$, this efficiency deteriorates
 - called COUNT(F)
- If H F is non-empty, the algorithm generates false negatives
 - Much harder to "regain" in post-processing
 - as hard as original query
 - unless R is highly skewed, i.e. most tuples in R have value from a small set $H' = F \cap H$
 - then scan R, eliminate tuples with values in H'
 - run iceberg query to obtain heavy hitters not in H'

GOAL:

- Algorithms should have NO False Negatives
- Algorithms should have AS FEW False Positives AS POSSIBLE

Sampling Algorithm (SCALED-SAMPLING)

- Take a random sample of size s from R
- If the
 - count of a target in the sample
 - scaled by |R|/|s|
 - exceeds T
 - put the target in F
- Pros:
 - Simple
 - Efficient
- Cons:
 - False-positives
 - False-negatives

Coarse-counting algorithm (COARSE-COUNT)

- (not this paper)
- Array A[1...m], Bitmap[1..m] (m << n = #targets)
- Hash function h: target values → [1...m]
- Perform a linear "hashing" scan of R:
 - For each tuple in R with target v:
 - A[h(v)] += 1
- Set Bitmap [i] = 1 if bucket i is heavy (i.e., A[i] >= T)
- Reclaim memory allocated to A
- "Candidate selection" scan of R:
 - For each target v s.t. Bitmap[h(v)] == 1, add v to F
- Remove false-positives
- Pros:
 - No false-negatives
- Cons:
 - but light elements may be hashed to heavy buckets
 - multiple light elements/ some light some heavy / all heavy
 - F can be large

This paper: Hybrid techniques

- DEFER-COUNT
- MULTI-LEVEL
- MULTI-STAGE

Combines sampling, multiple hash functions

DEFER-COUNT

Idea:

- Use a sampling scan to find initial F
 - small sample s << n (exceeds threshold)</p>
 - add f < s most frequent targets to F (higher prob of being heavy)
- Run hashing-scan exactly the same as COARSE-COUNT, except:
 - Don't increment counters for targets already in F
 - add more targets to F by candidate-selection
 - Remove False Positives from F
 - fewer false positives

Example:

- p, q are heavy targets identified in sampling phase
 - explicitly maintained in memory, so not counted in buckets
- a, b are light targets
 - hashed values <= T, not counted

DEFER-COUNT

Pros:

– Fewer heavy buckets => fewer false positives

Cons:

- Memory split between samples and buckets
- Maintains explicit targets in memory
- Have to decide how to choose s and f values
- If initial F is large, costly to look up each target during hashing scan

MULTI-LEVEL

Sampling Scan:

- Instead of creating an initial F after the sampling scan (s targets)
 - if A[i] >= Ts/n, mark bucket as potentially heavy
 - Allocate m₂ auxiliary buckets
- Reset A counters to 0

m_1 \rightarrow p a

Hashing Scan

- Increment A[h(v)] if NOT potentially heavy
- Otherwise, hash again into m₂ auxiliary buckets

(b) MULTI-LEVEL

Then count(F)

MULTI-LEVEL

Pros:

- does not explicitly maintain the list of potentially heavy targets
 - only maintains counts
 - helps when size of targets is large

Cons:

- Still splits memory between primary and auxiliary buckets – how to obtain good split (empirically)
- Rehashing may be expensive

MULTI-STAGE

- Instead of auxiliary buckets, allocate a common pool of auxiliary buckets B[1,2,...]
 - 50% chance that heavy elements p, q will fall into the same bucket
 - Then no false positives

Pros:

- Makes more efficient use of memory than multi-level(c) MULTI-STAGE
- fewer false positives (over MULTI-LEVEL)

• Cons:

Still splits memory

Optimizing HYBRID with multi-buckets

- Still many light elements may fall into buckets with
 - one or more heavy elements (sampling helps, but not always)
 - many light elements (HYBRID cannot avoid)
- Uniscan
- Multiscan
- Multiscan-shared
- Multiscan-shared2

Described for DEFER-COUNT

- Still do sampling and store in F not counted in hashing scan
- Still do COUNT(F) at the end

Single-scan Defer-Count (UNISCAN)

- Idea: Reduce false positives by using additional hash functions.
- Same as defer-count
- but keep k hash functions and bitmaps (smaller space)
- After incrementing counters, add target v to F iff for all k, BITMAP_k[h_k(v)] = 1
 - one scan over data
- Choosing k for a given amount of memory is challenging:
 - As k increases, we have many hash tables => fewer false positives
 - As k increases, we also have smaller hash tables => more false positives

MULTISCAN and MULTISCAN-SHARED

- Idea: One hash function per scan
 - then store BITMAP, on disk
 - then perform next scan.
- read previous k-1 bitmaps from disk to reduce false positives
- MULTISCAN-SHARED: Increment for target only if previous bitmaps say 1
 - e is not counted in the second pass
- MULTISCAN-SHARED2
 - keep hashmaps only from the last q passes
 - fewer bits set to 1, more pruning

(b) MULTISCAN-SHARED

• a: 10, b: 20, **c: 40**, d: 20, e: 20

(a) MULTISCAN

- T = 30
- m = 4
- MULTISCAN returns {b, c, d}
- MULTISCAN-SHARED returns {c} correct

Observations from Case Studies

- Graphs in the paper
- HYBRID
 - MULTI-LEVEL rarely performed well
 - DEFER-COUNT and MULTI-STAGE did well
 - If skew with only a few heavy elements, use DEFER-COUNT with small f (small space in sampling scan)
 - If Data is not too skewed, use MULTI-STAGE (less overhead)
- MULTIBUCKET
 - MULTISCAN-SHARED2 good in general
 - large memory: use UNISCAN

Summary and Conclusions

- Performing multiple passes, helps prune many false positives
- Iceberg queries are found in datawarehousing, data mining etc.
- We saw efficient techniques to execute iceberg queries that are better than conventional schemes