CompSci 590.6

Understanding Data:
Theory and Applications

Lecture 4
Data Warehousing

and
lceberg Queries

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu

Today’s Paper(s)

Chaudhuri-Dayal

An Overview of Data Warehousing and OLAP Technology
SIGMOD Record 1997

Book: Database Management Systems
Ramakrishnan-Gehrke

Chapter#25

Data Warehousing and Decision Support

Fang-Shivakumar- Garcia-Molina -Motwani-Ullman
Computing Iceberg Queries Efficiently
VLDB 1998

Data Warehousing (DW)

A collection of decision support technologies
To enable people in industry/organizations to make better
decisions
— Supports OLAP (On-Line Analytical Processing)
Applications in
— Manufacturing
— Retail
— Finance
— Transportation
— Healthcare

Typically maintained separately from “Operational Databases”
— Operational Databases support OLTP (On-Line Transaction Processing)

OLTP Data Warehousing/OLAP

Applications: Applications:
Order entry, sales update, Decision support in industry/organization
banking transactions
Detailed, up-to-date data Summarized, historical data
(from multiple operational db, grows over
time)

Structured, repetitive, short tasks | Query intensive, ad hoc, complex queries

Each transaction reads/updates Each query can accesses many records, and

only a few tuples (tens of) perform many joins, scans, aggregates
Important: Important:

Consistency, recoverability, Query throughput

Maximizing transaction Response times

throughput

Terminology

Multidimensional Data

— Some dimensions are hierarchical (day-month-year)
Operations

— Roll-ups, Drill-down

— Pivot (re-orient view) — attr value becomes row/col header

— Slice-and-dice (selection and projection) — reduces dimensionality
Data marts

— subsets of data on selected subjects

— e.g. Marketing data mart can include customer, product, sales

— Department-focused, no enterprise-wide consensus needed

— But may lead to complex integration problems in the long run
Relational OLAP (ROLAP)

— On top of standard relational DBMS

— Data is stored in relational DBMS

— Supports extensions to SQL to access multi-dimn. data

Multidimensional OLAP (MOLAP)
— Directly stores multidimensional data in special data structures (e.g. arrays)

DW Architecture

Extract data from multiple
operational DB and external

Monitoring & Admnistration
sources -

Metadata

Clean/integrate/transform/store Repository OLAP

Servers
. : Data Warehouse 2
refresh periodically > e\
— update base and derived data S Load ===
dmin decides when and how &' = [
— admin s =
oY
RS | /
Main DW and several data marts P Data Marts Tools
(possib|y) Figure 1. Data Warehousing Architecture

Managed by one or more servers
and front end tools

Additional meta data and
monitoring/admin tools

ROLAP: Star Schema

To reflect multi-dimensional
views of data

Single fact table
Single table for every dimensior

Each tuple in the fact table
consists of
— pointers (foreign key) to each

of the dimensions (multi-
dimensional coordinates)

— numeric value for those
coordinates

Each dimension table contains
attributes of that dimension

Order
OrderNo
OrderDate
Fact table
Customer OrderNo
CustomerNo SalespersonlD
CustomerName I():lls(;;iﬂm
CustomerAddress| ~ | 1200
City DateKey
CityName
Salesperson Quantity
SalespersonID TotalPrice
SalespesonName /4
City
Quota

<«— Date

Figure 3. A Star Schema.

ProdNo
ProdName
ProdDescr
Category

» CategoryDescr

UnitPrice
QOH
Date

DateKey

Month
Year
City
CityName
State
Country

No support for attribute
hierarchies

ROLAP: Snowflake Schema

Refines star-schema

Dimensional hierarchy is
explicitly represented

(+) Dimension tables easier

to maintain

— suppose the “category
description is being changed

(-) Denormalized structure
may be easier to browse

Fact Constellations

— Multiple fact tables share some
dimensional tables

— e.g. Projected and Actual
Expenses may share many
dimensions

Order ProdN Category
OrderNo Wl\';)me CategoryName
OrderDate CategoryDescr
Fact table KEoGDecE
X Category
Customer OrderNo UnitPrice
CustomerNo SalespersonID QOH
CustomerNo
CustomerName
CustomerAddress ’ %X Date Month ~ Year
. ityName
Chty ProdNo < DateKey) _ [Month
Ouantit Date [year
Salesperson Quantity Month
I~ TotalPrice =
SalespersonID Ci
SalespesonName / ity State
City CityName
Quota | State

Figure 4. A Snowflake Schema.

Issues to consider

Index (Lecture 5: Sudeepa)
Materialization

Un-nest Queries

Parallel processing

Storing meta data

Computing Iceberg Queries Efficiently

Acknowledgement:
Some slides have been taken from Erik Gribkoff’s
paper presentation, 590q, Winter’14, U. Washington

What is an iceberg query?

SELECT targetl, target2, ..., targetk,

count(rest)
FROM R targetl | target2 | rest
GROUPBY targetl, target2, ..., targetk a e Joe
HAVING count(rest) >= T b] fred
a e sally
b d sally
Computes an aggregate over attributes a e “bob
C f tom

Only output aggregate values above a
certain threshold

Usually, the number of above-threshold p.pje 1: Example relation R.
results is very small

The “tip of the iceberg”

The answeris<a,e,3>fork=2,T=3

Why should we care about
lceberg Queries?

Many queries in data mining are fundamentally
lceberg queries

e.g. Market Basket Data Analysis

— which items are bought together “frequently”

e.g. find similar documents on web
— If the number of overlapping chunks >=T

e.g. Enterprise sales analysis

— Find the parts-regions pairs where the total sales
amount is >= 1M

— So that the company can order more such parts in
those regions

12

Naive Approaches

1. Maintain an array of counters in main memory
— one for each target
— answer the query in a single pass
— (-) not always possible — R may not fit in memory

2. Sort R on disk

— many passes needed to sort
3. Materialization

— {a, b, c}=>[a, b], [a, c], [b, c]

— A good algorithm uses virtual R
 Solutions are “over-kill”

— do the same amount of work irrespective of the query output
Size

lceberg Query Example

Lineltem - <partKey, price, numsales, region>

CREATE VIEW Popularitems as

SELECT partKey, region, SUM(numSales * price)
FROM Lineltem

GROUP BY partKey, region
HAVING SUM(numSales * price) >= $1,000,000

lceberg Query Example

* Avoiding (near) replicated documents in search engine
gueries

* Consider table DocSign <doc, sig>
— doc is the document id
— sigis a signature of a chunk

SELECT D1l.doc, D2.doc, COUNT(D1.sig)
FROM DocSign D1, DocSign D2
WHERE D1l.sig=D2.sig

AND D1.doc <> D2.doc
GROUP BY D1.doc, D2.doc
HAVING COUNT(D1.sig) >=T2

Document Overlap

— Previous Approach

Broeder et al’'97

Consider table DocSign <doc, sig>
— docis the document id
— sigis a signature of a chunk

Sort <di, sk> by sk — tuples for a chunk are contiguous
for each pair <d,s,> and <d,s,>, add <d,,d;> to SignSign
sort SignSign — tuples for a doc are contiguous

scan SignSign, count, and check against T2

Case study in the paper:
— DocSign of size 500MB
— SignSign size of 40GB
— although output can only be 1IMB !

16

Terminology

R = a materialized relation with
<target, rest> pairs
— 1 target, 1 rest, for simplicity

N = |R]|

V = ordered list of all targets inR "}2"

V[r] is the r-th most frequent

target in R

n= |V| Rank (r)

Figure 1: A graphical view of terminology.

Freq(r) = frequency of V[r] in R

Terminology

 T=threshold

* re=max{r | Freq(r) >=T}

* H=answer to iceberg query,
{VI[1], V[2], ..., V[r]}

Frequency
Freq(r)

 “Heavy targets” —valuesinH

* The algorithms calculate a
“candidate set”

Rank (r)

F - pOtentia"y heaVy ta rgEtS Figure 1: A graphical view of terminology.

e Goal:F=H

False positives and false negatives

 If F—H is non-empty, the algorithm reports false positives

— If Fis small, we can eliminate false positives by counting the frequency of
targetsin F.

— As |F| = n, this efficiency deteriorates
— called COUNT(F)

 |f H-Fis non-empty, the algorithm generates false negatives
— Much harder to “regain” in post-processing

— as hard as original query

— unless R is highly skewed, i.e. most tuples in R have value from a small set H’ =
FNH

— thenscan R, eliminate tuples with values in H’
— run iceberg query to obtain heavy hitters not in H’

* GOAL:
— Algorithms should have NO False Negatives

— Algorithms should have AS FEW False Positives AS POSSIBLE

Sampling Algorithm
(SCALED-SAMPLING)

Take a random sample of size s from R
If the

— count of a target in the sample
— scaled by |R|/|s]|

— exceeds T

— put the targetinF

Pros:

— Simple

— Efficient
Cons:

— False-positives
— False-negatives

Coarse-counting algorithm
(COARSE-COUNT)

(not this paper)
Array A[1...m], Bitmap[1l..m] (m << n = #targets)
Hash function h: target values = [1...m]

Perform a linear “hashing” scan of R:

— For each tuple in R with target v:
A[h(v)] += 1

Set Bitmap [i] = 1 if bucket i is heavy (i.e., A[i] >=T)
Reclaim memory allocated to A
“Candidate selection” scan of R:

— For each target v s.t. Bitmap[h(v)] ==1,add vto F
Remove false-positives
Pros:

— No false-negatives

Cons:

— but light elements may be hashed to heavy buckets
multiple light elements/ some light some heavy / all heavy

— Fcanbelarge

This paper: Hybrid techniques

DEFER-COUNT
MULTI-LEVEL
MULTI-STAGE

Combines sampling, multiple hash functions

DEFER-COUNT

ldea:

 Use asampling scan to find initial F
— small sample s << n (exceeds threshold)

— add f < s most frequent targets to F (higher prob of being heavy)
* Run hashing-scan exactly the same as COARSE-COUNT, except:

— Don’t increment counters for targets already in F ml

— add more targets to F by candidate-selection

— Remove False Positives from F

— fewer false positives

Example: scor—— |

* p, gqare heavy targets - identified in sampling phase (a) DEFER-COUNT
— explicitly maintained in memory, so not counted in buckets

e a, barelight targets

— hashed values <=T, not counted

DEFER-COUNT

* Pros:
— Fewer heavy buckets => fewer false positives

* Cons:
— Memory split between samples and buckets
— Maintains explicit targets in memory
— Have to decide how to choose s and f values
— If initial Fis large, costly to look up each target during hashing scan

MULTI-LEVEL

Sampling Scan:
* |nstead of creating an initial F after the sampling

scan (s targets) N Al
— if A[i] >= Ts/n, mark bucket as potentially heavy 1IB3.0r
— Allocate m, auxiliary buckets %
* Reset AcounterstoO ISP

Hashing Scan
* Increment A[h(v)] if NOT potentially heavy (b) MULTI-LEVEL
* Otherwise, hash again into m, auxiliary buckets

Then count(F)

MULTI-LEVEL

* Pros:

— does not explicitly maintain the list of potentially
heavy targets

* only maintains counts
* helps when size of targets is large

e Cons:

— Still splits memory between primary and auxiliary
buckets — how to obtain good split (empirically)

— Rehashing may be expensive

MULTI-STAGE

Instead of auxiliary buckets, allocate a common _—
pool of auxiliary buckets B[1,2,...]]
— 50% chance that heavy elements p, g will fall into the _ —

same bucket ol
— Then no false positives N e

Pros:

— Makes more efficient use of memory than multi-level(¢) MULTI-STAGE
— fewer false positives (over MULTI-LEVEL)

Cons:
— Still splits memory

Optimizing HYBRID with multi-buckets

Still many light elements may fall into buckets with
— one or more heavy elements (sampling helps, but not always)
— many light elements (HYBRID cannot avoid)

Uniscan

Multiscan
Multiscan-shared
Multiscan-shared?2

Described for DEFER-COUNT

— Still do sampling — and store in F — not counted in hashing scan
— Still do COUNT(F) at the end

Single-scan Defer-Count (UNISCAN)

* |dea: Reduce false positives by using additional hash functions.

e Same as defer-count
* but keep k hash functions and bitmaps (smaller space)
e After incrementing counters, add target v to F iff for all k,
BITMAP, [h, (v)] =1
— ohe scan over data

* Choosing k for a given amount of memory is challenging:
— As k increases, we have many hash tables => fewer false positives

— As k increases, we also have smaller hash tables => more false
positives

MULTISCAN and MULTISCAN-SHARED

d 0 hash f a bd c e a bd c e
ea: One hash function per :
scan P Hashing 10 | 40|40 | 20 At 110 | 40|40 | 20
Scan 1
— then store BITMAP, on disk
— then perform next scan. BITMAP : of1t]o of1ft]o
ed ab - ed ab C
read previous k-1 bitmaps Hashing - 401 30| o | 40 a: 120120 o |40
from disk to reduce false Scan 2
positives BITMAP,: [1]1]0]1] 0fofof1
MULTISCAN-SHARED: (2) MULTISCAN (b) MULTISCAN-SHARED
Increment for target only if
previous bitmaps say 1
— eisnot counted in the
second pass e a:10, b: 20, c: 40, d: 20, e: 20
L =
MULTISCAN-SHARED?2 T=30
— keep hashmaps only from the * m=4
last g passes e MULTISCAN returns {b, c, d}
— fewe'r bits set to 1, more
pruning e MULTISCAN-SHARED returns {c} -

correct

Observations from Case Studies

* Graphsin the paper
* HYBRID
— MULTI-LEVEL rarely performed well

— DEFER-COUNT and MULTI-STAGE did well

— If skew with only a few heavy elements, use DEFER-
COUNT with small f (small space in sampling scan)

— |f Data is not too skewed, use MULTI-STAGE (less
overhead)

 MULTIBUCKET
— MULTISCAN-SHARED?2 good in general
— large memory : use UNISCAN

Summary and Conclusions

* Performing multiple passes, helps prune many
false positives

* |ceberg queries are found in data-
warehousing, data mining etc.

 We saw efficient techniques to execute
iceberg queries that are better than
conventional schemes

