Lecture 5: NMF and Topic
Modeling in Practice



NMF and Topic Modelling in Practice

e Nonnegative Matrix Factorization
o Alternating Minimization

e Topic Models
o EM algorithm
o Implementing the provable algorithm
o Evaluating topic modeling algorithms
o Challenges and new algorithms



Nonnegative Matrix Factorization

W

e NP-hard in general [Vavasis]

e Solvable in polynomial time when
o rank is constant
o As separable



Algorithm in Practice:
Alternating Minimization [Lee Seung '00]

e Given A, can find the best \W
min [|[M - AW]|
Wi,j >0
e Given W, can find the best A
e Alternate between 2 steps.

e ||M-AW]||, converges
e May not converge to global OPT



Algorithm in Practice:
Alternating Minimization [Lee Seung '00]

e Different objectives

min D(M||AW) = } (Mijlog I\/Iij/(AW)ij -Mij+(AW)ij))
e Can still do alternating minimization

e Still may not converge to global optimum.

e Open: Why these algorithms work in
practice?
Can we prove they work for separable NMF?



Topic Models
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Recap: Probabilistic Topic Model

Known: Topic Matrix A
For each document
Sample length of document

Sample a mixture of topics

For each word
Sample a topic
Sample a word from the topic



Expectation-Maximization algorithm

e Alternate between 2 steps

e E (Expectation) step

Based on current parameters (topics), estimate
the (hidden) topic assigned to each word.

e M(Maximization) step

Based on the topics assigned to words, find the
best (most likely) word-topic matrix.



Expectation-Maximization algorithm

e EM tries to solve the maximum likelihood
problem.
e EM converges, but may not to global OPT

e Problem: E-step is already hard to compute
o Use approximation (Variational EM)
o Use sampling (Markov-Chain Monte-Carlo, Gibbs)

e Many ways to optimize/parallelize/...
e Many packages ready for applications.



Implementing Provable Algorithm

e Provable algorithms may not be practical
e Running time may be a large polynomial.
e Sample complexity may be far from optimal.

e Algorithms may not be robust to model
mismatch.



Recall: Algorithm for Topic Modeling

e Estimate word-word correlation matrix n

e Apply NMF Algorithm

o Test each word (with a linear program)
o Compute A’ matrix (again by LP)

e Use Bayes' rule to compute the topic matrix



Difficulties

e Effectively estimate the word-word
correlation?

e Efficiently solve many Linear Programs?

e Real documents satisfy “anchor words”
assumption?



Estimating Word-Word Correlation
° Clij = Pr[first word is i, second word is |] n

e Need to consider all N(N-1)/2 pairs for a
length N document.

e Can only estimate for frequent words

e Prune stop words and rare words.



Nonnegative Matrix Factorization

e Recall:
Separable NMF < Finding vertices

e Solving one linear program
for each word is too slow!

e Need to find faster algorithms.



Faster Algorithm for Separable NMF

Gnd the farthest point to origin\
REPEAT k-1 times
Find the point farthest to
affine hull of previously
found points.

o /




Finding Convex Combinations

e Given anchor words, represent

all other words as convex combinations
e Different objectives:

[ 1|, norm, KL-Divergence

e A convex program for each word
o Low dimensional
o Can be solved approximately
o Use gradient descent/exponentiated gradient



Evaluation

toy examples synthetic examples real data real application

e Toy Examples: correctness.

e Synthetic Examples: running time, sample
complexity, robustness

e Real Data
o Qualitative evaluation: look at the topics found
o Quantitative evaluation: held-out likelihood, ...

e Real Application: Apply topic models to
recommend articles, social science, ...



Evaluating Topic Modeling
Algorithm

e Compare to MALLAT

(package based on Gibbs sampling)

e Variants of algorithms
o Recover: Basic algorithm
o Recover-L2: Try to minimize [|Q-AW||_

o Recover-KL: Try to minimize KL-divergence between
rows of Q and AW.

e Data Set: UCI New York Times
o 295k articles, 15k vocabulary, average length~300



Running Time
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e Algorithms are faster than MALLAT, because most of
the work is done on the word-word correlation matrix



Semi-synthetic Example

ldea: Compute topic matrix by running
MALLET on NYT data set, then generate
synthetic documents.

Benefit:
o Has ground truth, measure error in parameter space

o Easy to tweak parameters (different topic models,

topic matrix, # documents, #words, ...)
o Topic matrix is “natural”

Data is still generated from the model, hard
to evaluate the robustness of algorithm.



Semi-synthetic Experiments

SynthNYT, L1 error
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e Performance is comparable to MALLAT, especially with

more documents.
e Does not achieve 0 error with infinite data (not

separable)



Anchor Words?

SynthNYT+Anchors, L1 error
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e Most topics have anchor words.
e Algorithms works OK even when some topics do not

have anchor words.



Real Data (sample topics)

Recoverl.2 president zzz_clinton zzz_white_house zzz_bush official
zzz-bill_clinton
Gibbs zzz.bush zzz_george_bush president administration
zzz-white_house zzz_dick_cheney
RecoverL.2 father family zzz_elian boy court zzz_miami
Gibbs zzz_cuba zzz_miami cuban zzz_elian boy protest
Recoverl.2 oil prices percent million market zzz_united_states
Gibbs oil power energy gas prices plant
Recoverl.2 zzz.microsoft company computer system window
software
Gibbs zzz_microsoft company companies cable zzz_at
zzz-internet
" RecoverL?2 government election ZZZ.-MeX1Co political
zzz-vicente_fox president
Gibbs election political campaign zzz_party democratic
voter
RecoverL.2 fight zzz_mike_tyson round right million champion
Gibbs fight zzz_mike_tyson ring fighter champion round




Real Data (Held-out likelihood)

e |dea: For each document, show a fraction of
words, use the learned topic matrix to predict
the distribution Pr[z = i|doc]

e For the rest of the words A

Score = Zj log Pr[z = ij|doc]

e Details matter (how to predict Pr[z=i|doc],
fraction of held-out, smoothing...)



Real Data (Held-out likelihood)

NIPS NYT

e MALLAT is better, but RecoverKL is close.
e Recover algorithms followed by MALLAT improves held-

out likelihood.
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Challenges and New Algorithms

e \What if anchor-word assumption is not true?
o For LDA, can use tensor decomposition [AFHKL’12]

o Only appear in 1 topic = Only appear in few topics
(subset separable [GZ’15])

o “Catch Words™: words that appear more frequently in
one topic than all others [BBGKP’135]

e How to guess the number of topics?
o Use low dimensional embeddings? [LeeMimno’14]

e Variants of topic models?
o multilingual, temporal, ...



Homework

e Homework 1 is out, due in 2 weeks
(9/24/2015 in class)

e Latex strongly encouraged.

e Discussions are allowed, but must
acknowledge.

o Start early.

e Questions: email rongge@cs.duke.edu.
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