
DHT: Distributed Hash Table

Day 20

Applications

• Anything that requires a hash table
• Databases, FSes, storage, archival
• Web serving, caching
• Content distribution
• Query & indexing
• Naming systems
• Communication primitives
• Chat services
• Application-layer multi-casting
• Event notification services
• Publish/subscribe systems ?

Definition of a DHT

• Hash table supports two operations
– insert(key, value)

– value = lookup(key)

• Distributed
– Map hash-buckets to nodes

• Requirements
– Uniform distribution of buckets
– Cost of insert and lookup should scale well
– Amount of local state (routing table size) should

scale well

What is DHT?

Distributed hash table

Distributed application

get (key) data

node node node….

put(key, data)

(Figure adopted from Frans Kaashoek)

Fundamental Design Idea - I
• Consistent Hashing

– Map keys and nodes to an identifier space; implicit
assignment of responsibility

Identifiers
A C DB

Key

 Mapping performed using hash functions (e.g., SHA-1)

 Spread nodes and keys uniformly throughout

11111111110000000000

Chord [Karger, et al]

• Map nodes and keys to identifiers
– Using randomizing hash functions

• Arrange them on a circle

Identifier
Circle

x

pred(x)

010110110

010111110

succ(x)

010110000

Look-Up Performance V. Scalability

• Alternatives:

– O(N) Each node stores only successor

• Look-ups are expensive but scales really well

– O(1) Each nodes store information for all nodes

• Look-ups are really fast/cheap but does not scale

Performance -- Lookup

Purpose -- to locate a target node
•Each step, try to get closer to locating target node

• Ask a closer neighbour
• Performance & scalability tied directly to lookup algorithm

2 Aspects to Scalability
• size of routing table – O(log N)
• lookup path length – O(log N)

2 Aspects to Performance
• Path latency
• Lookup path length (# hops)

3 Techniques
• proximity lookup
• proximity neighbour selection
• geographic layout

Chord
Efficient routing

• Routing table

– log(n) finger pointers

– ith entry = succ(n + 2i)

Identifier
Circle

Exponentially spaced
pointers!

Chord
Key Insertion and Lookup

To insert or lookup a key ‘x’,
route to succ(x)

x

succ(x)

source

O(log n) hops for routing

How lookup works? Try to find ‘0’

214

12

10

7

5

0

3

4

6

8
9

11

13start interval succ.

3 [3,4) 5

4 [4,6) 5

6 [6,10) 7

10 [10,2) 10

Finger Table for Node 2
15

1

Example: Chord [Stoica et. al.]

How lookup works? Try to find ‘0’

214

12

10

7

5

0

3

4

6

8
9

11

13

15

start interval succ.

11 [11,12) 12

12 [12,14) 12

14 [14,2) 14

2 [2,10) 2

Finger Table for Node 10

1

Example: Chord

How lookup works? Try to find ‘0’

214

12

10

7

5

0

3

4

6

8
9

11

13

15

start interval succ.

11 [11,12) 12

12 [12,14) 12

14 [14,2) 14

2 [2,10) 2

Finger Table for Node 10

1

Example: Chord

How lookup works? Try to find ‘0’

1

214

12

10

7

5

0

3

4

6

8
9

11

13

15

start interval succ.

15 [15,0) 15

0 [0,2) 1

2 [2,6) 2

6 [6,13) 7

Finger Table for Node 14

Example: Chord

How lookup works? Try to find ‘0’

1

214

12

10

7

5

0

3

4

6

8
9

11

13

15

start interval succ.

15 [15,0) 15

0 [0,2) 1

2 [2,6) 2

6 [6,13) 7

Finger Table for Node 14

Example: Chord

How lookup works? Try to find ‘0’

214

12

10

7

5

0

3

4

6

8
9

11

15

Now Node 2 can retrive
information for key 0 from Node 1.

1

Example: Chord

Chord
Self-organization

• Node join

– Set up finger i: route to succ(n + 2i)

– log(n) fingers) O(log2 n) cost

• Node leave

– Maintain successor list for ring connectivity

– Update successor list and finger pointers

Read Operation

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ

* Figure taken from Avinash Lakshman and Prashant Malik (authors of the paper) slides.

FB’s Cassandra

System Architecture

• Partitioning: provides high throughput
How data is partitioned across nodes?

What do we want from a good partition algorithm?

• Replication: overcome failure
How data is duplicated across nodes?

High Throughput

• Use a DHT like Chord

System Architecture

• Partitioning: provides high throughput
How data is partitioned across nodes?

What do we want from a good partition algorithm?

• Replication: overcome failure

– How data is duplicated across nodes? Challenges:

• Consistency issues

• Overhead of replication

Replication

• Each data item is replicated at N (replication factor)
nodes.

• Different Replication Policies
– Rack Unaware – replicate data at N-1 successive nodes after its

coordinator

– Rack Aware – uses ‘Zookeeper’ to choose a leader which tells
nodes the range they are replicas for

– Datacenter Aware – similar to Rack Aware but leader is chosen at
Datacenter level instead of Rack level.

• Why??

Local Persistence

• Relies on local file system for data persistency.

• Write operations happens in 2 steps
– Write to commit log in local disk of the node

– Update in-memory data structure.

• Read operation
– Looks up in-memory ds first before looking up files on disk.

– Uses Bloom Filter (summarization of keys in file store in memory)
to avoid looking up files that do not contain the key.

Failure Detection

• Traditional approach
– Heart-beats (Used by HDFS & Hadoop): binary (yes/no)
– If you don’t get X number of heart beats then assume

failure

• Accrual failure approach
– Returns a # representing probability of death

• X of the last Y messages were received: (X/Y)*100%

– Modify this # to reflect N/W congestion & server load
– Based on the distribution of inter-arrival times of update

messages
• How would you do this?

Issues with DHT

Issues with DHT

• DHT distributes keys evenly but …

– Some keys are more popular than others

– Some keys have geographical properties

– How do you deal with tail latency?

Are DHTs a panacea?

• Useful primitive
• Tension between network efficient

construction and uniform key-value
distribution

• Does every non-distributed application use
only hash tables?
– Many rich data structures which cannot be built

on top of hash tables alone
– Exact match lookups are not enough
– Does any P2P file-sharing system use a DHT?

How can you build a MySQL atop DHT

