Relational Database
Design Theory

Introduction to Databases
CompSci 316 Fall 2016

E- DUKE
COMPUTER SCIENCE

Announcements (Thu. Sep. 15)

* Homework #1 due next Tuesday (11:59pm)

* Course project description posted
* Milestone #1 right after fall break
* Teamwork required: 4 people per team

Motivation

142 Bart dps
123 Milhouse gov
857 Lisa abc
857 Lisa gov
456 Ralph abc
456 Ralph gov

* Why is UserGroup (uid, uname, gid) a bad design?

* It has —user name is recorded multiple
times, once for each group that a user belongs to
* Leadsto

* Wouldn’t it be nice to have a systematic approach
to detecting and removing redundancy in designs?

, , and

Functional dependencies

* A (FD) has the form :
where X and Y are sets of attributes in a relation R

* X — Y means that whenever two tuplesin R agree
on all the attributes in X, they must also agree on
all attributesinY

a b c

a b ?
Must be b_./ \.— Could be anything

FD examples

Address (street _address, city, state, zip)
* street address, city, state — zip

* Zip — city, state

* Zip, state — zip?

e Thisis a trivial FD
: LHS 2 RHS

* zip — state, zip?
* This is non-trivial, but not completely non-trivial
:LHS N RHS = @

Redefining “keys” using FD’s

A set of attributes K is a for arelation R if

* K — all (other) attributes of R
 Thatis, Kisa‘ ”?

* No proper subset of K satisfies the above condition
e Thatis, K is

Reasoning with FD’s

Given arelation R and aset of FD’s F

* Are some of the FD’s in F redundant (i.e., they follow
from the others)?

* What are all the keys of R?

Attribute closure

* Given R, a set of FD’s F that hold in R, and a set of
attributes Z in R:
The (denoted 7 ") with respect to F is
the set of
(thatis, Z - A4, ...

* Algorithm for computing the closure

e Start with closure = 7

* If X - YisinF and X is already in the closure, then also
add Y to the closure

* Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between
our users and Twitter accounts

* uid = uname, twitterid
e twitterid — uid
* uid, gid — fromDate

Not a good design, and we will see why shortly

Example of computing closure

5 F includes:
— uid = uname, twitterid
twitterid — uid

* twitterid — uid uid, gid — fromDate

* Add uid
* Closure grows to

* uid = uname, twitterid
 Add uname, twitterid
* Closure grows to

* uid, gid — fromDate
* Add fromDate
* Closure is now

Using attribute closure

Given arelation R and set of FD’s F

Compute Xt with respect to F
IfY € X*, then X - Y follows from F

Compute KT with respect to F
If K contains all the attributes of R, K is a super key
Still need to verify that K is minimal (how?)

Rules of FD’s

fY € X, thenX =Y
If X - Y,thenXZ - YZforany Z
:fX—>YandY - Z,thenX - 7

* Rules derived from axioms
X ->YZ thenX>YandX - 7
:fX —>YandX - Z,thenX - YZ

®Using these rules, you can prove or disprove an FD
given a set of FDs

Non-key FD’s

e Consider a non-trivial FD X —» Y where X is a
super key

* Since X is not a super key, there are some attributes (say
Z) that are not functionally determined by X

a b ¢

b Co

That b is associated with a is recorded multiple times:

)

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
* uid = uname, twitterid
(... plus other FD’s)

i uname L wiverid | ga | fromoate

142 Bart @BartJSimpson dps 1987-04-19
123 Milhouse @MilhouseVan gov 1989-12-17
857 Lisa @lisasimpson abc 1987-04-19
857 Lisa @lisasimpson gov 1988-09-01
456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

Decomposition

142
123
857
456

Bart
Milhouse
Lisa

Ralph

i uname L wiverie | ga] fromoae

142 Bart

123 Milhouse
857 Lisa

857 Lisa

456 Ralph
456 Ralph

@BartJSimpson

@MilhouseVan

@lisasimpson
@lisasimpson
@ralphwiggum
@ralphwiggum

@BartJSimpson
@MilhouseVan
@lisasimpson

@ralphwiggum

* Eliminates redundancy

dps

gov
abc
gov
abc

gov

142

1987-04-19
1989-12-17
1987-04-19
1988-09-01
1991-04-25
1992-09-01

123 gov
857 abc
857 gov
456 abc
456 gov

* To get back to the original relation:

fromDate

1987-04-19
1989-12-17
1987-04-19
1988-09-01
1991-04-25
1992-09-01

15

16

Unnecessary decomposition

142
123
857
456

Bart
Milhouse
Lisa

Ralph

142
123
857
456

Bart
Milhouse
Lisa

Ralph

@BartJSimpson
@MilhouseVan
@lisasimpson

@ralphwiggum

m

142 @BartJSimpson
123 @MilhouseVan
857 @lisasimpson

456 @ralphwiggum

* Fine: join returns the original relation

* Unnecessary: no redundancy is removed; schema is
more complicated (and uid is stored twice!)

Bad decomposition
‘uid | gid | frombate

142 dps 1987-04-19
123 gov 1989-12-17
857 abc 1987-04-19
857 gov 1988-09-01
456 abc 1991-04-25

456 gov 1992-09-01

142 dps 142 1987-04-19
123 gov 123 1989-12-17
857 abc 857 1987-04-19
857 gov 857 1988-09-01
456 abc 456 1991-04-25
456 gov 456 1992-09-01

* Association between gid and fromDate is lost
* Join returns more rows than the original relation

Lossless join decomposition

* Decompose relation R into relations S and T
o attrs(R) = attrs(S) U attrs(T)
* S = Taters(s) (R)
* T = Tattrs(T) (R)

* The decomposition is a

if, given known constraints such as FD’s, we can
guaranteethatR =S x T

* Any decomposition gives R € S < T (why?)
A decompositionisonewithRc S x T

Loss? But | got more rows!

» “Loss” refers not to the loss of tuples, but to the
loss of information
* Or, the ability to distinguish different original relations
uid | gid | frombate

142 dps 1987-04-19 No way to tell
e R which is the original relation

857 gov
456 abc 1991-04-25

uid gid m fromDate
456 1992-09-01

gov

142 dps 142 1987-04-19
123 gov 123 1989-12-17
857 abc 857 1987-04-19
857 gov 857 1988-09-01
456 abc 456 1991-04-25

456 gov 456 1992-09-01

Questions about decomposition

* When to decompose

* How to come up with a correct decomposition (i.e.,
lossless join decomposition)

An answer: BCNF

* Arelation R is in Boyce-Codd Normal Form if

* Thatis, all FDs follow from “key — other attributes”

* When to decompose
* As long as some relation is not in BCNF

* How to come up with a correct decomposition
* Always decompose on a BCNF violation (details next)

® Then it is guaranteed to be a lossless join
decomposition!

BCNF decomposition algorithm

* Find a
* Thatis, a non-trivial FD in R where X is a super
key of R
* Decompose R into R; and R,, where

* R, has attributes

* R, has attributes , where Z contains all attributes
of R that are in neither X norY

* Repeat until all relations are in BCNF

BCNF decomposition example

uid = uname, twitterid
twitterid — uid
uid, gid = fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

User (uid, uname, twitterid) Member (uid, gid, fromDate)

uid — uname, twitterid uid, gid - fromDate
twitterid — uid

An Other example uid = uname, twitterid

twitterid — uid
uid, gid = fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

/

Userld (twitterid, uid)

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

twitterid - uname
twitterid, gid — fromDate

T~

UserName (twitterid, uname) Member (twitterid, gid, fromDate)

Why is BCNF decomposition lossless

Given non-trivial in R where X is a super
key of R, need to prove:

* Anything we project always comes back in the join:
R € mxy(R) X mxz(R)
* Sure; and it doesn’t depend on the FD

* Anything that comes back in the join must be in the
original relation:

R 2 mxy(R) X mxz(R)
* Proof will make use of the factthatX —» Y

Recap

* Functional dependencies: a generalization of the
key concept

* Non-key functional dependencies: a source of
redundancy

* BCNF decomposition: a method for removing
redundancies

* BNCF decomposition is a lossless join decomposition

e BCNF: schema in this normal form has no
redundancy due to FD’s

BCNF = no redundancy?

* User (uid, gid, place)
* A user can belong to multiple groups
* A user can register places she’s visited
* Groups and places have nothing to do with other

* FD’s?

* None 142 dps Springfield
* BCNF? 142 dps Australia

* Yes 456 abc Springfield
* Redundancies? 456 abc Morocco

* Tons! 456 gov Springfield

456 gov Morocco

Multivalued dependencies

« A multivalued dependency (MVD) has the form
X = Y,where X and Y are sets of attributesin a
relation R

* X — Y means that whenever
two rows in R agree on all the a by
attributes of X, then we can a b, c

swap their Y components and
get two rows that are also in R { ---
a b oo

28

MVD examples

User (uid, gid, place)
* uid - gid
* uid - place
* Intuition: given uid, gid and place are “

* uid, gid - place

* uid, gid - uid

)

Complete MVD + FD rules

, , and
If X » Y, thenX —» att‘:rs(R) —X-Y
IfX%YandVEVIithenXW%YV
le+Yanin»Z,thenX+Z—Y
f X - Y,thenX »Y |

f X > Y and Z C Y and there is some W disjoint
fromY suchthat W —» Z,then X —- Z

An elegant solution: chase

* Given a set of FD’s and MVD’s D, does another
dependency d (FD or MVD) follow from D?

 Procedure

* Start with the premise of d, and treat them as “seed”
tuples in a relation

* Apply the given dependencies in D repeatedly
* If we apply an FD, we infer equality of two symbols
* If we apply an MVD, we infer more tuples

* If we infer the conclusion of d, we have a
* Otherwise, if nothing more can be inferred, we have a

32

Proof by chase

*InR(A4,B,C,D),does A -» B and B - C imply that

A->»(C?
Have: .E.m Need: Em

a by c; d a by c; di ¥
a b2 Co dz a bz C1 dzg

b, c; d

A > B 2 €1 4q

by ¢, dy

b, c; d

B (2 €1 4y

b, ¢, dy

B > C by ¢, dy

Another proof by chase

*InR(A4,B,C,D),does A —» B and B — C imply that
A-C?

ab1C1d1 Cl:czg
Clszz d2

A—- B b1=b2

B—-C C1 = Cy

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities

Counterexample by chase

*InR(A4,B,C,D),does A -» BC and CD — B imply
that A - B?

Have: Em Need:

a b]_ C1 d1 bl - b2 v
a b2 Co dz
a b, ¢, d
A = BC 2 L2 Y1
a b]_ C1 dz

Counterexample!

4NF

* Arelation R is in (4NF) if

* Thatis, all FD’s and MVD’s follow from “key — other
attributes” (i.e., no MVD’s and no FD’s besides key
functional dependencies)

* 4NF is stronger than BCNF
* Because every FD is also a MVD

4NF decomposition algorithm

* Find a
* A non-trivial MVD in R where X is a superkey

* Decompose R into R; and R,, where
* R, has attributes

* R, has attributes (where Z contains R attributes
notin X orY)

* Repeat until all relations are in 4NF

* Almost identical to BCNF decomposition algorithm
* Any decomposition on a 4NF violation is lossless

4NF decomposition example
uid | gid | place |

142
142
456

User (uid, gid, place) 456
4NF violation: uid - gid

456

dps

Springfield
Australia
Springfield
Morocco
Springfield

Morocco

Member (uid, gid) Visited (uid, place)
4NF EEE 4NF EEEE
142 dps 142 Springfield
456 abc 142 Australia
456 gov 456 Springfield

456

Morocco

37

Summary

* Philosophy behind BCNF, 4NF:

* You could have multiple keys though

* Other normal forms

* 3NF: More relaxed than BCNF; will not remove
redundancy if doing so makes FDs harder to enforce

* 2NF: Slightly more relaxed than 3NF
* INF: All column values must be atomic

38

