
11/15/16

1

Query Processing
Introduction to Databases

CompSci 316 Fall 2016

Announcements (Tue., Nov. 15)

• Homework #3 sample solution posted in Sakai
• Homework #4 assigned today; due on 12/01
• Project milestone #2 feedback to be emailed by this 

weekend

2

Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or 

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time

3



11/15/16

2

Notation

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement

4

Scanning-based algorithms
5

Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2
• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into 

another operator

6



11/15/16

3

Nested-loop join

𝑅 ⋈) 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠
• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join

7

More improvements

• Stop early if the key of the inner table is being 
matched
• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + . /
012 ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer?

8

Sorting-based algorithms
9

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg



11/15/16

4

External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory
• Pass 0: read 𝑀 blocks 

of 𝑅 at a time, sort them, 
and write out a level-0 run

• Pass 1: merge 𝑀 − 1
level-0 runs at a time, 
and write out a level-1 run

• Pass 2: merge 𝑀 − 1 level-1 runs at a time, and write 
out a level-2 run

…
• Final pass produces one sorted run

10

Memory 𝑅

Level-0

…

…

… Level-1

Disk

Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
• 1, 7, 4 → 1, 4, 7
• 5, 2, 8 → 2, 5, 8
• 9, 6, 3 → 3, 6, 9

• Pass 1
• 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
• 3, 6, 9

• Pass 2 (final)
• 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

11

Analysis

• Pass 0: read 𝑀 blocks of 𝑅 at a time, sort them, and 
write out a level-0 run
• There are . /

0 level-0 sorted runs

• Pass 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time, 
and write out a level-𝑖 run
• 𝑀−1 memory blocks for input, 1 to buffer output
• # of level-𝑖 runs = #	<=	>?@?>1 A1B 	CDEF

01B

• Final pass produces one sorted run

12



11/15/16

5

Performance of external merge sort

• Number of passes: log01B
. /
0 + 1

• I/O’s
• Multiply by 2 ⋅ 𝐵 𝑅 : each pass reads the entire relation 

once and writes it once
• Subtract 𝐵 𝑅 for the final pass
• Roughly, this is 𝑂 𝐵 𝑅 ×log0𝐵 𝑅

• Memory requirement: 𝑀 (as much as possible)

13

Some tricks for sorting

• Double buffering
• Allocate an additional block for each run
• Overlap I/O with processing
• Trade-off:

• Blocked I/O
• Instead of reading/writing one disk block at time, 

read/write a bunch (“cluster”)
• More sequential I/O’s
• Trade-off:

14

Sort-merge join

𝑅 ⋈/.MNO.. 𝑆
• Sort 𝑅 and 𝑆 by their join attributes; then merge

𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆
Repeat until one of 𝑅 and 𝑆 is exhausted:

If 𝑟. 𝐴 > 𝑠. 𝐵 then 𝑠 = next tuple in 𝑆
else if 𝑟. 𝐴 < 𝑠. 𝐵 then 𝑟 = next tuple in 𝑅
else output all matching tuples, and
𝑟, 𝑠 = next in 𝑅 and 𝑆

• I/O’s: sorting	+	2𝐵 𝑅 + 2𝐵 𝑆
• In most cases (e.g., join of key and foreign key)
• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins

15



11/15/16

6

Example of merge join

𝑅: 𝑆: 𝑅 ⋈/.MNO.. 𝑆: 
𝑟B. 𝐴 = 1 𝑠B. 𝐵 = 1
𝑟2. 𝐴 = 3 𝑠2. 𝐵 = 2
𝑟T. 𝐴 = 3 𝑠T. 𝐵 = 3
𝑟U. 𝐴 = 5 𝑠U. 𝐵 = 3
𝑟W. 𝐴 = 7 𝑠W. 𝐵 = 8
𝑟Z. 𝐴 = 7
𝑟[. 𝐴 = 8

16

𝑟B𝑠B
𝑟2𝑠T
𝑟2𝑠U
𝑟T𝑠T
𝑟T𝑠U
𝑟[𝑠W

Optimization of SMJ
• Idea: combine join with the (last) merge phase of merge sort
• Sort: produce sorted runs for 𝑅 and 𝑆 such that there are 

fewer than 𝑀 of them total
• Merge and join: merge the runs of 𝑅, merge the runs of 𝑆, and 

merge-join the result streams as they are generated!

17

Merge

MergeSo
rt

ed
 ru

ns 𝑅

𝑆

Disk Memory

Join

Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 +𝐵 𝑆
• Memory requirement

• We must have enough memory to accommodate one block 
from each run: 𝑀 > . /

0
+ . O

0

• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆�

• If SMJ cannot complete in two passes:
• Repeatedly merge to reduce the number of runs as 

necessary before final merge and join

18



11/15/16

7

Other sort-based algorithms

• Union (set), difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort, by group-by columns

• Trick: produce “partial” aggregate values in each run, and 
combine them during merge
• This trick doesn’t always work though

• Examples:

19

Hashing-based algorithms
20

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈/.MNO.. 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and 

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they 

don’t join

21

Nested-loop join 
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!



11/15/16

8

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash 
function on their join attributes

22

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …

Probing phase

• Read in each partition of 𝑅, stream in the 
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

23

Disk Memory

partitions

partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

Performance of (two-pass) hash join

• If hash join completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 +𝐵 𝑆
• Memory requirement:

• In the probing phase, we should have enough memory to fit 
one partition of R: 𝑀 − 1 > . /

01B

• 𝑀 > 𝐵 𝑅� + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆
�

+ 1

24



11/15/16

9

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!

• See the duality in multi-pass merge sort here?

25

Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 ,𝐵 𝑆� + 1 < 𝐵 𝑅 +𝐵 𝑆�

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

26

What about nested-loop join?
27



11/15/16

10

Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns
• Tuples in the same group must end up in the same 

partition/bucket
• Keep a running aggregate value for each group

• May not always work

28

Duality of sort and hash

• Divide-and-conquer paradigm
• Sorting: physical division, logical combination
• Hashing: logical division, physical combination

• Handling very large inputs
• Sorting: multi-level merge
• Hashing: recursive partitioning

• I/O patterns
• Sorting: sequential write, random read (merge)
• Hashing: random write, sequential read (partition)

29

Index-based algorithms
30

http://i1.trekearth.com/photos/28820/p2270994.jpg



11/15/16

11

Selection using index

• Equality predicate: 𝜎MNb 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎Mcb 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴)may be useful
• Example: B+-tree index on 𝑅 𝐴,𝐵
• How about B+-tree index on 𝑅 𝐵,𝐴 ?

31

Index versus table scan

Situations where index clearly wins:
• Index-only queries which do not require retrieving 

actual tuples
• Example: 𝜋M 𝜎Mcb 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

32

Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎Mcb 𝑅 and a secondary, non-clustered 

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣

• Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% 𝑅
• I/O’s for scan-based selection: 𝐵 𝑅
• Table scan wins if a block contains more than 5 tuples!

33



11/15/16

12

Index nested-loop join

𝑅 ⋈/.MNO.. 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟.𝐴
Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index	lookup
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅 is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3

34

Zig-zag join using ordered indexes

𝑅 ⋈/.MNO.. 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

35

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

Summary of techniques

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge join, union (set), difference, 

intersection, duplicate elimination, grouping and 
aggregation

• Hash
• Hash join, union (set), difference, intersection, duplicate 

elimination, grouping and aggregation
• Index
• Selection, index nested-loop join, zig-zag join

36


