COMPSCI 330 Lecture 19 Linear Programming

Monday, November 7, 2016 2:23 PM

- Linear Programming
- Canonical Form
- Formulating problems as Linear Programs
 - recall: graph algorithm shortest path, MST, bipartite matching
 - LP (linear programming) general tool for solving many problems
 - system of linear inequalities
 - example $\max_{z \neq y} 2x + y \neq objective$ $\sum_{z \neq y} x \neq y \neq objective$ $\sum_{z \neq y} x \neq y \neq 1$

linear function: polynomial of degree 1 (does not have x2, y2, xy terms)

- geometric interpretation

Objective: max 2x+4

(recall: inner product (x,y) (x',y') = x·x'+y.y'

 $\overrightarrow{U} = ||u|| \cdot ||v|| \cdot \omega s\theta$

· Can think (2,1) is "direction of gravity"

1 ... Dimension is a number of to

can think (2,1) is "direction of gravity" - linear programming is equivalent to finding "lowest point" in the feasible set. - optimal solution: X=1 y=0 2x+y=2 - in higher dimensions (more than 2 variables), feasible solutions form a polytupe (polyhedral), harder to visualize - canonical form of linear Program - Def: a LD in canonical form looks like min $C^T \times$ st. $A \times \geqslant b$ $X \in \mathbb{R}^n$ $X \in \mathbb{R}^n$ $X \in \mathbb{R}^n$ $X \in \mathbb{R}^n$ $C^{T} \times = \sum_{i=1}^{N} C_{i} \times_{i}$ linear function over X_{i} $(Ax)_{j} \geqslant b_{j}$ - expressing the example in canonical form $X_1 = X$ $X_2 = Y$ $X_2 = Y$ $X_3 = Y$ $X_4 = Y$ equivalent. 2 X + 4 max Sit. y > 0 \Rightarrow already included in consolid $C^TX = -2X_1 - X_2$ form x+y < 1 - $\rightarrow -x-y \ge -1$ A=(-1,-1) b=-1min $C^T \times = (-2, -1) \times = -2Y_1 - Y_2$ 5t. $X \ge 0$ \Longrightarrow $X_1 \ge 0$, $X_2 \ge 0$

$(-1,-1)\times \geqslant -1 \iff -\chi,-\chi,\geqslant -1$

- Example:

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$

$$\chi_2 \geqslant 0$$

(don4 have X330)

equality constraint => 2 inequality constraints

$$X_1 + \sum X_2 \leq S$$

un constrained variable (X3) => use 2 extra variables

Courses

min 3x,-x2+ X4-X5

$$-X_1-2X_2 \ge -5$$

$$-\times_2-\times_4+\chi_5>-6$$

$$\chi', \chi', \chi' \chi' > 0$$

$$\begin{pmatrix}
1 & 2 & 0 & 0 \\
-1 & -2 & 0 & 0 \\
0 & -1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
X_1 \\
X_2 \\
X_4 \\
X_5
\end{pmatrix}
>
\begin{pmatrix}
5 \\
-4 \\
-6 \\
A
\end{pmatrix}$$

- Solving Problems using CP.

C(QSSrown

- bipartite matching

- Select variables

for edge u, v, Xu, v= 0 (4, v) not selected

Xu, v= 1 (U,V) is selected

O each course can only be assigned to 1 classroom &

@ each classroom can only be assigned to I course

V Z Xu,v E

ⓐ each edge = 1 if selected, 0 if not selected. (not a linear constraint) $0 \le Xu, v \le 1 \qquad (relaxed constraint)$

- objective function: maximize number of assigned courses/classroom

 $max \geq Xu,v$ $(u,v) \in E$ $max \leq Xu,v$ $(u,v) \in E$ $\forall u \geq Xu,v \leq V$ $\forall u \leq Xu,v \leq V$ $\forall u \in E$ $\forall u \in E$

Linear program for bipartite motching.

- Problem: solution to CP may have Xuv + 0, 1 (Xuv= = 1, 1...)
- Luckily for this LP, can always find a solution that only has Xuo=9/1 (not true in general)