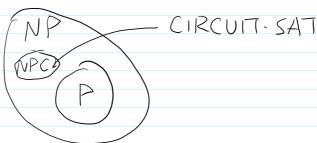
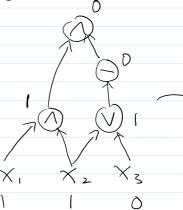
- Cook-Levin Theorem
- Example of Reductions
- Cook-Levin Theorem: For any Problem L in NP, there is a polynomial time reduction from L to CIRCUIT-SAT (SAT, 3-SAT).



- CIRCUIT-SAT (circuit Satisfichility)
 - boolean circuits
 - -3 basic operations: 1 and $\frac{\vee}{\times}$ or
 - Circuit: Pirectèd acyclic graph whose nodes are "getes"

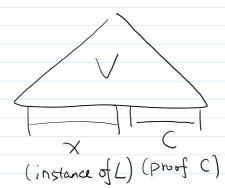


- CIRCUIT-SAT: Civen a circuit as the input decide if there is a set of assignments to the input variables that makes the circuit output!
- CIRCUIT-SAT ∈ NP

easy. The "proof" C is just one setisfying assignment, verifier will evaluate the circuit, and output I if the circuit outputs I.

- Proof idea of Cook-Levin Theorem.
 - If L is an NP problem, then there is a polytime verifier V

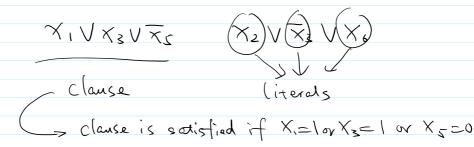
- If the verifier V is actually implemented by a boolean circuit.



-for any instance $x \in L$, fix the input for x, try to see if the circuit is still satisfiable.

If circuit is sod. \Longrightarrow answer to \times is yes Circuit is not sod. \Longrightarrow answer to \times is no.

- reduction from L to CIRCUIT-SAT.
- Claim: all polynomial time algorithm can be implemented by a civalit of polynomial size.
- reductions
 - To prove L is NP-hard, only need to reduce CIRCUIT-SAT to L. $L \geqslant \text{CIRCUIT-SAT} \geqslant \text{any NP problem}$
 - Common Starting point: 3-SAT problem
 - A 3-SAT instance has m clauses, each clause is an or of (otrust) 3 literals. A literal is a variable or its negation.



- answer to 3-SAT is yes if all m clauses can be satisfied simultaneously.

(another way to write is $C_1 \wedge C_2 \wedge \cdots \wedge C_m$ is satisfiable)

first clause last clause

3-SAT -> CIRCUIT-SAT easy

this reduction does not show 3-SAT; NP-had.

CIRCUIT-SAT > 3-SAT

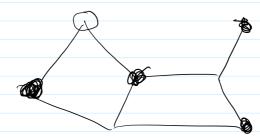
in order to show 3-SAT is NP-hard, need

(IRCUIT-SAT -> 3-SAT

3-SAT > CIRCUIT-SAT > any NP problem

- Example: INDEPENDENT-SET is NP-complete.

- IND-SET: Criven a graph G (undirected), SEV is an independent set if no two vertices in S are connected by an edge.



IND-SET: (C, K) Decide whether G has an ind-set of size ≥ k.

- reduction: 3-SAT -> IND-SET

- idea: use "gadgets"

for each object in 3-SAT -> map to some group of objects

literals (X_i, \overline{X}_i) in IND-SET Clauses $(C_i, C_2...)$ edges.

- literals: for each literal in each clause -> map to a vertex

 $\times_1 \vee \overline{\times}_3 \vee \times_5 \longrightarrow \otimes \otimes$

in solution, some of these ____ the satisfied literal will be in ind-sat three is satisfied.

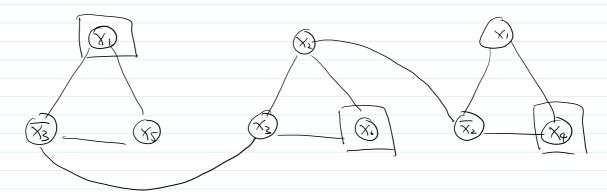
- edges: U, V are connected cannot choose both u, v,

- connect all vertices labeled Xi to all vertices labeled X:

- connect all literals within the same clause.

(want each clause to contribute I vertex to IND-SET)

 $(X, \sqrt{X_2}, X_3) \wedge (X_2 \vee X_3 \vee X_4) \wedge (X, \sqrt{X_2} \vee X_4)$



Claim: The 3-SAT instance is satisfiable iff the graph has an ind-set of size m,