
CompSci 516
Data	Intensive	Computing	Systems

Lecture	10
Normalization

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2016 CompSci 516:	Data	Intensive	Computing	Systems



Announcements

• Change	in	time	of	Sudeepa’s office	hour	(only	
for)	next	week
– 11:45	am	to	12:45	pm	– Monday	10/3

• Feedback	on	project	proposal	posted	on	sakai

• Midterm	syllabus:	up	to	Lecture	10
–We	will	start	a	new	topic	Transactions	next	week

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 2



Where	are	we	now?
We	learnt
ü Relational	Model	and	

Query	Languages
ü SQL,	RA,	RC
ü Postgres	(DBMS)
§ HW1

ü Map-reduce	and	spark
§ HW2

ü DBMS	Internals
ü Storage
ü Indexing
ü Query	Evaluation
ü Operator	Algorithms
ü External	sort
ü Query	Optimization

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 3

Next

• Database	Normalization
– (for	good	schema	design)

• Transactions
– Basic	concepts
– Concurrency	control
– Recovery



Reading	Material

• Database	normalization
– [RG]	Chapter	19.1	to	19.5,	19.6.1,	19.8	(overview)
– [GUW]	Chapter	3

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.



What	will	we	learn?

• What	goes	wrong	if	we	have	redundant	info	in	
a	database?

• Why	and	how	should	you	refine	a	schema?
• Functional	Dependencies	– a	new	kind	of	
integrity	constraints	(IC)

• Normal	Forms
• How	to	obtain	those	normal	forms

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 5



Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 6

The	list	of	hourly	employees	in	an	organization

• key	=	SSN



Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 7

The	list	of	hourly	employees	in	an	organization

• key	=	SSN
• Suppose	for	a	given	rating,	there	is	only	one	hourly_wage value
• Redundancy	in	the	table	
• Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 8

The	list	of	hourly	employees	in	an	organization

1. Redundant	storage:
– Some	information	is	stored	repeatedly
– The	rating	value	8	corresponds	to	hourly_wage 10,	which	is	stored	three	times

Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10	→	9 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 9

The	list	of	hourly	employees	in	an	organization

2. Update	anomalies
– If	one	copy	of	data	is	updated,	an	inconsistency	is	created	unless	all	copies	are	similarly	

updated
– Suppose	you	update	the	hourly_wage value	in	the	first	tuple	using	UPDATE	statement	in	

SQL	-- inconsistency

Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 10

The	list	of	hourly	employees	in	an	organization

3. Insertion	anomalies:
– It	may	not	be	possible	to	store	certain	information	unless	some	other,	unrelated	info	is	

stored	as	well
– We	cannot	insert	a	tuple	for	an	employee	unless	we	know	the	hourly	wage	for	the	

employee’s	rating	value

Why	is	redundancy	bad?



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 11

The	list	of	hourly	employees	in	an	organization

4. Deletion	anomalies:
– It	may	not	be	possible	delete	certain	information	without	losing	some	other	information	

as	well
– If	we	delete	all	tuples	with	a	given	rating	value	(Attishoo,	Smiley,	Madayan),	we	lose	the	

association	between	that	rating	value	and	its	hourly_wage value

Why	is	redundancy	bad?



Nulls	may	or	may	not	help

• Does	not	help	redundant	storage	or	update	anomalies
• May	help	insertion	and	deletion	anomalies

– can	insert	a	tuple	with	null	value	in	the	hourly_wage field
– but	cannot	record	hourly_wage for	a	rating	unless	there	is	such	an	

employee	(SSN	cannot	be	null)	– same	for	deletion
Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 12

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40



Summary:	Redundancy

Therefore,
• Redundancy	arises	when	the	schema	forces	an	association	

between	attributes	that	is	“not	natural”
• We	want	schemas	that	do	not	permit	redundancy

– at	least	identify	schemas	that	allow	redundancy	to	make	an	informed	
decision	(e.g.	for	performance	reasons)

• Null	value	may	or	may	not	help

• Solution?
– decomposition	of	schema

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 13



ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 14

Decomposition

ssn (S) name	(N) lot	
(L)

rating	
(R)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 40
222-22-2222 Smiley 22 8 30
333-33-3333 Smethurst 35 5 30
444-44-4444 Guldu 35 5 32
555-55-5555 Madayan 35 8 40

rating hourly
_wage

8 10

5 7



Decompositions	should	be	used	judiciously

1. Do	we	need	to	decompose	a	relation?
– Several	normal	forms
– If	a	relation	is	not	in	one	of	them,	may	need	to	

decompose	further

2. What	are	the	problems	with	decomposition?
– Lossless	joins,	Dependency	preservations	(soon)
– Performance	issues	-- decomposition	may	both
• help	performance	(for	updates,	some	queries	accessing	

part	of	data),	or
• hurt	performance	(new	joins	may	be	needed	for	some	

queries)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 15



Functional	Dependencies	(FDs)
• A	functional	dependency (FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 16

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	an	FD	here?



Functional	Dependencies	(FDs)
• A	functional	dependency	(FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 17

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	an	FD	here?

AB	→	C

Note	that,	AB	is	not	a	key

not	a	correct	question	though..	see	next	slide!



Functional	Dependencies	(FDs)

• An	FD	is	a	statement	about	all allowable	
relations
– Must	be	identified	based	on	semantics	of	application
– Given	some	allowable	instance	r1 of	R,	we	can	check	
if	it	violates some	FD	f,	but	we	cannot	tell	if	f holds	
over	R

• K	is	a	candidate	key	for	R	means	that	K	→R
– assume	R	=	all	attributes	of	R	too
– However,	S →R	does	not	require	S to	be	minimal
– e.g.	S	can	be	a	superkey

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 18



Example

• Consider	relation	obtained	from	Hourly_Emps:
– Hourly_Emps (ssn,	name,	lot,	rating,	hourly_wage,	
hours_worked)

• Notation:		We	will	denote	a relation	schema	by	listing	
the	attributes:			SNLRWH
– Basically	the	set of	attributes	{S,N,L,R,W,H}

• FDs	on	Hourly_Emps:
– ssn is	the	key:				S →	SNLRWH	
– rating	determines	hourly_wages:				R	→ W

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 19



Armstrong’s	Axioms

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 20

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

Apply	these	rules	on
AB	→	C	and	check



Armstrong’s	Axioms

• These	are	sound and	complete inference	rules	for	FDs
– sound:	then	only	generate	FDs	in	F+ for	F
– complete:	by	repeated	application	of	these	rules,	all	FDs	in	F+
will	be	generated

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 21

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y	
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z



Additional	Rules

• Follow	from	Armstrong’s	Axioms

• Union:			If	X	→	Y		and		X	→ Z,			then		X	→ YZ
• Decomposition:			If	X	→ YZ,			then		X	→ Y		and		X	→ Z

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 22

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

A	→	B,	A	→	C
A	→	BC

A	→	BC
A	→	B,	A	→	C



Closure	of	a	set	of	FDs

• Given	some	FDs,	we	can	usually	infer	additional	FDs:
– SSN	→	DEPT,	and	DEPT	→ LOT	implies	SSN	→	LOT

• An	FD	f is	implied	by	a	set	of	FDs	F if	f holds	whenever	
all	FDs	in	F hold.

• F+

=	closure	of	F	is	the	set	of	all	FDs	that	are	implied	by	F

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 23



To	check	if	an	FD	belongs	to	a	closure

• Computing	the	closure	of	a	set	of	FDs	can	be	expensive
– Size	of	closure	can	be	exponential	in	#attributes

• Typically,	we	just	want	to	check	if	a	given	FD	X	→ Y	is	in	
the	closure	of	a	set	of	FDs	F

• No	need	to	compute	F+

• Compute	attribute	closure	of	X	(denoted	X+)	wrt F:
– Set	of	all	attributes	A	such	that	X	→	A	is	in	F+

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 24



Computing	Attribute	Closure

Algorithm:
• closure	=	X
• Repeat	until	no	change

– if	there	is	an	FD	U	→	V	in	F	such	that	U	⊆ closure,	
then	closure	=	closure	∪ V	

• Check	if	Y	is	in	X+

• Does	F	=	{A	→	B,		B	→	C,		C	D	→ E	}		imply		A	→ E?
– i.e,		is		A	→	E		in	the	closure	F+?		Equivalently,	is	E	in	A+?	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 25



Normal	Forms	

• Question:	given	a	schema,	how	to	decide	whether	any	schema	
refinement	is	needed	at	all?

• If	a	relation	is	in	a	certain	normal	forms,	it	is	known	that	
certain	kinds	of	problems	are	avoided/minimized

• Helps	us	decide	whether	decomposing	the	relation	is	
something	we	want	to	do

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 26



FDs	play	a	role	in	detecting	redundancy

Example
• Consider	a	relation	R	with	3	attributes,	ABC	
– No	FDs	hold:			There	is	no	redundancy	here	– no	
decomposition	needed

– Given	A	→ B:			Several	tuples	could	have	the	same	A	value,	
and	if	so,	they’ll	all	have	the	same	B	value	– redundancy	–
decomposition	may	be	needed	if	A	is	not	a	key

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 27



Normal	Forms

R	is	in	BCNF
⇒ R	is	in	3NF
⇒ R	is	in	2NF		(a	historical	one,	not	
covered)
⇒ R	is	in	1NF	(every	field	has	atomic	
values)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 28

BCNF

3NF

2NF

1NF

Definitions	next



Boyce-Codd	Normal	Form		(BCNF)

• Relation	R	with	FDs	F is	in	BCNF if,	for	all	X	→
A		in	F
– A			ϵ			X			(called	a	trivial FD),	or
– X	contains	a	key	for	R

• i.e.	X	is	a	superkey

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 29



Observations:	BCNF
R	is	in	BCNF	if	the	only non-trivial	FDs	that	hold	over	R	are	key	
constraints

– each	tuple	has	a	key	and	a	bunch	of	other	attributes
– No	dependency	in	R	that	can	be	predicted	using	FDs	alone
– If	we	are	shown	two	tuples	that	agree	upon		the	X	value,	we	

cannot	infer	the	A	value	in	one	tuple	from	the	A	value	in	the	other

• Suppose	X	→	A	and	the	relation	is	in	BCNF	– what	can	you	infer?

• The	two	tuples	must	be	identical	(assuming	a	set	this	relation	is	
not	possible)
– otherwise,	X	is	not	the	key
– and		X	→	A	is	a	non-trivial	F.D.
– violated	BCNF	

X Y A
x y1 a
x y2 ?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 30



Third	Normal	Form		(3NF)

• Relation	R	with	FDs	F is	in	3NF if,	for	all	X	→ A		in	F+
– A	ϵ		X			(called	a	trivial	FD),	or
– X	contains a	key	for	R,	or
– A	is	part	of some	key for	R.	

• Minimality of	a	key	is	crucial	in	third	condition	in	3NF	
– every	attribute	is	part	of	some	superkey (=	set	of	all	attributes)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 31

two	conditions	for	BCNF



BCNF	vs.	3NF
• If	R	is	in	BCNF,	obviously	in	3NF
• If	R	is	in	3NF,	some	redundancy	is	possible

– when	X	→ A	and	A	is	part	of	a	key	(not	allowed	in	BCNF)

• Example:
– Reserves(S,	B,	D,	C),	C	=	credit	card,	S	→ C	and	C	→ S
– Since	SBD is	a	key,	CBD is	also	a	key,	3NF	not	violated	
– but	in	all	tuples	recording	the	same	S	value,	the	same	(S,	C)	pair	is	

redundantly	recorded
– note:	relation	is	not	in	BCNF	since	both	S	and	C	are	not	superkeys

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 32



Decomposition	of	a	Relation	Schema
• Consider	relation	R	contains	attributes	A1	...	An

• A	decomposition of	R	consists	of	replacing	R	by	two	or	more	
relations	such	that	“no	attribute	is	lost”	and	“no	new	attribute	
appears”,	i.e.	
– Each	new	relation	schema	contains	a	subset	of	the	attributes	of	R
– Every	attribute	of	R	appears	as	an	attribute	of	one	of	the	new	relations
– E.g.,		Can	decompose	SNLRWH into	SNLRH and	RW

• What	are	the	potential	problems	with	an	arbitrary	
decomposition?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 33



Good	properties	of	decomposition

• Lossless	join	decomposition
• Dependency	preserving	decomposition

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 34



Lossless	Join	Decompositions
• Decomposition	of	R	into	X	and	Y	is	lossless-join w.r.t.	a	set	of	

FDs	F	if,	for	every	instance	r that	satisfies	F:	πX(r)	⨝ π	Y(r)		=	r

• It	is	always	true	that			πX(r)	⨝ π	Y(r)	⊇ r

• In	general,	the	other	direction	does	not	hold		
– If	it	does,	the	decomposition	is	lossless-join

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 35

S P D

s1 p1 d1

s2 p2 d2

s3 p1 d3

• Decompose	into	SP	and	PD	-- is	the	
decomposition	lossless?

• How	about	SP	and	SD?

For	lossless	decomposition	of	R	into	R1,	R2
• either	R1	∩	R2	→	R1
• or	R1	∩ R2	→	R2



Dependency	Preserving	Decomposition

• Consider	CSJDPQV,		C	is	key,		JP	→ C		and		SD	→ P
– Lossless	decomposition:			CSJDQV	and	SDP

• SD	key	of	(SDP)!

– Problem:		Checking		JP	→ C		requires	a	join

• Dependency	preserving	decomposition:
– join	is	not	needed	to	check	a	dependency

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 36



Algorithm:	Decomposition	into	BCNF

• Input:	relation	R	with	FDs	F
If	X	→ Y	violates	BCNF,	decompose	R	into		R	- Y and	XY.
Repeat	until	all	new	relations	are	in	BCNF	w.r.t.	the	given	F

• Gives	a	collection	of	relations	that	are
– in	BCNF
– lossless	join	decomposition
– and	guaranteed	to	terminate
– but	a	dependency-preserving	decomposition	may	not	exist	
(example	in	book)

Duke	CS,	Fall	2016 CompSci 516:	Data	Intensive	Computing	Systems 37



Decomposition	into	BCNF	
(example)

• CSJDPQV,		key	C,		F	=	{JP	→ C,		SD	→ P,			J	→ S}
– To	deal	with	SD	→	P,	decompose	into		SDP,	CSJDQV.
– To	deal	with	J	→ S,	decompose	CSJDQV	into	JS	and	CJDQV

• Note:
– several	dependencies	may	cause	violation	of	BCNF		
– The	order	in	which	we	pick	them	may	lead	to	very	different	
sets	of	relations

– there	may	be	multiple	correct	decompositions

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 38



Other	kinds	of	dependencies	and	
normal	forms

• Multi-valued	dependencies
• Join	dependencies
• Inclusion	dependencies
• 4NF,	5NF
• See	book	if	interested	(not	covered	in	class)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 39



Summary

• Redundancy	is	not	desired	typically
– not	always,	mainly	due	to	performance	reasons

• Functional	dependencies	– capture	redundancy
• Decompositions	– eliminate	dependencies
• Normal	forms
– Guarantees	certain	non-redundancy
– BCNF	and	3NF

• Lossless	join	and	dependency-preserving	joins	
• How	to	decompose	into	BCNF

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 40


