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Announcements

• HW3	(last	HW)	has	been	posted	on	Sakai

• Same	problems	as	in	HW1	but	in	MongoDB	
(NOSQL)

• Due	in	two	weeks	after	today’s	lecture	
(~11/16)
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Reading	Material
NOSQL:
• “Scalable	SQL	and	NoSQL	Data	Stores”
Rick	Cattell,	SIGMOD	Record,	December	2010	(Vol.	39,	No.	4)
• see	webpage	http://cattell.net/datastores/ for	updates	and	more	pointers

Column	Store:
• D.	Abadi,	P.	Boncz,	S.	Harizopoulos,	S.	Idreos and	S.	Madden.	The	Design	and	Implementation	of	

Modern	Column-Oriented	Database	Systems.	Foundations	and	Trends	in	Databases,	vol.	5,	no.	
3,	pp.	197–280,	2012.

• See	VLDB	2009	tutorial:	http://nms.csail.mit.edu/~stavros/pubs/tutorial2009-
column_stores.pdf

Optional:
• “Dynamo:	Amazon’s	Highly	Available	Key-value	Store”	By	Giuseppe	DeCandia et.	al.	SOSP	

2007

• “Bigtable:	A	Distributed	Storage	System	for	Structured	Data”	Fay	Chang	et.	al.	OSDI	2006
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NoSQL
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So	far	-- RDBMS

• Relational	Data	Model
• Relational	Database	Systems	(RDBMS)
• RDBMSs	have	
– a	complete	pre-defined	fixed	schema
– a	SQL	interface
– and	ACID	transactions
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Today
• NoSQL:	”new”	database	systems
– not	typically	RDBMS
– relax	on	some	requirements,	gain	efficiency	and	
scalability

• New	systems	choose	to	use/not	use	several	
concepts	we	learnt	so	far
– e.g.	System	X	does	not	use	locks	but	use	multi-version	
CC	(MVCC)	or,	

– System	Y	uses	asynchronous	replication
• therefore,	it	is	important	to	understand	the	basics	
(Lectures	1-17)	even	if	they	are	not	used	in		some	
new	systems!
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Warnings!

• Material	from	Cattell’s	paper	(2010-11)	–
some	info	will	be	outdated	
– see	webpage	http://cattell.net/datastores/ for	
updates	and	more	pointers

• We	will	focus	on	the	basic	ideas	of	NoSQL	
systems

• Optional reading	slides	at	the	end
– there	are	also	comparison	tables	in	the	Cattell’s	
paper	if	you	are	interested
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OLAP	vs.	OLTP

• OLTP	(OnLine Transaction	Processing)
– Recall	transactions!
– Multiple	concurrent	read-write	requests
– Commercial	applications	(banking,	online	shopping)
– Data	changes	frequently
– ACID	properties,	concurrency	control,	recovery

• OLAP	(OnLine Analytical	Processing)
– Many	aggregate/group-by	queries	– multidimensional	data
– Data	mostly	static
– Will	study	OLAP	Cube	soon
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New	Systems
• We	will	examine	a	number	of	SQL	and	so- called	
“NoSQL”	systems	or	“data	stores”

• Designed	to	scale	simple	OLTP-style	application	
loads	
– to	do	updates	as	well	as	reads
– in	contrast	to	traditional	DBMSs	and	data	warehouses
– to	provide	good	horizontal	scalability	for	simple	
read/write	database	operations	distributed	over	many	
servers	

• Originally	motivated	by	Web	2.0	applications
– these	systems	are	designed	to	scale	to	thousands	or	
millions	of	users
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New	Systems	vs.	RDMS
• When	you	study	a	new	system,	compare	it	with	
RDBMS-s	on	its	
– data	model
– consistency	mechanisms
– storage	mechanisms
– durability	guarantees
– availability
– query	support

• These	systems	typically	sacrifice	some	of	these	
dimensions
– e.g.	database-wide	transaction	consistency,	in	order	to	
achieve	others,	e.g.	higher	availability	and	scalability
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NoSQL

• Many	of	the	new	systems	are	referred	to	as	
“NoSQL”	data	stores

• NoSQL	stands	for	“Not	Only	SQL”	or	“Not	
Relational”
– not	entirely	agreed	upon

• Next:	six	key	features	of	NoSQL	systems
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NoSQL:	Six	Key	Features

1. the	ability	to	horizontally	scale	“simple	operations”	
throughput	over	many	servers

2. the	ability	to	replicate	and	to	distribute	(partition)	data	over	
many	servers

3. a	simple	call	level	interface	or	protocol	(in	contrast	to	SQL	
binding)

4. a	weaker	concurrency	model	than	the	ACID	transactions	of	
most	relational	(SQL)	database	systems	

5. efficient	use	of	distributed	indexes	and	RAM	for	data	storage
6. the	ability	to	dynamically	add	new	attributes	to	data	records
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Important	Examples	of	New	Systems

• Three	systems	provided	a	“proof	of	concept”	and	
inspired	many	other	data	stores

1. Memcached
2. Amazon’s	Dynamo
3. Google’s	BigTable
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1.	Memcached:	main	features

• popular	open	source	cache

• supports	distributed	hashing	(later)

• demonstrated	that	in-memory	indexes can	be	
highly	scalable,	distributing and	replicating
objects	over	multiple	nodes
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2.	Dynamo	:	main	features

• pioneered	the	idea	of	eventual	consistency	as	a	
way	to	achieve	higher	availability	and	scalability

• data	fetched	are	not	guaranteed	to	be	up-to-
date

• but	updates	are	guaranteed	to	be	propagated	
to	all	nodes	eventually
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3.	BigTable :	main	features

• demonstrated	that	persistent	record	storage	
could	be	scaled	to	thousands	of	nodes
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BASE	(not	ACID	J)

• Recall	ACID	for	RDBMS	desired	properties	of	
transactions:	
– Atomicity,	Consistency,	Isolation,	and	Durability	

• NOSQL	systems	typically	do	not	provide	ACID

• Basically	Available
• Soft	state
• Eventually	consistent	
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ACID	vs.	BASE
• The	idea	is	that	by	giving	up	ACID	constraints,	one	
can	achieve	much	higher	performance	and	scalability

• The	systems	differ	in	how	much	they	give	up
– e.g.	most	of	the	systems	call	themselves	“eventually	
consistent”,	meaning	that	updates	are	eventually	
propagated	to	all	nodes

– but	many	of	them	provide	mechanisms	for	some	degree	of	
consistency,	such	as	multi-version	concurrency	control
(MVCC)
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“CAP”	Theorem

• Often	Eric	Brewer’s	CAP	theorem	cited	for	NoSQL

• A system	can	have	only	two	out	of	three	of	the	following	
properties:	
– Consistency,	
– Availability	
– Partition-tolerance

• The	NoSQL	systems	generally	give	up	consistency
– However,	the	trade-offs	are	complex	
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Two	foci	for	NoSQL	systems

1. “Simple”	operations

2. Horizontal	Scalability
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1.	“Simple”	Operations

• Reading	or	writing	a	small	number	of	related	records	in	
each	operation
– e.g.	key	lookups
– reads	and	writes	of	one	record	or	a	small	number	of	records

• This	is	in	contrast	to	complex	queries,	joins,	or	read-mostly	
access	

• Inspired	by	web,	where	millions	of	users	may	both	read	and	
write	data	in	simple	operations
– e.g.	search	and	update	multi-server	databases	of	electronic	

mail,	personal	profiles,	web	postings,	wikis,	customer	records,	
online	dating	records,	classified	ads,	and	many	other	kinds	of	
data
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2.	Horizontal	Scalability

• Shared-Nothing	Horizontal	Scaling

• The	ability	to	distribute	both	the	data	and	the	load	of	
these	simple	operations	over	many	servers
– with	no	RAM	or	disk	shared	among	the	servers

• Not	“vertical”	scaling
– where	a	database	system	utilizes	many	cores	and/or	CPUs	
that	share	RAM	and	disks

• Some	of	the	systems	we	describe	provide	both	vertical	
and	horizontal	scalability
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2.	Horizontal	vs.	Vertical	Scaling

• Effective	use	of	multiple	cores	(vertical	scaling)	is	
important
– but	the	number	of	cores	that	can	share	memory	is	
limited

• horizontal	scaling	generally	is	less	expensive
– can	use	commodity	servers

• Note:	horizontal	and	vertical	partitioning	are	not	
related	to	horizontal	and	vertical	scaling
– except	that	they	are	both	useful	for	horizontal	scaling	
(Lecture	17)
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What	is	different	in	NOSQL	systems

• When	you	study	a	new	NOSQL	system,	notice	
how	it	differs	from	RDBMS	in	terms	of

1. Concurrency	Control
2. Data	Storage	Medium
3. Replication
4. Transactions
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Choices	in	NOSQL	systems:	
1.	Concurrency	Control

a) Locks	
– some	systems	provide	one-user-at-a-time	read	or	update	locks
– MongoDB	provides	locking	at	a	field	level

b) MVCC
c) None
– do	not	provide	atomicity
– multiple	users	can	edit	in	parallel
– no	guarantee	which	version	you	will	read

d) ACID
– pre-analyze	transactions	to	avoid	conflicts
– no	deadlocks	and	no	waits	on	locks
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Choices	in	NOSQL	systems:	
2.	Data	Storage	Medium

a) Storage	in	RAM
– snapshots	or	replication	to	disk
– poor	performance	when	overflows	RAM

b) Disk	storage
– caching	in	RAM
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Choices	in	NOSQL	systems:	
3.	Replication

• whether	mirror	copies	are	always	in	sync
a) Synchronous
b) Asynchronous
– faster,	but	updates	may	be	lost	in	a	crash

c) Both
– local	copies	synchronously,	remote	copies	

asynchronously
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Choices	in	NOSQL	systems:	
4.	Transaction	Mechanisms

a) support
b) do	not	support
c) in	between
– support	local	transactions	only	within	a	single	

object	or	“shard”
– shard	=	a	horizontal	partition	of	data	in	a	

database
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Comparison	from	Cattell’s	paper	(2011)
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Data	Model	Terminology	for	NoSQL

• Unlike	SQL/RDBMS,	the	terminology	for	NoSQL	
is	often	inconsistent
– we	are	following	notations	in	Cattell’s	paper

• All	systems	provide	a	way	to	store	scalar	values
– e.g.	numbers	and	strings

• Some	of	them	also	provide	a	way	to	store	more	
complex	nested	or	reference	values
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Data	Model	Terminology	for	NoSQL

• The	systems	all	store	sets	of	attribute-value	pairs
– but	use	four	different	data	structures

1. Tuple
2. Document
3. Extensible	Record
4. Object
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1.	Tuple

• Same	as	before
• A	“tuple”	is	a	row	in	a	relational	table
– attribute	names	are	pre-defined	in	a	schema
– the	values	must	be	scalar
– the	values	are	referenced	by	attribute	name
– in	contrast	to	an	array	or	list,	where	they	are	
referenced	by	ordinal	position
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2.	Document

• Allows	values	to	be	nested	documents	or	lists	
as	well	as	scalar	values

• The	attribute	names	are	dynamically	defined	
for	each	document	at	runtime

• A	document	differs	from	a	tuple	in	that	the	
attributes	are	not	defined	in	a	global	schema
– and	a wider	range	of	values	are	permitted
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3.	Extensible	Record

• A hybrid between	a	tuple	and	a	document
• families	of	attributes	are	defined	in	a	schema
• but	new	attributes	can	be	added	(within	an	
attribute	family)	on	a	per-record	basis

• Attributes	may	be	list-valued
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4.	Object

• Analogous	to	an	object	in	programming	
languages
– but	without	the	procedural	methods

• Values	may	be	references	or	nested	objects	
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Data	Store	Categories
• The	data	stores	are	grouped	according	to	their	data	model	
• Key-value	Stores:	

– store	values	and	an	index	to	find	them
– based	on	a	programmer- defined	key

• Document	Stores:	
– store	documents
– The	documents	are	indexed	and	a	simple	query	mechanism	is	

provided	
• Extensible	Record	Stores:

– store	extensible	records	that	can	be	partitioned	vertically	and	
horizontally	across	nodes

– Some	papers	call	these	“wide	column	stores”
• Relational	Databases:	

– store	(and	index	and	query)	tuples
– e.g.	the	new	RDBMSs	that	provide	horizontal	scaling
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Example	NOSQL	systems

• Key-value	Stores:	
– Project	Voldemort,	Riak,	Redis,	Scalaris,	Tokyo	
Cabinet,	Memcached/Membrain/Membase

• Document	Stores:	
– Amazon	SimpleDB,	CouchDB,	MongoDB,	Terrastore

• Extensible	Record	Stores:	
– Hbase,	HyperTable,	Cassandra,	Yahoo’s	PNUTS

• Relational	Databases:	
– MySQL	Cluster,	VoltDB,	Clustrix,	ScaleDB,	ScaleBase,	
NimbusDB,	Google	Megastore	(a	layer	on	BigTable)
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Key-value	store:	1/2
• The	simplest	data	stores	
• data	model	similar	to	the	memcached distributed	in-
memory	cache
– with	a	single	key-value	index	for	all	the	data	
– does	not	provide	secondary	indices	or	keys

• but	unlike	memcached,	generally	provide	
– a	persistence	mechanism
– additional	functionality	like replication,	versioning,	locking,	
transactions,	sorting,	etc

• The	client	interface	provides	inserts,	deletes,	and	
index	lookups
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Key-value	store:	2/2
• All	key-value	stores	provide	scalability	through	key	

distribution	over	nodes
• Voldemort,	Riak,	Tokyo	Cabinet,	and	enhanced	memcached

systems	can	store	data	in	RAM	or	on	disk
– The	others	store	data	in	RAM,	and	provide	disk	as	backup,	or	rely	

on	replication	and	recovery	so	that	a	backup	is	not	needed
• Scalaris and	enhanced	memcached systems	use	synchronous	

replication
– the	rest	use	asynchronous

• Scalaris and	Tokyo	Cabinet	implement	transactions
– the	others	do	not.	

• Voldemort	and	Riak use	multi-version	concurrency	control
– the	others	use	locks	
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Use	Case	:	Key-value	store

• if	you	have	a	simple	application	with	only	one	
kind	of	object,	and	you	 only	need	to	look	up	
objects	up	based	on	one	attribute

• Suppose	you	have	a	web	application	
– that	does	many	RDBMS	queries	to	create	a	tailored	
page	when	a	user	logs	in

– Suppose	it	takes	several	seconds	to	execute	those	
queries,	and	the	user’s	data	is	rarely	changed

– you	might	want	to	store	the	user’s	tailored	page	as	a	
single	object	in	a	key-value	store
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Document	store:	1/3
• Document	stores	support	more	complex	data	than	the	
key-value	stores

• “document	store”	may	be	confusing
– these	systems	could	store	“documents”	in	the	traditional	
sense	(articles,	Microsoft	Word	files,	etc.)

– but	a	document	in	these	systems	can	be	any	kind	of	
“pointerless object”

• Unlike	the	key-value	stores,	these	systems	generally	
support	
– secondary	indexes
– multiple	types	of	documents	(objects)	per	database,	and	
– nested	documents	or	lists

• Like	other	NoSQL	systems,	the	document	stores	do	not	
provide	ACID	transactional	properties
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Document	store:	2/3
• The	document	stores	are	schema-less,	except	for	

– attributes	(which	are	simply	a	name,	and	are	not	pre- specified)
– collections	(which	are	simply	a	grouping	of	documents),	and
– indexes	defined	on	collections	(explicitly	defined,	except	in	SimpleDB)
– There	are	some	differences	in	their	data	models,	e.g.	SimpleDB does	

not	allow	nested	documents

• The	document	stores	are	very	similar	but	use	
different	terminology
– e.g.		a	SimpleDB Domain	=	CouchDB Database	=	MongoDB	Collection	

(=	Terrastore Bucket)
– SimpleDB calls	documents	“items”
– an	attribute	is	a	field	in	CouchDB,	or	a	key	in	MongoDB	(or	Terrastore)
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Document	store:	3/3
• Unlike	the	key-value	stores,	the	document	stores	
“typically”	provide	a	mechanism	to	query	collections	
based	on	multiple	attribute	value	constraints

• do	not	provide	explicit	locks
– have	weaker	concurrency	and	atomicity	properties	than	
traditional	ACID-compliant	databases

• Documents	can	be	distributed	over	nodes	in	all	of	the	
systems
– All	of	the	systems	can	achieve	scalability	by	reading	
(potentially)	out-of-date	replicas
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Use	case:	Document	Store

• application	with	multiple	different	kinds	of	
objects
– e.g.	in	a	Department	of	Motor	Vehicles	
application,	with	vehicles	and	drivers

• where	you	need	to	look	up	objects	based	on	
multiple	fields
– e.g.,	a	driver’s	name,	license	number,	owned	
vehicle,	or	birth	date
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Extensible	Record	Stores	:	1/1

• Motivated	by	Google’s	success	with	BigTable
– still	the	recent	extensible	record	stores	cannot	come	close	to	BigTable’s

scalability
• Basic	data	model	is	rows	and	columns
• Basic	scalability	model	is	splitting	both	rows	and	columns	over	

multiple	nodes
• Rows	are	split	across	nodes	through	sharding on	the	primary	key

– They	typically	split	by	range	rather	than	a	hash	function
• Columns	of	a	table	are	distributed	over	multiple	nodes	by	using	

“column	groups”
– a	way	for	the	customer	to	indicate	which	columns	are	best	stored	

together
• Both	horizontal	and	vertical	partitioning	can	be	used	simultaneously	

on	the	same	table	
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Use	case:	Extensible	Record	Store
• uses	cases	similar	to	those	for	document	stores:

– multiple	kinds	of	objects,	with	lookups	based	on	any	field.	

• However,	aimed	at	higher	throughput,	and	may	provide	
stronger	concurrency	guarantees,	
– at	the	cost	of	slightly	morecomplexity than	the	document	stores

• Suppose	storing	customer	information	for	an	eBay-style	
application,	and	you	want	to	partition	your	data	both	
horizontally	and	vertically:
– cluster	customers	by	country,	so	that	you	can	efficiently	search	all	of	

the	customers	in	one	country
– separate	the	rarely-changed	“core”	customer	information	such	as	

customer	addresses	and	email	addresses	in	one	place,	and
– put	certain	frequently-updated	customer	information	(such	as	current	

bids	in	progress)	in	a	different	place,	to	improve	performance
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Scalable	RDBMS	:	1/1

• Some	RDBMSs	are	expected	to	provide	scalability	
comparable	with	NoSQL	data	stores

• But,	with	two	provisos:	
– Use	small-scope	operations:	 Operations	that	span	many	nodes,	

e.g.	joins	over	many	tables,	will	not	scale	well	with	sharding
– Use	small-scope	transactions:	Likewise,	transactions	that	span	

many	nodes	are	going	to	be	very	inefficient,	with	the	
communication	and	2PC	overhead	

• Typical	NOSQL	systems	make	these	two	impossible
• Scalable	RDBMS	allows	them,	but	penalizes	a	customer	for	

these	operations
• Have	higher-level	SQL	language	and	ACID	properties

– but	pay	a	price	when	they	span	nodes
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Use	case:	Scalable	RDBMS

• If	your	application	requires	many	tables	with	
different	types	of	data
– a	relational	schema	centralizes	and	simplifies	data	
definition	and	SQL	simplifies	operations

– or	for	projects	with	many	programmers
• However,	more	useful	if	the	application	does	not	
require	
– updates	or	joins	that	span	many	nodes	
– transaction	coordination
– or,	data	movement
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Consistent	Hashing
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in	DynamoDB



Consistent	Hashing	(CH)
• Recall	dynamic	hashing	schemes
• If	the	#of	slots	(directory	size)	changes,	then	almost	
all	keys	had	to	be	remapped

• In	consistent	hashing	(CH),	with	#keys	=	K	and	#slots	
=	N,	only	K/N	keys	need	to	be	remapped	on	average

• Applies	to	the	design	of	Distributed	Hash	Table	
(DHTs)	for	Uniform	Load	Distribution
– partition	a	keyspace among	a	set	of	sites/nodes
– additionally	provide	an	overlay	network	that	connects	
nodes	such	that	the	nodes	responsible	for	any	key	can	be	
efficiently	located
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DynamoDB :	CH	1/2
• [ref.	the	DynamoDB paper,	sec	4.3]
• Must	scale	incrementally
• Consistent	hashing	is	used	to	dynamically	distribute	

data	around	a	“ring”	of	nodes	(=sites)
• The	output	of	a	hash	function	is	treated	as	a	circular	

ring
• Each	node	is	assigned	a	random	value	in	this	space

– represents	the	“position”	on	the	ring
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• Data	item	identified	by	a	key
• Assign	to	a	node	by	hashing	

the	key	to	



DynamoDB :	CH	2/2
• Data	item	identified	by	a	key
• Assign	to	a	node	by	hashing	the	key	to	yield	its	position	

on	the	ring
• Walk	the	ring	clockwise	to	find	the	first	node	with	a	

position	larger	than	the	item’s	position
• Each	node	is	responsible	for	the	region	in	the	ring	

between	it	and	its	predecessor	node	on	the	ring
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• Note:
• departure	or	arrival	of	a	node	only	

affects	its	immediate	neighbor
• The	other	nodes	remain	unaffected
• K/N	on	average!



DynamoDB :	Challenges	in	CH
• However,	this	basic	CH	algorithm	poses	some	challenges
1. Random	position	assignment	of	each	node	on	the	ring	

leads	to	non-uniform	data	and	load	distribution
2. The	basic	algorithm	is	oblivious	to	the	heterogeneity	in	the	

performance	of	the	nodes

• Solution:	Dynamo	uses	a	variant	of	CH
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• Each	node	gets	assigned	to	
multiple	points	in	the	ring

• called	“virtual	node”
• one	node	takes	care	of	multiple	

virtual	nodes



DynamoDB:	Virtual	Nodes
• Using	virtual	nodes	has	advantages

1. If	a	node	becomes	unavailable	(due	to	failures	or	routine	
maintenance),	the	load	handled	by	this	node	is	evenly	dispersed	
across	the	remaining	available	nodes

2. When	a	node	becomes	available	again,	or	a	new	node	is	added	to	
the	system,	the	newly	available	node	accepts	a	roughly	equivalent	
amount	of	load	from	each	of	the	other	available	nodes
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3. The	number	of	virtual	nodes	that	
a	node	is	responsible	can	decided	
based	on	its	capacity,	accounting	
for	heterogeneity	in	the	physical	
infrastructure



DynamoDB:	Replication
• Dynamo	replicates	its	data	on	multiple	(N)	hosts	for	high	

availability	and	durability
• Each	key	k	is	assigned	to	a	coordinator	which	is	in	charge	of	

replication
– coordinator	handles	all	keys	in	its	range

• Coordinator	replicates	each	key	it	is	in	charge	of
– by	storing	it	locally
– replicating	it	at	the	N-1	clockwise	succesor nodes	in	the	ring

• Each	node	is	in	charge	of	region	of	the	ring	between	it	and	its	
N-th predecessor
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Node	B	replicates	key	K	at	nodes	C	and	D
Node	D	will	store	keys	in	the	range	(A,	B],	(B,	C],	(C,	D]
Note:	there	may	be	<	N	“physical”	nodes



CH	History
• Proposed	by	CS	theoreticians	from	MIT:

– Karger-Lehman-Leighton-Panigrahy-Levine-Lewin
– “Consistent	Hashing	and	Random	Trees:	Distributed	Caching	Protocols	

for	Relieving	Hot	Spots	on	the	World	Wide	Web”	– STOC	1997

• Consistent	hashing	gave	birth	to	Akamai	Technologies
– Founded	by	Danny	Lewin	and	Tom	Leighton	in	1998
– Akamai’s	content	delivery	network	is	one	of	the	largest	distributed	

computing	platforms
– Now	market	cap	$12B	and	6200	employees
– Managing	web-presence	of	many	major	companies

• 2001:	The	concept	of	Distributed	Hash	Table	(DHT)	is	
proposed	(how	to	look	for	a	file)	and	CH	was	re-purposed

• Now	used	in	Dynamo,	Couchbase,	Cassandra,	Voldemort,	
Riak,	..
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SQL	vs.	NOSQL
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Arguments	for	both	sides
still	a	controversial	topic



Why	choose	RDBMS	over	NoSQL	:	1/3
1. If	new	relational	systems	can	do	everything	

that	a	NoSQL	system	can,	with	analogous	
performance	and	scalability	(?),	and	with	the	
convenience	of	transactions	and	SQL,	NoSQL	
is	not	needed

2. Relational	DBMSs	have	taken	and	retained	
majority	market	share	over	other	
competitors	in	the	past	30	years
– (network,	object,	and	XML	DBMSs)
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Why	choose	RDBMS	over	NoSQL	:	2/3	
3. Successful	relational	DBMSs	have	been	built	

to	handle	other	specific	application	loads in	
the	past:	
– read-only	or	read-mostly	data	warehousing
– OLTP	on	multi-core	multi-disk	CPUs
– in-memory	databases
– distributed	databases,	and	
– now	horizontally	scaled	databases	
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Why	choose	RDBMS	over	NoSQL	:	3/3	

4. While	no	“one	size	fits	all”	in	the	SQL	
products	themselves,	there	is	a	common	
interface	with	SQL,	transactions,	and	
relational	schema	that	give	advantages	in	
training,	continuity,	and	data	interchange
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Why	choose	NoSQL	over	RDBMS	:	1/3
1. We	haven’t	yet	seen	good	benchmarks	showing	

that	RDBMSs	can	achieve	scaling comparable	with	
NoSQL	systems	like	Google’s	BigTable

2. If	you	only	require	a	lookup	of	objects	based	on	a	
single	key
– then	a	key-value	store	is	adequate	and	probably	easier	to	understand	

than	a	relational	DBMS
– Likewise	for	a	document	store	on	a	simple	application:	you	only	pay	

the	learning	curve	for	the	level	of	complexity	you	require	
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Why	choose	NoSQL	over	RDBMS	:	2/3

3. Some	applications	require	a	flexible	schema
– allowing	each	object	in	a	collection	to	have	different	
attributes

– While	some	RDBMSs	allow	efficient	“packing”	of	tuples	
with	missing	attributes,	and	some	allow	adding	new	
attributes	at	runtime,	this	is	uncommon	
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Why	choose	NoSQL	over	RDBMS	:	3/3

4. A	relational	DBMS	makes	“expensive”	(multi- node	
multi-table)	operations	“too	easy”
– NoSQL	systems	make	them	impossible	or	obviously	
expensive	for	programmers

5. While	RDBMSs	have	maintained	majority	market	
share	over	the	years,	other	products	have	
established	smaller	but	non-trivial	markets	in	areas	
where	there	is	a	need	for	particular	capabilities
– e.g.	indexed	objects	with	products	like	BerkeleyDB,	or	graph-following	

operations	with	object-oriented	DBMSs
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Column	Store
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Row	vs.	Column	Store

• Row	store
– store	all	attributes	of	a	tuple	together
– storage	like	“row-major	order”	in	a	matrix

• Column	store
– store	all	rows	for	an	attribute	(column)	together
– storage	like	“column-major	order”	in	a	matrix

• e.g.	
– MonetDB,	Vertica	(earlier,	C-store),	SAP/Sybase	IQ,	
Google	Bigtable (with	column	groups)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 66



Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 67

Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Additional	and	Optional	Slides	on
MongoDB

(May	be	useful	for	HW3)
https://docs.mongodb.com



MongoDB

• MongoDB	is	an	open	source	document	store	written	in	C++
• provides	indexes	on	collections
• lockless
• provides	a	document	query	mechanism
• supports	automatic	sharding
• Replication	is	mostly	used	for	failover
• does	not	provide	the	global	consistency	of	a	traditional	DBMS

– but	you	can	get	local	consistency	on	the	up-to-date	primary	copy	of	a	
document

• supports	dynamic	queries	with	automatic	use	of	indices,	like	
RDBMSs

• also	supports	map-reduce	– helps	complex	aggregations	across	
docs

• provides	atomic	operations	on	fields	
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Optional	slide:	Read	yourself



MongoDB:	Atomic	Ops	on	Fields
• The	update	command	supports	“modifiers”	that	facilitate	atomic	

changes	to	individual	values
– $set	sets	a	value
– $inc increments	a	value
– $push	appends	a	value	to	an	array
– $pushAll appends	several	values	to	an	array
– $pull	removes	a	value	from	an	array,	and	$pullAll removes	several	

values	from	an	array
• Since	these	updates	normally	occur	“in	place”,	they	avoid	the	

overhead	of	a	return	trip	to	the	server
• There	is	an	“update	if	current”	convention	for	changing	a	document	

only	if	field	values	match	a	given	previous	value
• MongoDB	supports	a	findAndModify command	to	perform	an	

atomic	update	and	immediately	return	the	updated	document
– useful	for	implementing	queues	and	other	data	structures	requiring	

atomicity
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Optional	slide:	Read	yourself



MongoDB:	Index
• MongoDB	indices	are	explicitly	defined	using	
an	ensureIndex call
– any	existing	indices	are	automatically	used	for	
query	processing

• To	find	all	products	released	last	year	(2015)	
or	later	costing	under	$100	you	could	write:	

• db.products.find(
{released:	{$gte:	new	Date(2015,	1,	1,)},	price	
{‘$lte’:	100},})	
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Optional	slide:	Read	yourself



MongoDB:	Data

• MongoDB	stores	data	in	a	binary	JSON-like	
format	called	BSON
– BSON	supports	boolean,	integer,	float,	date,	string	
and	binary	types	

–MongoDB	can	also	support	large	binary	objects,	
eg.	images	and	videos

– These	are	stored	in	chunks	that	can	be	streamed	
back	to	the	client	for	efficient	delivery	
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Optional	slide:	Read	yourself



MongoDB:	Replication

• MongoDB	supports	master-slave	replication	
with	automatic	failover	and	recovery
– Replication	(and	recovery)	is	done	at	the	level	of	
shards

– Replication	is	asynchronous	for	higher	
performance,	so	some	updates	may	be	lost	on	a	
crash
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Optional	slide:	Read	yourself


