
CompSci 516

Data	Intensive	Computing	Systems

Lecture	22

Acyclic	Joins	

and	

Worst	Case	Join	Results

Instructor:	Sudeepa Roy

Duke	CS,	Fall	2016
CompSci	516:	Data	Intensive	Computing	

Systems



Announcements
• Final	exam	according	to	the	university	exam	schedule:

– Monday,	December	19,	9:00	am	to	12	noon

• HW3	due	tonight:	11/16

• Feedback	on	midterm	project	reports	by	tonight

– you	can	schedule	a	meeting	before	the	thanksgiving	break

• Advanced	topics	covered	for	the	next	2.5	lectures

• Project	presentations	and	demos	for	the	last	1.5	lectures

– 10	projects

– 10	mins	each

• The	most	popular	project	as	decided	by	your	votes	gets	a	
prize!

– You	will	give	ratings	to	projects	other	than	yours	and	the	
average	will	be	taken

– Unrelated	to	the	grade	of	the	project	(given	by	the	instructor)	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Where	are	we	now?

ü Relational	Model	and	

Query	Languages

ü SQL,	RA,	RC

ü Postgres	(DBMS)

§ HW1

ü DBMS	Internals

ü Storage

ü Indexing

ü Query	Evaluation

ü Operator	Algorithms

ü External	sort

ü Query	Optimization

ü Database	Normalization

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

ü Transactions
ü Basic	concepts

ü Concurrency	control

ü Recovery

ü Query	processing	with	
multiple	machines

ü Map-reduce	and	spark

§ HW2

ü Parallel	DBMS

ü Distributed	DBMS

ü NOSQL
§ HW3

ü Data	warehouse	and	Cube

ü Association	Rule	Mining

ü Datalog



Next	few	lectures

• Overview	of	a	few	other	research	areas	and	
topics	in	databases

– lecture	slides	will	be	sufficient	as	reading	material

– additional	reading	material	will	be	posted	on	the	
website

• Topics	to	be	covered

– Acyclic	joins	and	new	worst	case	join	results	(today)

– Data	integration

– Schema	matching	and	mapping

– Data	cleaning

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Today’s	topics

• Acyclic	joins	and	query	hypergraphs

– (Mostly)	using	slides	by	Jeff	Ullman	and	Georg	Gottlob

• Worst	case	join	results

– Using	slides	by	Ashwin	Machanavajjhala

• These	two	topics	will	also	give	you	an	idea	of	

research	in	database	theory	

– and	how	they	have	impact	on	efficiency	in	database	

systems

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Query	Hypergraphs	and	Acyclic	Joins

Based	on	slides	by	

Jeff	Ullman	and	Georg	Gottlob

Duke	CS,	Fall	2016
CompSci	516:	Data	Intensive	Computing	

Systems



Data	and	Query	Complexity

• Inputs

– Database	D	=	{R1,	…,	Rk}

– (Boolean)	Query	Q,	size	� k

– #	of	tuples	=	n

– Size	of	active	domain	|adom|

• Vardi’82	:	complexity	of	answering	if	Q(D)	is	non-empty

• Data	complexity

– Fix	query,	k	=	constant,	parameter	=	n

• Query	or	expression	complexity

– Fix	D	or	n	or	|adom|

• Combined	complexity

– Both	n	and	k	are	variables

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Complexity	of	evaluating	CQ

• Arbitrary	CQ	in	Datalog notation

• Q()	:- R1(x1),	R2(x2),	…,	Rk(xk)

• e.g.	

• Q()	:- Sailors(sid,	name,	age),	Boats(bid,	`blue’),	Reserve(sid,	

bid,	`Monday’)

• Q():- R(a,	b,	c),	S(c,	d),	T(a,	d)

• What	is	a	trivial	algorithm?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Complexity	of	evaluating	CQ

• Arbitrary	CQ	Q()	:- R1(x1),	R2(x2),	…,	Rk(xk)
• What	is	a	trivial	algorithm?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

§ Iterate	over	all	possible	combinations	of	values	of	variables	from	

their	active	domains

§ Check	if	they	belong	to	(satisfy)	R1,	…,	Rk

Complexity	� O(nk)

Polynomial	data	complexity	(n)

Exponential		query	complexity	(k)



Complexity	of	evaluating	CQ

• Arbitrary	CQ	Q()	:- R1(x1),	R2(x2),	…,	Rk(xk)
• What	is	a	trivial	algorithm?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Can	we	do	better	in	terms	of	query	complexity?

§ Iterate	over	all	possible	combinations	of	values	of	variables	from	

their	active	domains

§ Check	if	they	belong	to	(satisfy)	R1,	…,	Rk

Complexity	� O(nk)

Polynomial	data	complexity	(n)

Exponential		query	complexity	(k)



Complexity	of	evaluating	CQ

• Evaluation	of	CQ	is	NP-hard	in	k	[Chandra-Merlin’77]

• e.g.	reduction	from	k-clique	in	G(V,	E)

– Find	if	there	is	a	group	of	k	vertices	U	such	that	for	all	

u,	v	� U,	the	edge	(u,	v)	�E

• Q()	:- �1<i<j<kE(xi,	xj)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Can	we	do	better	for	some	queries?

a	4-clique

A B

C D



How	about	the	following	path	query?

• Check	if	there	is	a	path	of	length	k-1

• Pk()	:- R1(x1,	x2),	R2(x2,	x3),	….,	Rk(xk-1,	xk)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Note:	the	join	size	can	be	exponential

• Check	if	there	is	a	path	of	length	k-1

• Pk()	:- R1(x1,	x2),	R2(x2,	x3),	….,	Rk(xk-1,	xk)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Ai Ai+1

0 a

0 b

1 a

1 b

a 0

a 1

b 0

b 1

Ri



How	about	the	following	path	query?

• Check	if	there	is	a	path	of	length	k-1

• Pk()	:- R1(x1,	x2),	R2(x2,	x3),	….,	Rk(xk-1,	xk)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Give	a	poly-time	(in	k)	algorithm	for	this	query



Semi-join	Opearator:	�

• Recall	semi-join	from	distributed	databases	(Lecture-17)

– Project	R	to	join	columns	and	send	to	the	site	with	S

– Compute	“reduction	of	S”	by	joining	with	the	join	columns

– send	back	to	the	site	with	R	and	compute	final	join

• Instances	

– I	of	R,	and	

– J	of	S	

• I	� J	=	πR (I	⨝ J)

• I	⨝ J	=	(I	� J)	⨝ J	=	(J	� I)	⨝ I	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Poly-time	algorithm	for	path	query

• Pk()	:- R1(x1,	x2),	R2(x2,	x3),	….,	Rk(xk-1,	xk)

• R1’’	=	Project	R1	on	x2

• R2’	=	Semi-join	R2	with	R1’’

• R2’’	=	Project	R2’	on	x3

• R3’	=	Semi-join	R3	with	R1’’

• R3’’	=	Project	R3’	on	x4

• …...

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

• Complexity:

– suppose	|Ri|	=	n

– All	intermediate	relation	size	is	at	most	n

– Semi-join	=	O(n	log	n)

– Running	time	=	O(kn log	n)



Acyclic	query	processing	in	poly-time	

generalizes	this	concept

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Next	(from	Jeff	Ullman’s	talk)

• Query	hypergraph

• GYO	reduction

• Acyclicity

• Four	equivalent	properties	of	acyclic	queries

1. GYO	reduction	is	empty

2. “Locally	consistent”	=	“Globally	consistent”

3. A	“full	reducer”	using	semi-join	exists

4. Query	has	a	“join	tree”

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Ron	Fagin Jeff	Ullman Phil	Bernstein Georg	Gottlob



Ron	Fagin	and	Acyclic	
Hypergraphs

Why	Hypergraphs?  
Interesting	Properties 
Fagin’s	Hierarchy

Jeffrey	D.	Ullman	
Stanford	University



Hypergraphs

Nodes	+	(hyper)edges	that	are	sets	of	any	
number	of	nodes.

2

F
E

DC
B

A



Hypergraphs	as	Schemas

Nodes	=	attributes.
Hyperedges	=	relation	schemas.
Hypergraph	=	database	schema.

3



Hypergraphs	as	Schemas

Nodes	=	attributes.
Hyperedges	=	relation	schemas.
Hypergraph	=	database	schema.

	 	 	 	 =	{ABC,	BCD,	BDE,	DEF}

3

F
E

DC
BA



Hypergraphs	as	Natural	Joins

Nodes	=	attributes.
Edges	=	schemas	of	relations	being	joined.
▪ Any	equijoin	can	be	so	represented	if	we	rename	
equated	attributes	from	different	relations.

4



Hypergraphs	as	Natural	Joins

Nodes	=	attributes.
Edges	=	schemas	of	relations	being	joined.
▪ Any	equijoin	can	be	so	represented	if	we	rename	
equated	attributes	from	different	relations.

	 	 	 	 =	ABC					BCD						BDE						DEF

4

F
E

DC
BA



Initial	Study	of	Acyclic	Hypergraphs	for	Database	
Systems

Beeri,	Fagin,	Maier,	Mendelzon,	U,	Yannakakis	
(STOC,	1981)	looked	at	hypergraphs	primarily	as	
database	schemas.

5



Initial	Study	of	Acyclic	Hypergraphs	for	Database	
Systems

Beeri,	Fagin,	Maier,	Mendelzon,	U,	Yannakakis	
(STOC,	1981)	looked	at	hypergraphs	primarily	as	
database	schemas.
At	that	time,	the	“universal-relation	wars”	were	
raging.
▪ Could	you	ask	queries	about	attributes	only	and	
allow	the	system	to	figure	out	the	proper	join	to	
connect	these	attributes?

5



Initial	Study	of	Acyclic	Hypergraphs	for	Database	
Systems

Beeri,	Fagin,	Maier,	Mendelzon,	U,	Yannakakis	
(STOC,	1981)	looked	at	hypergraphs	primarily	as	
database	schemas.
At	that	time,	the	“universal-relation	wars”	were	
raging.
▪ Could	you	ask	queries	about	attributes	only	and	
allow	the	system	to	figure	out	the	proper	join	to	
connect	these	attributes?

Identified	a	class	of	schemas	(“acyclic”)	with	
certain	properties	that	made	sense	as	a	
universal	relation.

5



The	GYO	Test	for	Acyclicity

It	turns	out	there	is	a	simple	way	to	tell	whether	
a	hypergraph	is	acyclic,	so	we	won’t	bother	with	
the	original	definition.	
Due	to	Graham	and	Yu-Oszoyoglu	independently.	
“Reduce”	the	hypergraph	using	the	following	two	
rules:	
▪ Eliminate	a	node	in	only	one	hyperedge.	
▪ Eliminate	a	hyperedge	contained	in	another.	
If	you	get	down	to	one	empty	edge,	then	the	
hypergraph	is	acyclic.

6



Example:	GYO	Reduction

7



Example:	GYO	Reduction

7

F
E

DC
BA



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B E
DC

B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B E
DC

B E
D

B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B E
DC

B E
D

B
D

B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B E
DC

B E
D

B
D

B

D
B



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B E
DC

B E
D

B
D

B

D
B

D



Example:	GYO	Reduction

7

F
E

DC
BA

F
E

DC
B E

DC
B

E
DC

B E
DC

B E
D

B
D

B

D
B

D



Semijoin	Reductions

Previously,	Phil	Bernstein	and	his	students	Chiu,	
Goodman,	and	Shmueli	had	looked	at	a	
seemingly	unrelated	question:	when	does	a	join	
have	a	full	reducer?	
▪ =	finite	sequence	of	semijoins	that	is	guaranteed	to	
eliminate	from	the	relations	all	tuples	that	dangle	in	
the	complete	join.

8



Local	and	Global	Consistency

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

• Schema	=	R1,	R2,	…,	Rk
• Instances	=	I1,	I2,	...,	Ik

• Locally	consistent

– every	tuple	participates	in	pairwise	joins

– for	all	j,	k

– πRj (Ij⨝ Ik)	=	Ij

• Globally	consistent

– every	tuple	participates	in	full	join

– for	all	j

– πRj (I1⨝ I2	⨝ I2	⨝ ...	⨝ Ik)	=	Ij



Local	and	Global	Consistency

A	related	formulation:	when	does	local	
consistency	
▪ =	the	join	of	any	two	relations	has	no	dangling	tuples	
imply	global	consistency	
▪ =	there	are	no	dangling	tuples	in	any	relation	when	
the	join	of	all	the	relations	is	taken.	

It	turns	out	“exists	a	full	reducer”	=	“local	
consistency	implies	global	consistency”	=	
“acyclic.”

9



Example:	Local/Global	Consistency

10

A B

0 1

3 4

6 7

B C

1 2

4 5

7 8

C A

2 3

5 6

8 0

These	three	relations	are	locally	consistent.	
But	the	join	of	all	three	relations	is	empty.	
Hence	not	globally	consistent.



Example:	Semijoin	Reduction

11

A B

0 1

3 4

6 7

B C

1 2

4 5

7 8

C A

2 3

5 6

8 9

Now,	semijoin	reduction	will	make	each	relation	empty.	
But	the	number	of	steps	needed	depends	on	the	number	of		tuples.	
1. AB							CA	eliminates	only	(0,1).	
2. Then	BC							AB	eliminates	only	(1,2).	
3. And	so	on…

Notice	the	change



Monotone	Joins

A	join	of	two	relations	is	monotone	if	it	has	no	
dangling	tuples.

12



Monotone	Joins

A	join	of	two	relations	is	monotone	if	it	has	no	
dangling	tuples.
Important	consequence:	the	output	of	a	
monotone	join	is	at	least	as	large	each	of	its	
arguments.
▪ If	implemented	properly,	the	time	taken	by	the	join	is	
proportional	to	input	size	+	output	size.

12



Monotone	Joins

A	join	of	two	relations	is	monotone	if	it	has	no	
dangling	tuples.
Important	consequence:	the	output	of	a	
monotone	join	is	at	least	as	large	each	of	its	
arguments.
▪ If	implemented	properly,	the	time	taken	by	the	join	is	
proportional	to	input	size	+	output	size.

Note:	“local	consistency”	=	“joins	of	two	
database	relations	are	monotone,”	but	
“monotone”	applies	to	intermediate	joins	also.

12



Bernstein	et	al.	View	of	Acyclicity

This	line	of	research	had	a	very	different	view	of	
the	condition	under	which	full	reducers	exist	
(and	under	which	local	consistency	=	global	
consistency).

13



Bernstein	et	al.	View	of	Acyclicity

This	line	of	research	had	a	very	different	view	of	
the	condition	under	which	full	reducers	exist	
(and	under	which	local	consistency	=	global	
consistency).
If	and	only	if	you	can	build	a	tree	with:

13



Bernstein	et	al.	View	of	Acyclicity

This	line	of	research	had	a	very	different	view	of	
the	condition	under	which	full	reducers	exist	
(and	under	which	local	consistency	=	global	
consistency).
If	and	only	if	you	can	build	a	tree	with:
▪ Nodes	=	relation	schemas.

13



Bernstein	et	al.	View	of	Acyclicity

This	line	of	research	had	a	very	different	view	of	
the	condition	under	which	full	reducers	exist	
(and	under	which	local	consistency	=	global	
consistency).
If	and	only	if	you	can	build	a	tree	with:
▪ Nodes	=	relation	schemas.
▪ For	every	attribute,	the	set	of	nodes	containing	that	
attribute	is	connected.

13



Example:	Tree	View	of	Acyclicity

14

F
E

DC
B

A
BDE

DEF

ABC

BCD



Example:	Tree	View	of	Acyclicity

15

F
E

DC
B

A
BDE

DEF

ABC

BCD



Example:	Tree	View	of	Acyclicity

16

F
E

DC
B

A
BDE

DEF

ABC

BCD



Example:	A	Cyclic	Join

17

C

BA AB AC

BC

By	symmetry,	all	trees	look	like	this.	
Notice	A	is	at	disconnected	nodes.



Theorem
From	Beeri,	Fagin,	Maier,	and	Yannakakis	(J.	ACM,	
1983).

18



Theorem
From	Beeri,	Fagin,	Maier,	and	Yannakakis	(J.	ACM,	
1983).
A	hypergraph	is	acyclic	if	and	only	if	its	
hyperedges	form	a	tree	whose	nodes	containing	
any	given	attribute	are	connected.

18



Theorem
From	Beeri,	Fagin,	Maier,	and	Yannakakis	(J.	ACM,	

1983).

A	hypergraph	is	acyclic	if	and	only	if	its	

hyperedges	form	a	tree	whose	nodes	containing	

any	given	attribute	are	connected.

Therefore,	acyclic	hypergraphs,	and	only	acyclic	

hypergraphs,	have:

1. Full	reducers.

2. Local	consistency	=	global	consistency.

3. Local	consistency	=>	monotone	join	sequences	

guaranteed	to	exist.
18



How	does	query	acyclicity help	obtain	

an	efficient	join	algorithm?	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Example	from	Georg	Gottlob’s talk

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



How are ACQs evaluated according to
Yannakakis‘Algorithm?



d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)
3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

s:

3  8  
3  7
5  7 
6  7

d:

9  8  
9  3
9  5 

t:

3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

r:

O(|Q| × |rmax| × log |rmax|) 



d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)
3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

s:

3  8  
3  7
5  7 
6  7

d:

9  8  
9  3
9  5 

t:

3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

r:



d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)
3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

s:

3  8  
3  7
5  7 
6  7

d:

9  8  
9  3
9  5 

t:

3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

r:

…



d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)
3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

s:

3  8  
3  7
5  7 
6  7

d:

9  8  
9  3
9  5 

t:

3 8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

r:

�
O(|Q| × |rmax| × log |rmax|) 



d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)
3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

s:

3  8  
3  7
5  7 
6  7

d:

9  8  
9  3
9  5 

t:

3 8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

r:

A solution:  Y=3, P=7, Z=8, U=9, W=4, V=9

O(n2log n)

�



d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)
3  8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

s:

3  8  
3  7
5  7 
6  7

d:

9  8  
9  3
9  5 

t:

3 8  9
9  3  8
8  3  8
3  8  4
3  8  3
8  9  4
9  4  7 

r:

�
O(|Q| × |rmax| × log |rmax|) 

To obtain fully reduced relations, perform semijoins downwards



Yannakakis’[84]	Algorithm	for	

Acyclic	Boolean	CQ

1. Compute	a	join-tree	from	GYO	decomposition

– Need	the	”formal	definition”	of	GYO	reduction

– an	edge	f	can	be	removed	if	there	exists	another	edge	f’	
as	“witness”	such	that	no	vertex	of	f-f’	is	in	any	other	
edge

– ==	f	can	be	partitioned	into	vertices	in	no	other	edges	+	
vertices	contained	in	f’

– f’	becomes	the	parent	of	f	in	the	join-tree

2. Compute	semi-join	at	each	parent	node	bottom-up	
for	each	edge	to	a	child

3. Query	is	true	if	and	only	if	the	root	relation	is	non-
empty

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Full	Reducer	from	
Yannakakis’s algorithm

• To	obtain	fully	reduced	relations:
– After	reaching	the	root,	perform	semi-joins	downwards

• Algorithm	to	obtain	full	reducers	using	the	join-tree:
– if	(f,	f’)	is	an	edge	in	the	tree	where	f	is	the	child

• Add	f’	=	f’	� f
• Recursively	obtain	reducer	for	the	tree		removing	f

(here	we	have	a	globally-consistent	state)
• Add	f	:=	f	� f’

– This	is	done	for	distributed	semi-join!

10/24/2016



Full	Reducer	for	Path	Query

• R2 :	=	R2 � R1
• R3 :	=	R3 � R2
• …..
• Rk :	=	Rk � Rk-1
Enough	for	query	evaluation
• Rk-1 :	=	Rk-1 � Rk
• …..
• R2 :	=	R2 � R3
• R1 :	=	R1 � R2

10/24/2016

• Pk()	:- R1(x1,	x2),	R2(x2,	x3),	….,	Rk(xk-1,	xk)



Extension	of	Yannakakis’	algorithm	for	
non-Boolean	CQs

• Polynomial	in	input	size	+	output	size
1. Use	a	full	reducer	(like	before)
2. Join	in	any	order
3. In	the	join	phase,	project	out	all	unnecessary	

attributes	
– while	joining	P	⨝ C	:	P	parent	and	C	child
– project	out	all	attributes	in	C	that	are	not	in	the	final	

projection
• No	globally	dangling	tuples,	so	join	can	only	increase	in	
size	at	each	step,	each	intermediate	result	is	
polynomial	in	the	output	size

• Unlike	cyclic	join	(add	a	cycle	in	our	first	example)

10/24/2016



Other	Notions	of	Acyclicity by	Fagin’83

• Notion	of	CQ	acyclicity through	GYO	reduction	=	

!-acyclic

• Other	notions	in	Fagin’83:	γ-acyclicicity and	β-

acyclicity

– Also	Berge-acyclicity (standard	notion	of	acyclicity in	

graphs	generalized	to	hypergraphs)

– these	are	not	covered	in	class

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



References
• Ron	Fagin	event	talk	in	PODS’16	by	Jeff	Ullman
• Jeff	Ullman’s	course	notes:	

http://infolab.stanford.edu/~ullman/cs345-notes.html
• Gems	of	PODS’16	talk	by	Georg	Gottlob

– Gottlob et	al.	generalized	the	notion	of	acyclicity to	“generalized	
hyper-tree	width”

– Talks	about	incorporating	hypertree in	PostGres and	challenges
– Many	other	applications	and	genralization
– Both	slides	and	an	article	are	available	online

• Check	out	https://databasetheory.org
– Links	to	both	talks	can	be	found	here	(and	more!)

• Alice	Book	(Foundations	of	Databases	– Abiteboul,	Hull,	
Vianu)	Chapter	6.4

10/24/2016



Topic#2:

Worse-case	join	algorirgms
See	slides	by	Ashwin	Machanavajjhala

on	the	course	website

(full	slide	deck	can	be	found	from	this	link:	
https://www.cs.duke.edu/courses/fall15/compsci590.4/slides/compsci

590.04_fall15_lec19.pdf

which	includes	lower	bound	results	– not	covered	in	this	class)

Duke	CS,	Fall	2016
CompSci	516:	Data	Intensive	Computing	

Systems


