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Announcements

• No	class	next	week
– thanksgiving	recess!
– We	meet	again	on	11/30	(Wed)

• Final	report	first	draft	due	on	11/28	(Mon)	night
– but	can	update	until	Friday	12/2	night
– send	me	an	email	if	you	update

• I	will	post	a	message	on	piazza	looking	for	three	
groups	who	will	present	on	11/30	(Wed)
– the	remaining	seven	groups	present	on	12/2	(Fri)
– 10	minutes	talk/demo	for	each	group	(8	mins	talk	+	2	
mins	questions)
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Today’s	topic

• An	overview	of	data	integration

• Some	optional	additional	slides	at	the	end

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 3



Reading	Material
Optional	Reading:

• The	“Principles	of	Data	Integration”	book	by	
AnHai Doan,	Alon Halevy,	Zack	Ives
The	lecture	slides	are	based	on	Ch.	1,	3,	5	of	this	book

• Data	integration	PODS	2005	tutorial	by
Phokion Kolaitis
(more	on	the	theoretical	aspects	)
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What	is	Data	Integration?	1/2

• Internet	and	WWW	have	revolutionized	
people’s	access	to	digital	data

• We	take	it	for	granted	that	a	search	query	into	
a	browser	taps	into	millions	on	documents	
and	databases	and	returns	what	we	are	
looking	for

• Systems	on	the	Internet	must	efficiently	and	
accurately	process	and	serve	a	large	amount	
pf	data
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What	is	Data	Integration?	2/2

• Unlike	traditional	RDBMS,	the	new	services	
need	the	ability	to
– Share	data	among	multiple	organizations	
– Integrate	data	on	a	flexible	and	efficient	fashion

• Data	integration:
– A	set	of	techniques	that	enable	building	systems	
geared	for	flexible	sharing	and	integration	of	data	
across	multiple	autonomous	data	providers.
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Why	data	integration?	1/2

• With	issues	like	normalizations,	and	trade-offs	
in	design	choices,	different	people	design	
different	schemas	for	the	same	data

• Sometimes	different	needs	as	well
– not	all	attributes	are	needed	by	all	people

• Sometimes	people	want	to	share	their	data
– collaborators
– researchers	who	want	to	publish	data	for	others’	
use	
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Why	data	integration?	2/2

• In	the	Web,
– Many	websites	posting	job	applications,	hotel	or	flight	
deals,	movie	information

– To	keep	up	with	new	information	and	for	new	need,	
you	may	have	to	look	at	all	of	them

– But	now	there	are	websites	where	you	can	access	all
– e.g.	TripAdvisor	helps	you	see	the	price	of	the	same	
hotel	on	the	hotel	website,	hotels.com,	booking.com,	
expedia,	….

• But	this	type	of	data	integration	has	its	challenges	
too
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Why	data	integration?	2/2

• In	the	Web,
– Many	websites	posting	job	applications,	hotel	or	flight	
deals,	movie	information

– To	keep	up	with	new	information	and	for	new	need,	
you	may	have	to	look	at	all	of	them

– But	now	there	are	websites	where	you	can	access	all
– e.g.	TripAdvisor	helps	you	see	the	price	of	the	same	
hotel	on	the	hotel	website,	hotels.com,	booking.com,	
expedia,	….

• But	this	type	of	data	integration	has	its	challenges	
too
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Challenges	in	Data	Integration:	
1.	Query	

• Offer	uniform	access	to	a	set	of	autonomous	
and	heterogeneous	data	sources

• Query:
– query	disparate	data	sources,	sometimes	update	
them
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Challenges in	Data	Integration:
2.	Number	of	sources		

• Number	of	sources:
– challenging	even	for	10	or	2	data	sources
– amplified	for	hundreds	of	sources	say	in	Web-
scale
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Challenges in	Data	Integration:
3.	Heterogeneity		

• Heterogeneity:
– data	sources	were	developed	independently	of	
each	other

– databases,	files,	html
– different	schema	and	references
– some	structured	some	unstructured
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Challenges in	Data	Integration:
4.	Autonomy		

• Autonomy:
– the	sources	may	not	belong	to	the	same	
administrative	entity

– even	then	may	be	run	by	different	organizations
– may	not	have	full	access	to	the	data
– there	may	be	privacy	concerns
– the	sources	may	change	their	formats	and	access	
patterns	at	any	time	without	notifying
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Virtual	Data	Integration	Architecture

• Three	
components
– Data	sources
– Wrappers
– Mediated	Schema
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Virtual	Data	Integration	Architecture

• Data	sources
– can	be	any	data	
model	like	
relational	dbms
with	SQL	interface

– XML with	Xquery
interface

– HTML
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Virtual	Data	Integration	Architecture

• Wrappers
– programs	that	send	

queries	to	a	data	
source

– receives	answers
– apply	some	basic	

transformations
• e.g.	to	a	web	form	

source
– translate	query	to	a	

http	request	with	a	url
– when	the	answer	

comes	back	as	an	html	
file,	extract	tuples
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Virtual	Data	Integration	Architecture

• Mediated	schema
– built	for	the	data	

integration	application
– contains	only	the	

aspects	that	are	
relevant

– may	not	contain	all	
attrbutes

– does	not	store	any	
data	typically

– logical	schema	for	
posing	queries	by	the	
users
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Source	Descriptions
• Specify	the	property	of	the	

sources	that	the	system	
needs	to	know

• main	components	are	
semantic	mappings
– relate	the	schema	of	the	

sources	to	the	attributes	in	
the	mediated	schema

• specified	declaratively
• between	data	sources	and	

mediated	schema
– not	between	two	sources

• also	specifies	
– whether	sources	are	

complete	or	not
– limited	access	patterns	to	

sources
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Example
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

• source	S2	may	not	
contain	all	the	movie	
showing	times	in	the	
entire	country

• source	S3	may	be	
known	to	contain	all	
movie	showing	times	in	
New	York

• in	order	to	get	an	
answer	from	the	source	
S1,	there	needs	to	be	
an	input	for	at	least	
one	of	its	attributes



Example:	Query	on	the	Mediated	Schema
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

• show	times	of	
movies	in	NYC	
directed	by	
Woody	Allen

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title = 
Plays.movie AND
location="New York" AND
director="Woody Allen"



Example:	Reformulation	on	source	databases:	1/5
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title = 
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Tuples	for	Movie	can	be	obtained	from	source	
S1
– but	the	attribute	title	needs	to	be	reformulated	

to	name

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes



Example:	Reformulation	on	source	databases:	2/5
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title = 
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Tuples	for	Plays	can	be	obtained	from	
either	source	S2	or	S3
– Since	the	latter	is	complete	for	showings	

in	NYC,	we	choose	it	over	S2

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes



Example:	Reformulation	on	source	databases:	3/5
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title = 
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Source	S3	requires	the	title	of	a	movie	as	
input
– but	such	a	title	is	not	specified	in	the	query
– the	query	plan	must	first	access	source	S1
– then	feed	the	movie	titles	returned	from	S1	as	

inputs	to	S3

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes



Example:	Reformulation	on	source	databases:	4/5
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title = 
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Options	of	logical	query	plan:
– access	S1,	S3
– could	access	S1	then	S2	as	well	(possibly	not	complete)

• Then	query	optimization
– as	in	traditional	database	system
– take	a	logical	plan	output	a	physical	plan

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes



Example:	Reformulation	on	source	databases:	5/5
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Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title = 
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Then	query	execution
– execute	the	physical	query	plan
– May	ask	the	optimizer	to	reconsider	the	plan	(unlike	

RDBMS),	e.g.	if	S3	is	too	slow

• sometimes	contingencies	are	included	in	original	
plan
– tradeoff	between	complexity	of	plan	and	ability	to	

respond	to	unexpected	events

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes



Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	1/4

• Relation	and	attribute	names
– “description”	in	the	mediated	schema	(MS)	the	same	as	
“review”	in	S5

– “name”	of	Actors	in	MS	and	is	S3	in	NYCCinemas are	not	
the	same
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	2/4

• Tabular	organization
– In	MS,	Actor	stores	movie	title	and	actor	name
– In	S1,	a	join	is	needed	that	has	to	be	specified	by	the	
mapping
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	3/4

• Domain	coverage
– the	coverage	and	level	of	detail	may	differ
– S1	stores	more	info	about	actors	than	in	MS
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	3/4

• Data	level	variations
– GPA	as	a	letter	grade	vs.	a	numeric	score	of	4.0	scale
– S1	stores	actor	names	in	two	columns,	MS	stores	in	
one
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Three	Desired	Properties	of	
Schema	Mapping	Languages	1/3

• Flexibility
– significant	differences	between	disparate	schemas
– the	languages	should	be	very	flexible
– should	be	able	to	express	a	wide	variety	of	
relationships	between	schemas
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Three	Desired	Properties	of	
Schema	Mapping	Languages	2/3

• Efficient	reformulation
– our	goal	is	to	use	the	schema	mapping	to	
reformulate	queries

– we	should	be	able	to	develop	reformulation	
algorithms	whose	properties	are	well	understood	
and	are	efficient	in	practice

– often	competes	with	flexibility,	because	more	
expressive	languages	are	typically	harder	to	
reason	about
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Three	Desired	Properties	of	
Schema	Mapping	Languages	3/3

• Easy	update
– for	a	formalism	to	be	useful	in	practice,	it	needs	to	
be	easy	to	add	and	remove	sources

– If	adding	a	new	data	source	potentially	requires	
inspecting	all	other	sources,	the	resulting	system	
will	be	hard	to	manage	for	a	large	number	of	
sources
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Three	standard	
schema	mapping	languages

1. Global-as-View	(GAV)
2. Local-as-View	(LAV)
3. Global-Local-as-View	(GLAV)
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Global-as-View	(GAV)

• GAV	defines	the	mediated	schema	(MS)	as	a	
set	of	views	over	the	data	sources
– Mediated	Schema	=	Global	schema
– An	intuitive	approach

• Mediated	schema	(MS)	G
– Gi =	some	relation	in	G
– Xi denotes	attributes	in	Gi

• Source	schema	S1,	S2,	…,	Sn
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GAV	Definition
• A	GAV	schema	mapping	M	is	a	set	of	expressions	of	
the	form:	

• Gi(Xi)	⊇ Q(S1,	S2,	…,	Sn)
– open	world	assumption
– instances	computed	for	MS	are	assumed	to	be	incomplete

• or,	Gi(Xi)	=	Q(S1,	S2,	…,	Sn)
– closed	world	assumption
– instances	computed	for	MS	are	assumed	to	be	complete
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GAV	Example
• Movie(title,	director,	year,	genre)⊇ S1.Movie(MID,	title),	

S1.MovieDetail(MID,	director,	genre,	year)
• Movie(title,	director,	year,	genre)	⊇ S5.MovieGenres(title,	genre),

S6.MovieDirectors(title,	director),
S7.MovieYears(title,	year)

• Plays(movie,	location,	startTime)	⊇ S2.Cinemas(location,	movie,	startTime)
• Plays(movie,	location,	startTime)⊇ S3.NYCCinemas(location,	movie,	startTime)
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Discussions:	GAV	1/2

• Suppose	we	have	a	data	source	S8	that	stored	pairs	of	
(actor,	director)	who	worked	together	on	movies.	

• The	only	way	to	model	this	source	in	GAV	is	with	the	
following	two	descriptions	that	use	NULL:
– Actors(NULL,	actor)	⊇ S8(actor,	director)
– Movie(NULL,	director,	NULL,	NULL)	⊇ S8(actor,	director)

• These	descriptions	create	tuples	in	the	mediated	
schema	that	include	NULLs	in	all	columns	except	one
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Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S8:
ActTogether(actor,	director)



Discussions:	GAV	2/2

• If	the	source	S8	includes	the	tuples	(Keaton,	Allen)	and	(Pacino,	
Coppolag),	then	the	tuples	computed	for	the	mediated	schema	
would	be:
– Actors(NULL,	Keaton),	Actors(NULL,	Pacino)
– Movie(NULL,	Allen,	NULL,	NULL),	Movie(NULL,	Coppola,	NULL,	NULL)

• Now	suppose	we	have	the	following	query	that	recreates	S8:
– Q(actor,	director)	:- Actors(title,	actor),	Movie(title,	director,	genre,	

year)
• We	would	not	be	able	to	retrieve	the	tuples	from	S8	because	the	

source	descriptions	lost	the	relationship	between	actor	and	
director.

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 38

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S8:
ActTogether(actor,	director)



Local	As	View	(LAV)

• describes	each	data	source	as	precisely	as	
possible	and	independently	of	any	other	
sources
– opposite	approach	to	GAV

• Mediated	schema	(MS)	G
• Source	schema	S1,	S2,	…,	Sn

– Xi denotes	attributes	in	Si
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LAV	Definition
• A	LAV	schema	mapping	M	is	a	set	of	expressions	
of	the	form:	

• Si(Xi)	⊆ Qi(G)
– open	world	assumption

• or,	Si(Xi)	=	Qi(G)	
– closed	world	assumption
– but	completeness	about	data	sources,	not	about	the	
MS
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LAV	Example
• S5.MovieGenres(title,	genre)	⊆Movie(title,	director,	year,	genre)
• S6.MovieDirectors(title,	director)	⊆Movie(title,	director,	year,	genre)
• S7.MovieYears(title,	year)	⊆Movie(title,	director,	year,	genre)
• S8(actor,	dir)	⊆Movie(title,	director,	year,	genre),	Actors(title,	actor)
• Can	also	specify	constraints	on	the	contents
• S9(title,	year,	“comedy”)	⊆Movie(title,	director,	year,	“comedy”),	year	≥		1970
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Global-Local-As-View	(GLAV)

• GAV	and	LAV	can	be	combined	into	GLAV
• Has	the	expressive	power	of	both
• The	expressions	in	the	schema	mapping	include

– a	query	over	the	data	sources	on	the	left	hand	side
– a	query	on	the	mediated	schema	on	the	right-hand	
side

• Mediated	schema	(MS)	G
• Source	schema	S1,	S2,	…,	Sn
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GLAV	Definition
• A	GLAV	schema	mapping	M	is	a	set	of	expressions	of	the	
form:	

• QS(X)	⊆ QG(X)
– open	world	assumption

• or,	QS(X)	=	QG(X)
– closed	world	assumption

• QG is	a	query	over	G	whose	head	variables	are	X
• QS is	a	query	over	data	sources	S1,	S2,	…,	Sn where	the	head	

variables	are	also	S
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GLAV	Example
• Suppose	S1	is	known	to	have	comedies	produced	after	1970	only

• S1.Movie(MID,	title),	S1.MovieDetail(MID,	director,	genre,	year)	⊆
Movie(title,	director,	“comedy",	year),	year	≥ 1970
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S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)



Optional/Additional
Slides
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Schema	Matchings	and	Mappings

• Specify	“matches”,	e.g.
– attribute	“name”	in	one	source	corresponds	to	
attribute	“title”	in	another

– “location”	is	a	concatenation	of	“city,	state,	
zipcode”

• Elaborate	matches	into	semantic	“mappings”
– using	queries	like	SQL
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Challenges

• The	tasks	of	creating	the	matches	and	mappings	are	
often	difficult
– they require	a	deep	understanding	of	the	semantics	of	the	
schemas	of	the	data	sources	and	ofthe mediated	schema

– This	knowledge	is	typically	distributed	among	multiple	
people

– these	people	are	not	necessarily	database	experts and	
may	need	help

• There	is	no	algorithm	that	will	take	two	arbitrary	
database	schemas	and	flawlessly	produce	correct	
matches	and	mappings
– goal	is	to	create	tools	that	educe	the	time	by	giving	
suggestions	to	the	designer
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Two	database	schemas

• Attributes	and	tables	in	a	schema	are	called	its	elements
• The	aggregator	is	not	interested	in	all	the	details	of	the	product,	but	

only	in	the	attributes	that	are	shown	to	its	customers
• Schema	DVD-VENDOR	has	14	elements

– 11	attributes	(e.g.,	id,	title,	and	year)	and	three	tables	(e.g.,	Movies)
• Schema	AGGREGATOR	has	five	elements

– four	attributes	and	one	table.
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DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

optional	slide



Semantic	mapping

• A	query	expression	that	relates	a	schema	S	
with	a	schema	T
– recall	GAV,	LAV,	GLAV	
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DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)
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Semantic	mapping		- Example	1

• “the	title	of	Movies	in	the	DVD-VENDOR	schema	is	the	
name	attribute	in	Items	in	the	AGGREGATOR	schema.”

• SELECT name as title
• FROM Items
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DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

DVD-VENDOR	FROM
AGGREGATOR
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Semantic	mapping		- Example	2

• “get	the	price	attribute	of	the	Items	relation	in	the	AGGREGATOR	
schema	by	joining	the	Products	and	Locations	tables	in	the	DVD-
VENDOR	schema..”

• SELECT ( basePrice * (1 + taxRate )) AS price
• FROM Products , Locations
• WHERE Products . saleLocID = Locations .lid
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DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

AGGREGATOR	FROM
DVD-VENDOR
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Semantic	mapping		- Example	3

• “Get	the	entire	tuple	in	Items	table	from	DVD-VENDOR”

• SELECT title AS name , releaseDate AS releaseInfo , rating AS
• classification , basePrice * (1 + taxRate ) AS price
• FROM Movies , Products , Locations
• WHERE Movies .id = Products .mid AND Products . saleLocID =
• Locations .lid
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DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

AGGREGATOR	FROM
DVD-VENDOR
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Semantic	Matches

• Relates	a	set	of	elements	in	schema	S	to	a	set	
of	elements	in	schema	T
– without	specifying	the	details	of	the	nature	of	
relationship	(as	SQL	queries)
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Why	are	matching	and	
mapping	difficult?

• The	semantics	may	not	be	fully	captured	in	the	schemas
– “rating”	may	imply	movie	rating,	customer	rating,	etc
– sometimes	accompanied	by	English	text,	hard	for	systems	to	parse	and	

understand
• Schema	clues	can	be	unreliable

– two	elements	may	have	the	same	name	but	different	meaning,	like	“name”	
or	“title”

• Semantics	can	be	subjective
– what	“plot-summary”	means
– sometimes	a	committee	of	experts	vote

• Combining	data	may	be	difficult
– need	to	figure	out	a	join	path	
– full/left/right	outer	join	or	inner	join
– may	need	filter	conditions
– the	designer	has	figure	these	out	inspecting	a	large	amount	of	data
– erroneous	and	labor	prone
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Components	in	a	schema	
matching	system

• Matchers
• Combiners
• Constraint	Enforcers
• Match	Selectors
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1.	Matchers

• schemas	→	similarity	matrix
• takes	two	schemas	S	and	T	as	input
• outputs	a	similarity	matrix
• assigns	to	each	element	pair	s	of	S	and	t	of	T	a	number	
between	0	and	1
– higher	the	number,	s	and	t	are	more	similar	

• e.g.	
– name	≈	<name:	1,	title	:	0:5>
– releaseInfo ≈	<releaseDate :	0:6,	releaseCompany:	0.4>
– price		≈	<basePrice :	0:5>
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Types	of	Matchers

• Name-based	matchers
– compares	the	names	of	elements
– but	almost	never	written	the	same	way
– uses	techniques	for	string	matching	as	edit	
distance,	Jaccard measure	etc.;	synonyms;	
normalization	(capital	letters);	hyphens;	etc

• Instance-based	matchers
– Look	at	data	instances,	builds	recognizers	
(dictionaries),	computes	overlaps,	classification
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2.	Combiners

• matrix	⨉ ….	⨉matrix	→	matrix

• merges	the	similarity	matrices	output	by	the	
matchers	into	a	single	one

• can	take	the	average,	minimum,	maximum,	or	
a	weighted	sum	of	the	similarity	scores
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Types	of	Combiners

• Average	combiners:
– Suppose	k	matchers	to	predict	the	scores	between	the	
element	si of	schema	S	and	the	element	tj of	schema	T

– then	an	average	combiner	will	compute	the	score	
between	these	two	elements	as	the	average	from	
these	k	matchers

• Hand-crafted	scripts
– e.g.	if	si =	address,	return	score	of	naïve-bayes
classifer,	else	average

• Weighted	combiner
– gives	weights	to	each	matcher
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3.	Constraint	Enforcers

• matrix	⨉ constraints	→	matrix

• In	addition	to	clues	and	heuristics,	domain	knowledge	
plays	an	important	role	in	pruning	candidate	matches
– e.g.	knowing	that	many	movie	titles	contain	four	words	or	
more,	but	most	location	names	do	not,	can	help	us	guess	
that	Items.name is	more	likely	to	match	Movies.title than	
Locations.name

• an	enforcer	enforces such	constraints	on	the	candidate	
matches
– it	transforms	the	similarity	matrix	produced	by	the	
combiner	into	another	one	that	better	reflects the	true	
similarities
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Types	of	Constraint	Enforcers	:	1/2

• There	may	be	hard	or	soft	domain	integrity	constraints
• Hard	constraints	must	be	applied

– The	enforcer	will	not	output	any	match	combination	that	
violates	them

• Soft	constraints	are	of	more	heuristic	nature,	and	may	
actually	be	violated	in	correct	match	combinations
– the	enforcer	will	try	to	minimize	the	number	(and	weight)	of	the	

soft	constraints	being	violated
– but	may	still	output	a	match	combination	that	violates	one	or	

more	of	them
• Formally,	we	attach	a	cost	to	each	constraint

– For	hard	constraints,	the	cost	is	1
– for	soft	constraints,	the	cost	can	be	any	positive	number.
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Types	of	Constraint	Enforcers	:	2/2

• e.g.
– c1:	If	A		Items.code,	then	A	is	a	key	(weight	=	
infinity)

– c2	If	A		Items.desc,	then	any	random	sample	of	
100	data	instances	of	A	must	have	an	average	
length	of	at	least	20	words (weight	=	1.5)

– c3:	If	more	than	half	of	the	attributes	of	Table	U	
matches	those	of	Table	V	,	then	U		is	similar	to	V	
(weight	=	1)
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4.	Match	Selectors

• matrix	→	matches

• Produces	matches	from	the	similarity	matrix	output	by	the	
constraint	enforcer

• name	≈	<title	:	0:5>
• releaseInfo ≈	<releaseDate :	0:6>
• classication ≈ <rating	:	0:3>
• price		≈	<basePrice :	0:5>
• Given	the	threshold	0.5,	the	match	selector	produces	matches:	

– name	≈ title,	releaseInfo ≈ releaseDate,	and	price	≈ basePrice
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Types	of	Match	Selectors

• The	simplest	selection	strategy	is	thresholding
– all	pairs	of	schema	elements	with	similarity	score	
exceeding	a	given	threshold	are	returned	as	
matches

• More	complex	strategies	include	formulating	
the	selection	as	an	optimization	problem	over	
a	weighted	bipartite	graph
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