
CompSci 516
Data	Intensive	Computing	Systems

Lecture	23
Data	Integration

Instructor:	Sudeepa Roy

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	
Systems

1

Announcements

• No	class	next	week
– thanksgiving	recess!
– We	meet	again	on	11/30	(Wed)

• Final	report	first	draft	due	on	11/28	(Mon)	night
– but	can	update	until	Friday	12/2	night
– send	me	an	email	if	you	update

• I	will	post	a	message	on	piazza	looking	for	three	
groups	who	will	present	on	11/30	(Wed)
– the	remaining	seven	groups	present	on	12/2	(Fri)
– 10	minutes	talk/demo	for	each	group	(8	mins	talk	+	2	
mins	questions)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 2

Today’s	topic

• An	overview	of	data	integration

• Some	optional	additional	slides	at	the	end

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 3

Reading	Material
Optional	Reading:

• The	“Principles	of	Data	Integration”	book	by	
AnHai Doan,	Alon Halevy,	Zack	Ives
The	lecture	slides	are	based	on	Ch.	1,	3,	5	of	this	book

• Data	integration	PODS	2005	tutorial	by
Phokion Kolaitis
(more	on	the	theoretical	aspects)

4Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

What	is	Data	Integration?	1/2

• Internet	and	WWW	have	revolutionized	
people’s	access	to	digital	data

• We	take	it	for	granted	that	a	search	query	into	
a	browser	taps	into	millions	on	documents	
and	databases	and	returns	what	we	are	
looking	for

• Systems	on	the	Internet	must	efficiently	and	
accurately	process	and	serve	a	large	amount	
pf	data

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 5

What	is	Data	Integration?	2/2

• Unlike	traditional	RDBMS,	the	new	services	
need	the	ability	to
– Share	data	among	multiple	organizations	
– Integrate	data	on	a	flexible	and	efficient	fashion

• Data	integration:
– A	set	of	techniques	that	enable	building	systems	
geared	for	flexible	sharing	and	integration	of	data	
across	multiple	autonomous	data	providers.

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 6

Why	data	integration?	1/2

• With	issues	like	normalizations,	and	trade-offs	
in	design	choices,	different	people	design	
different	schemas	for	the	same	data

• Sometimes	different	needs	as	well
– not	all	attributes	are	needed	by	all	people

• Sometimes	people	want	to	share	their	data
– collaborators
– researchers	who	want	to	publish	data	for	others’	
use	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 7

Why	data	integration?	2/2

• In	the	Web,
– Many	websites	posting	job	applications,	hotel	or	flight	
deals,	movie	information

– To	keep	up	with	new	information	and	for	new	need,	
you	may	have	to	look	at	all	of	them

– But	now	there	are	websites	where	you	can	access	all
– e.g.	TripAdvisor	helps	you	see	the	price	of	the	same	
hotel	on	the	hotel	website,	hotels.com,	booking.com,	
expedia,	….

• But	this	type	of	data	integration	has	its	challenges	
too

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 8

Why	data	integration?	2/2

• In	the	Web,
– Many	websites	posting	job	applications,	hotel	or	flight	
deals,	movie	information

– To	keep	up	with	new	information	and	for	new	need,	
you	may	have	to	look	at	all	of	them

– But	now	there	are	websites	where	you	can	access	all
– e.g.	TripAdvisor	helps	you	see	the	price	of	the	same	
hotel	on	the	hotel	website,	hotels.com,	booking.com,	
expedia,	….

• But	this	type	of	data	integration	has	its	challenges	
too

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 9

Challenges	in	Data	Integration:	
1.	Query	

• Offer	uniform	access	to	a	set	of	autonomous	
and	heterogeneous	data	sources

• Query:
– query	disparate	data	sources,	sometimes	update	
them

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 10

Challenges in	Data	Integration:
2.	Number	of	sources		

• Number	of	sources:
– challenging	even	for	10	or	2	data	sources
– amplified	for	hundreds	of	sources	say	in	Web-
scale

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 11

Challenges in	Data	Integration:
3.	Heterogeneity		

• Heterogeneity:
– data	sources	were	developed	independently	of	
each	other

– databases,	files,	html
– different	schema	and	references
– some	structured	some	unstructured

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 12

Challenges in	Data	Integration:
4.	Autonomy		

• Autonomy:
– the	sources	may	not	belong	to	the	same	
administrative	entity

– even	then	may	be	run	by	different	organizations
– may	not	have	full	access	to	the	data
– there	may	be	privacy	concerns
– the	sources	may	change	their	formats	and	access	
patterns	at	any	time	without	notifying

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 13

Virtual	Data	Integration	Architecture

• Three	
components
– Data	sources
– Wrappers
– Mediated	Schema

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 14

Mediated	Schema

Wrapper

Wrapper Wrapper

Wrapper

RDBMS1 RDBMS2

Virtual	Data	Integration	Architecture

• Data	sources
– can	be	any	data	
model	like	
relational	dbms
with	SQL	interface

– XML with	Xquery
interface

– HTML

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 15

Mediated	Schema

Wrapper

Wrapper Wrapper

Wrapper

RDBMS1 RDBMS2

Virtual	Data	Integration	Architecture

• Wrappers
– programs	that	send	

queries	to	a	data	
source

– receives	answers
– apply	some	basic	

transformations
• e.g.	to	a	web	form	

source
– translate	query	to	a	

http	request	with	a	url
– when	the	answer	

comes	back	as	an	html	
file,	extract	tuples

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 16

Mediated	Schema

Wrapper

Wrapper Wrapper

Wrapper

RDBMS1 RDBMS2

Virtual	Data	Integration	Architecture

• Mediated	schema
– built	for	the	data	

integration	application
– contains	only	the	

aspects	that	are	
relevant

– may	not	contain	all	
attrbutes

– does	not	store	any	
data	typically

– logical	schema	for	
posing	queries	by	the	
users

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 17

Mediated	Schema

Wrapper

Wrapper Wrapper

Wrapper

RDBMS1 RDBMS2

Source	Descriptions
• Specify	the	property	of	the	

sources	that	the	system	
needs	to	know

• main	components	are	
semantic	mappings
– relate	the	schema	of	the	

sources	to	the	attributes	in	
the	mediated	schema

• specified	declaratively
• between	data	sources	and	

mediated	schema
– not	between	two	sources

• also	specifies	
– whether	sources	are	

complete	or	not
– limited	access	patterns	to	

sources

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 18

Mediated	Schema

Wrapper

Wrapper Wrapper

Wrapper

RDBMS1 RDBMS2

Example

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 19

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

• source	S2	may	not	
contain	all	the	movie	
showing	times	in	the	
entire	country

• source	S3	may	be	
known	to	contain	all	
movie	showing	times	in	
New	York

• in	order	to	get	an	
answer	from	the	source	
S1,	there	needs	to	be	
an	input	for	at	least	
one	of	its	attributes

Example:	Query	on	the	Mediated	Schema

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 20

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

• show	times	of	
movies	in	NYC	
directed	by	
Woody	Allen

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title =
Plays.movie AND
location="New York" AND
director="Woody Allen"

Example:	Reformulation	on	source	databases:	1/5

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 21

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title =
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Tuples	for	Movie	can	be	obtained	from	source	
S1
– but	the	attribute	title	needs	to	be	reformulated	

to	name

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes

Example:	Reformulation	on	source	databases:	2/5

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 22

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title =
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Tuples	for	Plays	can	be	obtained	from	
either	source	S2	or	S3
– Since	the	latter	is	complete	for	showings	

in	NYC,	we	choose	it	over	S2

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes

Example:	Reformulation	on	source	databases:	3/5

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 23

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title =
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Source	S3	requires	the	title	of	a	movie	as	
input
– but	such	a	title	is	not	specified	in	the	query
– the	query	plan	must	first	access	source	S1
– then	feed	the	movie	titles	returned	from	S1	as	

inputs	to	S3

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes

Example:	Reformulation	on	source	databases:	4/5

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 24

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title =
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Options	of	logical	query	plan:
– access	S1,	S3
– could	access	S1	then	S2	as	well	(possibly	not	complete)

• Then	query	optimization
– as	in	traditional	database	system
– take	a	logical	plan	output	a	physical	plan

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes

Example:	Reformulation	on	source	databases:	5/5

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 25

Movies

name,	
actors,	
director,	
genre

Cinemas

place,
movie,
start

Cinemas	
in	NYC

cinema,
title,
startTime

Cinemas	in	SF

location,
movie,
startingTime

Reviews

title,
date,
grade,
review

Movie:	Title,	director,	year,	
genre
Actors:	title,	actor
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S1 S2 S3 S4 S5

SELECT title, startTime
FROM Movie, Plays
WHERE Movie.title =
Plays.movie AND
location="New York" AND
director="Woody Allen"

• Then	query	execution
– execute	the	physical	query	plan
– May	ask	the	optimizer	to	reconsider	the	plan	(unlike	

RDBMS),	e.g.	if	S3	is	too	slow

• sometimes	contingencies	are	included	in	original	
plan
– tradeoff	between	complexity	of	plan	and	ability	to	

respond	to	unexpected	events

• S2:	may	not	contain	all	
the	movie	showing	times	
in	the	entire	country

• S3:	known	to	contain	all	
movie	times	in	NYC

• S1: to	get	an	answer	
there	needs	to	be	an	
input	for	at	least	one	of	
its	attributes

Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	1/4

• Relation	and	attribute	names
– “description”	in	the	mediated	schema	(MS)	the	same	as	
“review”	in	S5

– “name”	of	Actors	in	MS	and	is	S3	in	NYCCinemas are	not	
the	same

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 26

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	2/4

• Tabular	organization
– In	MS,	Actor	stores	movie	title	and	actor	name
– In	S1,	a	join	is	needed	that	has	to	be	specified	by	the	
mapping

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 27

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	3/4

• Domain	coverage
– the	coverage	and	level	of	detail	may	differ
– S1	stores	more	info	about	actors	than	in	MS

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 28

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Schema	Mapping	should	handle	the	discrepancies	
between	source	and	the	mediated	schema:	3/4

• Data	level	variations
– GPA	as	a	letter	grade	vs.	a	numeric	score	of	4.0	scale
– S1	stores	actor	names	in	two	columns,	MS	stores	in	
one

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 29

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Three	Desired	Properties	of	
Schema	Mapping	Languages	1/3

• Flexibility
– significant	differences	between	disparate	schemas
– the	languages	should	be	very	flexible
– should	be	able	to	express	a	wide	variety	of	
relationships	between	schemas

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 30

Three	Desired	Properties	of	
Schema	Mapping	Languages	2/3

• Efficient	reformulation
– our	goal	is	to	use	the	schema	mapping	to	
reformulate	queries

– we	should	be	able	to	develop	reformulation	
algorithms	whose	properties	are	well	understood	
and	are	efficient	in	practice

– often	competes	with	flexibility,	because	more	
expressive	languages	are	typically	harder	to	
reason	about

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 31

Three	Desired	Properties	of	
Schema	Mapping	Languages	3/3

• Easy	update
– for	a	formalism	to	be	useful	in	practice,	it	needs	to	
be	easy	to	add	and	remove	sources

– If	adding	a	new	data	source	potentially	requires	
inspecting	all	other	sources,	the	resulting	system	
will	be	hard	to	manage	for	a	large	number	of	
sources

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 32

Three	standard	
schema	mapping	languages

1. Global-as-View	(GAV)
2. Local-as-View	(LAV)
3. Global-Local-as-View	(GLAV)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 33

Global-as-View	(GAV)

• GAV	defines	the	mediated	schema	(MS)	as	a	
set	of	views	over	the	data	sources
– Mediated	Schema	=	Global	schema
– An	intuitive	approach

• Mediated	schema	(MS)	G
– Gi =	some	relation	in	G
– Xi denotes	attributes	in	Gi

• Source	schema	S1,	S2,	…,	Sn

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 34

GAV	Definition
• A	GAV	schema	mapping	M	is	a	set	of	expressions	of	
the	form:	

• Gi(Xi)	⊇ Q(S1,	S2,	…,	Sn)
– open	world	assumption
– instances	computed	for	MS	are	assumed	to	be	incomplete

• or,	Gi(Xi)	=	Q(S1,	S2,	…,	Sn)
– closed	world	assumption
– instances	computed	for	MS	are	assumed	to	be	complete

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 35

GAV	Example
• Movie(title,	director,	year,	genre)⊇ S1.Movie(MID,	title),	

S1.MovieDetail(MID,	director,	genre,	year)
• Movie(title,	director,	year,	genre)	⊇ S5.MovieGenres(title,	genre),

S6.MovieDirectors(title,	director),
S7.MovieYears(title,	year)

• Plays(movie,	location,	startTime)	⊇ S2.Cinemas(location,	movie,	startTime)
• Plays(movie,	location,	startTime)⊇ S3.NYCCinemas(location,	movie,	startTime)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 36

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Discussions:	GAV	1/2

• Suppose	we	have	a	data	source	S8	that	stored	pairs	of	
(actor,	director)	who	worked	together	on	movies.	

• The	only	way	to	model	this	source	in	GAV	is	with	the	
following	two	descriptions	that	use	NULL:
– Actors(NULL,	actor)	⊇ S8(actor,	director)
– Movie(NULL,	director,	NULL,	NULL)	⊇ S8(actor,	director)

• These	descriptions	create	tuples	in	the	mediated	
schema	that	include	NULLs	in	all	columns	except	one

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 37

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S8:
ActTogether(actor,	director)

Discussions:	GAV	2/2

• If	the	source	S8	includes	the	tuples	(Keaton,	Allen)	and	(Pacino,	
Coppolag),	then	the	tuples	computed	for	the	mediated	schema	
would	be:
– Actors(NULL,	Keaton),	Actors(NULL,	Pacino)
– Movie(NULL,	Allen,	NULL,	NULL),	Movie(NULL,	Coppola,	NULL,	NULL)

• Now	suppose	we	have	the	following	query	that	recreates	S8:
– Q(actor,	director)	:- Actors(title,	actor),	Movie(title,	director,	genre,	

year)
• We	would	not	be	able	to	retrieve	the	tuples	from	S8	because	the	

source	descriptions	lost	the	relationship	between	actor	and	
director.

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 38

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

S8:
ActTogether(actor,	director)

Local	As	View	(LAV)

• describes	each	data	source	as	precisely	as	
possible	and	independently	of	any	other	
sources
– opposite	approach	to	GAV

• Mediated	schema	(MS)	G
• Source	schema	S1,	S2,	…,	Sn

– Xi denotes	attributes	in	Si

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 39

LAV	Definition
• A	LAV	schema	mapping	M	is	a	set	of	expressions	
of	the	form:	

• Si(Xi)	⊆ Qi(G)
– open	world	assumption

• or,	Si(Xi)	=	Qi(G)	
– closed	world	assumption
– but	completeness	about	data	sources,	not	about	the	
MS

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 40

LAV	Example
• S5.MovieGenres(title,	genre)	⊆Movie(title,	director,	year,	genre)
• S6.MovieDirectors(title,	director)	⊆Movie(title,	director,	year,	genre)
• S7.MovieYears(title,	year)	⊆Movie(title,	director,	year,	genre)
• S8(actor,	dir)	⊆Movie(title,	director,	year,	genre),	Actors(title,	actor)
• Can	also	specify	constraints	on	the	contents
• S9(title,	year,	“comedy”)	⊆Movie(title,	director,	year,	“comedy”),	year	≥		1970

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 41

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Global-Local-As-View	(GLAV)

• GAV	and	LAV	can	be	combined	into	GLAV
• Has	the	expressive	power	of	both
• The	expressions	in	the	schema	mapping	include

– a	query	over	the	data	sources	on	the	left	hand	side
– a	query	on	the	mediated	schema	on	the	right-hand	
side

• Mediated	schema	(MS)	G
• Source	schema	S1,	S2,	…,	Sn

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 42

GLAV	Definition
• A	GLAV	schema	mapping	M	is	a	set	of	expressions	of	the	
form:	

• QS(X)	⊆ QG(X)
– open	world	assumption

• or,	QS(X)	=	QG(X)
– closed	world	assumption

• QG is	a	query	over	G	whose	head	variables	are	X
• QS is	a	query	over	data	sources	S1,	S2,	…,	Sn where	the	head	

variables	are	also	S

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 43

GLAV	Example
• Suppose	S1	is	known	to	have	comedies	produced	after	1970	only

• S1.Movie(MID,	title),	S1.MovieDetail(MID,	director,	genre,	year)	⊆
Movie(title,	director,	“comedy",	year),	year	≥ 1970

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 44

S1:
Actor	(AID,	firstName,	lastName,	nationality,	yearof Birth)
Movie	(MID,	title),											AcrtorPlays(AID,	MID)
MovieDetail (MID,	directorm genre,	year)

S2:
Cinemas(place,	movie,	start)
S3:
NYCCinemas(name,	title,	startTime)
S4:
Reviews(title,	date,	grade,	review)

S5:
MovieGenres(title,	genre)

Movie:	Title,	director,	year,	
genre
Actor:	title,	name
Plays:	movie,	location,	startTime
Reviews:	title,	rating,	description

Mediated	schema

S7:
MovieYears(title,	year)

S6:
MovieDirectors(title,	dir)

Optional/Additional
Slides

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 45

Schema	Matchings	and	Mappings

• Specify	“matches”,	e.g.
– attribute	“name”	in	one	source	corresponds	to	
attribute	“title”	in	another

– “location”	is	a	concatenation	of	“city,	state,	
zipcode”

• Elaborate	matches	into	semantic	“mappings”
– using	queries	like	SQL

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 46

optional	slide

Challenges

• The	tasks	of	creating	the	matches	and	mappings	are	
often	difficult
– they require	a	deep	understanding	of	the	semantics	of	the	
schemas	of	the	data	sources	and	ofthe mediated	schema

– This	knowledge	is	typically	distributed	among	multiple	
people

– these	people	are	not	necessarily	database	experts and	
may	need	help

• There	is	no	algorithm	that	will	take	two	arbitrary	
database	schemas	and	flawlessly	produce	correct	
matches	and	mappings
– goal	is	to	create	tools	that	educe	the	time	by	giving	
suggestions	to	the	designer

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 47

optional	slide

Two	database	schemas

• Attributes	and	tables	in	a	schema	are	called	its	elements
• The	aggregator	is	not	interested	in	all	the	details	of	the	product,	but	

only	in	the	attributes	that	are	shown	to	its	customers
• Schema	DVD-VENDOR	has	14	elements

– 11	attributes	(e.g.,	id,	title,	and	year)	and	three	tables	(e.g.,	Movies)
• Schema	AGGREGATOR	has	five	elements

– four	attributes	and	one	table.

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 48

DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

optional	slide

Semantic	mapping

• A	query	expression	that	relates	a	schema	S	
with	a	schema	T
– recall	GAV,	LAV,	GLAV	

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 49

DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

optional	slide

Semantic	mapping		- Example	1

• “the	title	of	Movies	in	the	DVD-VENDOR	schema	is	the	
name	attribute	in	Items	in	the	AGGREGATOR	schema.”

• SELECT name as title
• FROM Items

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 50

DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

DVD-VENDOR	FROM
AGGREGATOR

optional	slide

Semantic	mapping		- Example	2

• “get	the	price	attribute	of	the	Items	relation	in	the	AGGREGATOR	
schema	by	joining	the	Products	and	Locations	tables	in	the	DVD-
VENDOR	schema..”

• SELECT (basePrice * (1 + taxRate)) AS price
• FROM Products , Locations
• WHERE Products . saleLocID = Locations .lid

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 51

DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

AGGREGATOR	FROM
DVD-VENDOR

optional	slide

Semantic	mapping		- Example	3

• “Get	the	entire	tuple	in	Items	table	from	DVD-VENDOR”

• SELECT title AS name , releaseDate AS releaseInfo , rating AS
• classification , basePrice * (1 + taxRate) AS price
• FROM Movies , Products , Locations
• WHERE Movies .id = Products .mid AND Products . saleLocID =
• Locations .lid

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 52

DVD-VENDOR

Movies(id,	title,	year)
Products(mid,	releaseDate,	releaseCompany,	
basePrice,	rating,	saleLocID)
Locations(lid,	name,	taxRate)

AGGREGATOR

Items(name,	releaseInfo,	
classification,	price)

AGGREGATOR	FROM
DVD-VENDOR

optional	slide

Semantic	Matches

• Relates	a	set	of	elements	in	schema	S	to	a	set	
of	elements	in	schema	T
– without	specifying	the	details	of	the	nature	of	
relationship	(as	SQL	queries)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 53

optional	slide

Why	are	matching	and	
mapping	difficult?

• The	semantics	may	not	be	fully	captured	in	the	schemas
– “rating”	may	imply	movie	rating,	customer	rating,	etc
– sometimes	accompanied	by	English	text,	hard	for	systems	to	parse	and	

understand
• Schema	clues	can	be	unreliable

– two	elements	may	have	the	same	name	but	different	meaning,	like	“name”	
or	“title”

• Semantics	can	be	subjective
– what	“plot-summary”	means
– sometimes	a	committee	of	experts	vote

• Combining	data	may	be	difficult
– need	to	figure	out	a	join	path	
– full/left/right	outer	join	or	inner	join
– may	need	filter	conditions
– the	designer	has	figure	these	out	inspecting	a	large	amount	of	data
– erroneous	and	labor	prone

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 54

optional	slide

Components	in	a	schema	
matching	system

• Matchers
• Combiners
• Constraint	Enforcers
• Match	Selectors

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 55

optional	slide

1.	Matchers

• schemas	→	similarity	matrix
• takes	two	schemas	S	and	T	as	input
• outputs	a	similarity	matrix
• assigns	to	each	element	pair	s	of	S	and	t	of	T	a	number	
between	0	and	1
– higher	the	number,	s	and	t	are	more	similar	

• e.g.	
– name	≈	<name:	1,	title	:	0:5>
– releaseInfo ≈	<releaseDate :	0:6,	releaseCompany:	0.4>
– price		≈	<basePrice :	0:5>

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 56

optional	slide

Types	of	Matchers

• Name-based	matchers
– compares	the	names	of	elements
– but	almost	never	written	the	same	way
– uses	techniques	for	string	matching	as	edit	
distance,	Jaccard measure	etc.;	synonyms;	
normalization	(capital	letters);	hyphens;	etc

• Instance-based	matchers
– Look	at	data	instances,	builds	recognizers	
(dictionaries),	computes	overlaps,	classification

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 57

optional	slide

2.	Combiners

• matrix	⨉ ….	⨉matrix	→	matrix

• merges	the	similarity	matrices	output	by	the	
matchers	into	a	single	one

• can	take	the	average,	minimum,	maximum,	or	
a	weighted	sum	of	the	similarity	scores

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 58

optional	slide

Types	of	Combiners

• Average	combiners:
– Suppose	k	matchers	to	predict	the	scores	between	the	
element	si of	schema	S	and	the	element	tj of	schema	T

– then	an	average	combiner	will	compute	the	score	
between	these	two	elements	as	the	average	from	
these	k	matchers

• Hand-crafted	scripts
– e.g.	if	si =	address,	return	score	of	naïve-bayes
classifer,	else	average

• Weighted	combiner
– gives	weights	to	each	matcher

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 59

optional	slide

3.	Constraint	Enforcers

• matrix	⨉ constraints	→	matrix

• In	addition	to	clues	and	heuristics,	domain	knowledge	
plays	an	important	role	in	pruning	candidate	matches
– e.g.	knowing	that	many	movie	titles	contain	four	words	or	
more,	but	most	location	names	do	not,	can	help	us	guess	
that	Items.name is	more	likely	to	match	Movies.title than	
Locations.name

• an	enforcer	enforces such	constraints	on	the	candidate	
matches
– it	transforms	the	similarity	matrix	produced	by	the	
combiner	into	another	one	that	better	reflects the	true	
similarities

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 60

optional	slide

Types	of	Constraint	Enforcers	:	1/2

• There	may	be	hard	or	soft	domain	integrity	constraints
• Hard	constraints	must	be	applied

– The	enforcer	will	not	output	any	match	combination	that	
violates	them

• Soft	constraints	are	of	more	heuristic	nature,	and	may	
actually	be	violated	in	correct	match	combinations
– the	enforcer	will	try	to	minimize	the	number	(and	weight)	of	the	

soft	constraints	being	violated
– but	may	still	output	a	match	combination	that	violates	one	or	

more	of	them
• Formally,	we	attach	a	cost	to	each	constraint

– For	hard	constraints,	the	cost	is	1
– for	soft	constraints,	the	cost	can	be	any	positive	number.

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 61

optional	slide

Types	of	Constraint	Enforcers	:	2/2

• e.g.
– c1:	If	A		Items.code,	then	A	is	a	key	(weight	=	
infinity)

– c2	If	A		Items.desc,	then	any	random	sample	of	
100	data	instances	of	A	must	have	an	average	
length	of	at	least	20	words (weight	=	1.5)

– c3:	If	more	than	half	of	the	attributes	of	Table	U	
matches	those	of	Table	V	,	then	U		is	similar	to	V	
(weight	=	1)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 62

optional	slide

4.	Match	Selectors

• matrix	→	matches

• Produces	matches	from	the	similarity	matrix	output	by	the	
constraint	enforcer

• name	≈	<title	:	0:5>
• releaseInfo ≈	<releaseDate :	0:6>
• classication ≈ <rating	:	0:3>
• price		≈	<basePrice :	0:5>
• Given	the	threshold	0.5,	the	match	selector	produces	matches:	

– name	≈ title,	releaseInfo ≈ releaseDate,	and	price	≈ basePrice

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 63

optional	slide

Types	of	Match	Selectors

• The	simplest	selection	strategy	is	thresholding
– all	pairs	of	schema	elements	with	similarity	score	
exceeding	a	given	threshold	are	returned	as	
matches

• More	complex	strategies	include	formulating	
the	selection	as	an	optimization	problem	over	
a	weighted	bipartite	graph

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems 64

optional	slide

