CompSci 516
Data Intensive Computing Systems

Lecture 3
Map-Reduce
and
Spark

Guest Lecturer: Junghoon Kang

Reading Material

« Recommended (optional) readings:

— Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by
Rajaraman and Ullman: http://i.stanford.edu/~ullman/mmds.html

— MapReduce: Simplified Data Processing on Large Cluster - Jeffrey
Dean, et al. — 2004

— The Google File System - Sanjay Ghemawat, et al. — 2003

— Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing - Matei Zaharia, et al. - 2012

Announcement

e Jung - | have switched my office hours
from Thursdays 1pm - 2pm
to Thursdays 3pm - 4pm
at the same location, N303B.

e In HW2, you will be writing Spark applications and
run them on AWS EC2 instances.

Google MapReduce

CompSci 516
Junghoon Kang

z I]NI_IN[
FACTR = = e MASSIVE
ol | USING

DEFINITION =
= srsrons = "VE S ranmon B s £

RESULTS — SET = 2 HiGH
= BUSINESS EFFECTIVE _ yisyapizaTion = =
e ¢ ANDIEAARSS &=PROC Ensl;§TluN S TBASES o s 2 € "sf\nrjmum o
REPLICATION VULUME =X= PROCESSING 7 simuiaTioNs =z

= SOTARE = MANAGENENT 22 E— pantvers
ckikee B (ivrogiaTi
PAST = STU RAG E

=RESEARCH £
LEARNINGZE =5 :EIESEESSESJSNL
MILLONSET'S peveLopmenT et
g T[BHNI][[]GY S EA R c H ARCHITECTURE
HYPOTHESIS SCI EN [:E
STATE. camalE 3 = TERABYTES manker VARIETY, b l'l‘glEEI‘]’A"T

='_=
S=
==
m
=

ALGORITHMS
COMPANIES

lIMlTS
CHALLENG
CAPRCITY £

NI]UNEED

PETABYTES

INTELLIGENCE

ohacisszs APPROACHES z

Flow NATIONAL

EVERY WORLD z =
VARIOUS
- PARADIEN FUNDIG ==
N oSt = El\ll.lll-\ll_[m N w INITIATIVE ECONOMIC ppqyeey DISTRIBUTED 25 RecaRDS gggr INSIGHT TOOLS

HAPREDLCE
FUTURE
CRITIO

peopte. TRAFFICES RELATED pp0r SENSOR =

CURREN

— Big Data ~

It cannot be stored It cannot be processed
iIn one hard disk drive by one CPU

need to split it into parallelize computation

multiple machines on multiple machines

v \
A2
Google File System \© MapReduce

Where does Google use MapReduce?

Input

l

Output

crawled documents
web request logs

inverted indices

graph structure of web documents
summaries of the number of pages
crawled per host

the set of most frequent queries in a
day

What is MapReduce?

It is a programming model
that processes large data by:
apply a function to each logical record in the input (map)

categorize and combine the intermediate results
iInto summary values (reduce)

Understanding MapReduce
(example by Yongho Ha)

| am a class president

An English teacher asks you:

“Could you count the number of occurrences of
each word in this book?”

borrowed slide

Let’'s divide the workload among classmates.

‘%J map

cloud 1 parallel 1 map 1 computer 1 reduce 1
data 1 data 1 cloud 1 map 1 map 1

computer 1 parallel 1 scientist 1 scientist 1

borrowed slide

And let few combine the intermediate results.
reduce

parailel 1 mab 1 coniputer 1 reduée 1
data 1
computer 1 parallel 1 scientist 1 scientist 1

cloud 1 map 1 map 1

| will collect
fromA~G

cloud 2 map 3 reduce 1

computer 2 parallel 2 scientist 2
data 2

borrowed slide

Why did MapReduce

become so popular?

Is it because Google uses it?

Distributed Computation
Before MapReduce

Things to consider:

e how to divide the workload among multiple machines?
e how to distribute data and program to other machines?
e how to schedule tasks?

e what happens if a task fails while running?

e ...and...and...

borrowed slide

Distributed Computation
After MapReduce

Things to consider:

e how to write Map function?

e how to write Reduce function?

borrowed slide

MapReduce has made distributed computation
an easy thing to do!

Az

vvvvvvv

Developers needed Developers needed
before MapReduce after MapReduce

borrowed slide

Given the brief intro to
MapReduce,

let’'s begin our journey to real
Implementation details In
MapReduce !

Key Players in MapReduce

One Master
e coordinates many workers.
e assigns a task™ to each worker.
(* task = partition of data + computation)

Multiple Workers
e Follow whatever the Master asks to do.

Execution Overview

1. The MapReduce library in the user program first splits

the input file into M pieces.

gfs://path/input_file

N\ T

partition_1

partition_2

partition_3

partition_4

partition_M

2. The MapReduce library in the user program then
starts up many copies of the program on a cluster of
machines: one master and multiple workers .

worker 1 worker 2 worker 3

There are M map tasks and R reduce tasks to assign.

(The figures below depicts task = data + computation)

Map Task

Data

partition_#

)

Computation [

map
function

)

Reduce Task

Data

Computation

partition_#

l

AV

reduce
function

)

3. The master picks idle workers and assigns each one

a map task.

P Time

4. Map Phase (each mapper node)

1) Read in a corresponding input partition.

2) Apply the user-defined map function to each key/value pair
In the partition.

3) Partition the result produced by the map function into R
regions using the partitioning function.

4) Write the result into its local disk (not GFS).

5) Notify the master with the locations of each partitioned

iIntermediate result.

Map Phase

Google File System

2. where is
my partition

map task

master mapper

|

3. here is your input partition

[map function

v

| hash (mod R) |

Inside\

kth
map task

/

4. here are the locations of partitioned intermediate results

5. After all the map tasks are done, the master picks idle
workers and assigns each one a reduce task.

P Time

6. Reduce Phase (each reducer node)
1) Read in all the corresponding intermediate result
partitions from mapper nodes.
2) Sort the intermediate results by the intermediate keys.
3) Apply the user-defined reduce function on each
intermediate key and the corresponding set of
intermediate values.

4) Create one output file.

Reduce Phase

3. here are your intermediate result partitions

mappers

2. send
intermediate
result to this
reducer

: .' _—
. 1. assign
reduce task

master reducer

~\

[reduce function]

Inside
kth
reduce task

Google File System -

4. store the output file into GFS
(reduce phase will generate the total of R output files)

Fault Tolerance

Although the probability of a machine failure is low,
the probability of a machine failing among thousands of
machines is common.

How does MapReduce
handle machine failures?

Worker Failure

e The master sends heartbeat to each worker node.

e |If a worker node fails, the master reschedules the tasks
handled by the worker.

Master Failure

e The whole MapReduce job gets restarted through a
different master.

Locality

The input data is managed by GFS.

Choose the cluster of MapReduce machines such that
those machines contain the input data on their local
disk.

We can conserve network bandwidth.

Task Granularity

e Itis preferable to have the number of tasks to be
multiples of worker nodes.

e Smaller the partition size, faster failover and better
granularity in load balance.

But it incurs more overhead. Need a balance.

Backup Tasks

e |n order to cope with a straggler, the master
schedules backup executions of the remaining

In-progress tasks.

MapReduce Pros and Cons

e MapReduce is good for off-line batch jobs on large
data sets.

e MapReduce is for iterative jobs due to high
I/O overhead as each iteration needs to read/write
data from/to GFS.

e MapReduce is bad for jobs on small datasets and

jobs that require low-latency response.

Apache Hadoop

Apache Hadoop is an open-source version of

GFS and Google MapReduce.

\ Google Apache Hadoop

File System GFS HDFS

Data Processing Google Hadoop
Engine MapReduce MapReduce

References

MapReduce: Simplified Data Processing on Large Cluster -

Jeffrey Dean, et al. - 2004
The Google File System - Sanjay Ghemawat, et al. - 2003

http://www.slideshare.net/yongho/2011-h3

http://www.slideshare.net/yongho/2011-h3
http://www.slideshare.net/yongho/2011-h3

Apache Spark

CompSci 516
Junghoon Kang

About Spark

e Spark is a distributed large-scale data processing engine that
exploits in-memory computation and other optimizations.

e One of the most popular data processing engine in the industry
these days; many large companies like Netflix, Yahoo, and
eBay use Spark at massive scale.

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das. Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fauli-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently. RDDs provide a
restricted form of shared memory, based on coarse-
grained ions rather than fine-grained updates
o shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel. and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark. which we evaluate through a variety
of user applications and benchmarks.
1 Introduction
Cluster i ks like [10] and
Dryad [19] have been widely adopied for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having
to worry about work distribution and fault tolerance.
Although current frameworks provide numerous ab-
stractions for accessing a cluster’s computational re-
sources, they lack abs ions for
memory. This makes them inefficient fm an important
class of emerging applications: those that reuse interme-
diate results across multiple computations. Data reuse is
common in many iferative machine learning and grapl)
i . including . K-means
and logistic regression. Another u)mpellmg use case is
interactive data mining, where a user runs muliiple ad-
hoc queries on the same subset of the data. Unfortu-
nately, in most current frameworks, the only way o reuse
data between computations (e.g, between two MapRe-
duce jobs}) is to wrile it to an external stable storage sys-
tem, e.g., a distributed file system. This incurs substantial
overheads due 1o data replication, disk /O, and serializa-

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] isa sy stem for
iterative graph ions that keeps data
in memory, while Hal oop [7] offers an iterative MapRe-
duce interface. However. these frameworks only support
specific computation patterns (e.g., looping a se of
MapReduce steps). and perform data sharing implicitly
for these patierns. They do not provide abstractions for
more general reuse, e g, to let a user load several datasets
into memory and run ad-hoc gueries across them.

In this paper. we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fauli-tolerant, parallel data structures that let users ex-
plicitly persist intermediate resulis in memory, conirol
their partitioning to optimize data placement. and ma-
nipulate them using a rich set of operators.

The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25]. databases. and Piccolo [27]. offer an
interface based on fine-grained updates to mutable state
(e.g., cells in a table). With this interface, the only ways
1o provide fault wlerance are to replicate the data across
machines or to log upddws 4CT0sS ||1;u:h||1eq. Both ap-
proaches are exp as
they require copying [arfre amounts of lldl.l over the clus-
ter network, whose bandwidth is far lower than that of
RAM, and they incur substantial storage overhead.

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformations (e.g., map,
filter and join) that apply the same operation to many
data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a
dataset (its lineage) rather than the actual data' Ifa parti-
tion of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute

ICheckpointing the data in some RDDs may be useful when a lin-
eage chain grows large. however, and we discuss how to do i in §5.4.

More about Spark

It started as a research project at UC
Berkeley.

Published the
Resilient Distributed Datasets (RDD)
paper in NSDI 2012.

Best Paper award that year.

Motivation

Hadoop MapReduce indeed made analyzing large

datasets easy.

However, MapReduce was still for:

e iterative jobs, such as machine learning and graph
computation

e interactive and ad-hoc queries

Can we do better?

The reason why MapReduce is for iterative
jobs is because of the high |I/O overhead as each

iteration needs to read/write data from/to HDFS.

So, what if we use RAM between each iteration?

Instead of storing intermediate outputs into HDFS,
using RAM would be faster

HDFS
% " |

Input

Query 1

Query 2

Result 1
e

Result 2
I———

Query 3

Result 3
———

Result 1
I——

-

Result 2
e

Result 3

J

Instead of reading
input from HDFS
every time you run
query,

bring the input into
RAM first then run
multiple queries.

Challenge

But RAM is a volatile storage...

What happens if a machine faults?

Although the probability of a machine failure is low,

the probability of a machine failing among thousands of
machines is common.

In other words, how can we create an efficient,
fault-tolerant, and distributed RAM storage?

Some Approaches

Some data processing frameworks, such as RAMCloud

or Piccolo, also used RAM to improve the performance.
And they supported of data in RAM.

But it is hard to achieve fault tolerance with

while having a good performance.

Spark’s Approach

What if we use RAM as read-only?
This idea is RDD, Resilient Distributed Datasets!

Which is the title of the Spark paper and the core idea
behind Spark!

Resilient Distributed Datasets

What are the properties of RDD?

e read-only, partitioned collections of records

partition

e you can only create RDD from input files in a storage or RDD

O— =] o [ee)—s (o]

RDD (cont.)

What's good about RDD again?

e RDD is read-only (immutable).
Thus, it hasn’t been changed since it got created.

e T[hat means
if we just record how the RDD got created
from its parent RDD (lineage),
it becomes fault-tolerant!

RDD (cont.)

But how do you code in Spark using RDD?

e Coding in Spark is
creating a lineage of RDDs
in a directed acyclic graph (DAG) form.

RDD Operators
Transformations & Actions

map(f:T=U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)

RDD[T] = RDD[U]
RDDI[T] = RDD[T]
RDD[T] = RDD[U]
RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() RDDI(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V) = V) RDDJ[(K, V)] = RDD[(K, V)]
Transformations union() (RDD[T],RDD[T]) = RDD[T]
join() (RDD[(K, V)],RDD[(K, W)]) = RDDI[(K, (V, W))]
cogroup() (RDDI(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() (RDDI[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner{K]) : RDD[(K, V)] = RDD[(K, V)]
count() RDD[T] = Long
collect() RDDI[T] = Seq([T]
Actions reduce(f: (T, T)=T) RDD[T] =T

lookup(k : K)
save(path : String)

RDDI[(K, V)] = Seq|V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Lazy Execution

" Action ~ Value

Transformation

Transformation functions simply creates a lineage of RDDs.
An action function that gets called in the end triggers the
computation of the whole lineage of transformation functions
and outputs the final value.

Two Types of Dependencies

Narrow Dependencies: Wide Dependencies:
T)
a—a (e
map, filter (
m—
— =
- =
e/ Q
E— Si—
— join with inputs
Q’ -partitioned
_Junion B join with inputs not

co-partitioned

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

Narrow Dependency

Narrow Dependencies:

(I1]
gt

map, filter

CLD)CTT)

join with inputs
co-partitioned

CLCTY
it

union

The task can be done In
one node.

No need to send data
over network to
complete the task.

Fast.

Wide Dependency

Wide Dependencies:

join with inputs not
co-partitioned

The task needs shuffle.

Need to pull data from
other nodes via network.

Slow.

Use wide dependencies
wisely.

Job Scheduling

' \ Stage 2

b

Stage 3 '

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

One job contains one action
function and possibly many
transformation functions.

A job is represented by the DAG
of RDDs.

Compute the job following the
DAG.

New stage gets created if a RDD
requires shuffle from an input
RDD.

Task Distribution

RAM []
Worker
ssiEl |
Input Data)
) == | RAM
I;)rlver —> \Worker

-i-‘.
H=

results

RAM Input Data
Worker S

Input Data

Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can persist computed RDD partitions in memory.

Similar to MR

One master, multiple
workers

One RDD is divided
iInto multiple partitions

How fast is Spark?

240 - First Iteration & e Skip the first iteration,
—~ ®| ater Iterations o : o
n
< 200 2 = I since it's just text
£ 160 - i -8 parsing.
g 5 @ o
T 80 - E e |n later iterations,
[(}] m .
= 40 - l .] Spark is much faster
0 = N— e — o M I . "

(black bar).

| Hadoop HadoopBM Spark | Hadoop HadoopBM Spark |
Logistic Regression K-Means

e HadoopBM writes

Figure 7: Duration of the first and later iterations in Hadoop, intermediate data in
HadoopBinMem and Spark for logistic regression and k-means

memory not HDFS.
using 100 GB of data on a 100-node cluster. emory not S

What if the number of nodes
Increases”?

300 ®Hadoop 300 | X ™Hadoop
HadoopBinMem | - HadoopBinMem
=250 1 ®Spark %250 s Spark
w200 * 2500 { Mz
= 200 © E g 10 _ o
=150 { @+ c 150 - =)
S I S z %
5 100 Ry §100 o =
£ 50 I 2 50 - I >
N L | BN
100 25 50 100
Number of machines Number of machines
(a) Logistic Regression (b) K-Means

Figure 8: Running times for iterations after the first in Hadoop,
HadoopBinMem, and Spark. The jobs all processed 100 GB.

Apache Spark Ecosystem

Spark SQL +
DataFrames

MLLIb Graph¥X
Streaming S Grap!

[Spark Core AP]/

SQL Python Scala Java

References

Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing - Matei Zaharia, et al. -
2012

https://databricks.com/spark/about
http://www.slideshare.net/yongho/rdd-paper-review
https://www.youtube.com/watch?v=dmLON3qfSc8
http://www.tothenew.com/blog/spark-103-spark-internals/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/un
derstand-rdd-operations-transformations-and-actions/

https://databricks.com/spark/about
https://databricks.com/spark/about
http://www.slideshare.net/yongho/rdd-paper-review
http://www.slideshare.net/yongho/rdd-paper-review
https://www.youtube.com/watch?v=dmL0N3qfSc8
https://www.youtube.com/watch?v=dmL0N3qfSc8
http://www.tothenew.com/blog/spark-1o3-spark-internals/
http://www.tothenew.com/blog/spark-1o3-spark-internals/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/

