




Announcement
● Jung - I have switched my office hours

from Thursdays 1pm - 2pm
to     Thursdays 3pm - 4pm
at the same location, N303B.

● In HW2, you will be writing Spark applications and 
run them on AWS EC2 instances.
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Big Data
it cannot be stored 

in one hard disk drive

 need to split it into 
multiple machines

Google File System

it cannot be processed 
by one CPU

parallelize computation 
on multiple machines

MapReduceToday!



Where does Google use MapReduce?

MapReduce

Input

Output

● crawled documents
● web request logs

● inverted indices
● graph structure of web documents
● summaries of the number of pages 

crawled per host
● the set of most frequent queries in a 

day



What is MapReduce?

It is a programming model

that processes large data by:

apply a function to each logical record in the input (map)

categorize and combine the intermediate results 
into summary values (reduce)



Understanding MapReduce
(example by Yongho Ha)

I am a class president

borrowed slide



An English teacher asks you:

“Could you count the number of occurrences of 
each word in this book?”

borrowed slide



Um... Ok...
borrowed slide



Let’s divide the workload among classmates.

map

cloud 1
data 1

parallel 1
data 1
computer 1

map 1
cloud 1
parallel 1

computer 1
map 1
scientist 1

reduce 1
map 1
scientist 1

borrowed slide



And let few combine the intermediate results.

cloud 1
data 1

parallel 1
data 1
computer 1

map 1
cloud 1
parallel 1

computer 1
map 1
scientist 1

reduce 1
map 1
scientist 1

reduce

cloud 2
computer 2
data 2

map 3
parallel 2

reduce 1
scientist 2

I will collect 
from A ~ G H ~ Q R ~ Z

borrowed slide



Why did MapReduce 

become so popular?

borrowed slide



Is it because Google uses it?

borrowed slide



Distributed Computation 
Before MapReduce

Things to consider:

● how to divide the workload among multiple machines?

● how to distribute data and program to other machines?

● how to schedule tasks?

● what happens if a task fails while running?

● … and … and ...
borrowed slide



Distributed Computation 
After MapReduce

Things to consider:

● how to write Map function?

● how to write Reduce function?

borrowed slide



MapReduce has made distributed computation 
an easy thing to do!

Developers needed 
before MapReduce

Developers needed 
after MapReduce

borrowed slide



Given the brief intro to 
MapReduce,

let’s begin our journey to real 
implementation details in 

MapReduce !



Key Players in MapReduce
One Master
● coordinates many workers.
● assigns a task* to each worker.

(* task = partition of data + computation)

Multiple Workers
● Follow whatever the Master asks to do.



Execution Overview
1. The MapReduce library in the user program first splits 
the input file into M pieces.

gfs://path/input_file

partition_1 partition_2 partition_4partition_3 partition_M



2. The MapReduce library in the user program then 
starts up many copies of the program on a cluster of 
machines: one master and multiple workers .

master

worker 1 worker 2 worker 3



There are M map tasks and R reduce tasks to assign.
(The figures below depicts task = data + computation)

partition_#

map 
function

Computation

Data

Map Task

partition_#

reduce 
function

Computation

Data

Reduce Task



3. The master picks idle workers and assigns each one 
a map task.

worker 1

worker 2

worker 3

master

Time



4. Map Phase (each mapper node)

1) Read in a corresponding input partition.

2) Apply the user-defined map function to each key/value pair 

in the partition.

3) Partition the result produced by the map function into R 

regions using the partitioning function.

4) Write the result into its local disk (not GFS).

5) Notify the master with the locations of each partitioned 

intermediate result.



Map Phase

mappermaster

Google File System

1. assign 
map task

2. where is 
my partition

3. here is your input partition

Inside 
kth 

map task

4. here are the locations of partitioned intermediate results

partition_k

map function

temp_k1 temp_k2 temp_kR

hash (mod R)



5. After all the map tasks are done, the master picks idle 
workers and assigns each one a reduce task.

worker 1

worker 2

worker 3

master

Time



6. Reduce Phase (each reducer node)

1) Read in all the corresponding intermediate result 

partitions from mapper nodes.

2) Sort the intermediate results by the intermediate keys.

3) Apply the user-defined reduce function on each 

intermediate key and the corresponding set of 

intermediate values.

4) Create one output file.



Reduce Phase

reducermaster

1. assign 
reduce task

2. send 
intermediate 
result to this 

reducer

3. here are your intermediate result partitions

Inside 
kth

reduce task

mappers

temp_1k

sort

temp_2k temp_Mk

reduce function

output_k

Google File System
4. store the output file into GFS

(reduce phase will generate the total of R output files)



Fault Tolerance

Although the probability of a machine failure is low, 
the probability of a machine failing among thousands of 
machines is common.



How does MapReduce 
handle machine failures?

Worker Failure
● The master sends heartbeat to each worker node.
● If a worker node fails, the master reschedules the tasks 

handled by the worker.
Master Failure
● The whole MapReduce job gets restarted through a 

different master.



Locality

● The input data is managed by GFS.

● Choose the cluster of MapReduce machines such that 

those machines contain the input data on their local 

disk.

● We can conserve network bandwidth.



Task Granularity

● It is preferable to have the number of tasks to be 

multiples of worker nodes.

● Smaller the partition size, faster failover and better 

granularity in load balance. 

But it incurs more overhead. Need a balance.



Backup Tasks

● In order to cope with a straggler, the master 

schedules backup executions of the remaining 

in-progress tasks.



MapReduce Pros and Cons
● MapReduce is good for off-line batch jobs on large 

data sets.

● MapReduce is not good for iterative jobs due to high 

I/O overhead as each iteration needs to read/write 

data from/to GFS.

● MapReduce is bad for jobs on small datasets and 

jobs that require low-latency response.



Apache Hadoop
Apache Hadoop is an open-source version of 

GFS and Google MapReduce. 

Google Apache Hadoop

File System GFS HDFS

Data Processing 
Engine

Google 
MapReduce

Hadoop 
MapReduce



References
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About Spark
● Spark is a distributed large-scale data processing engine that 

exploits in-memory computation and other optimizations.

● One of the most popular data processing engine in the industry 
these days; many large companies like Netflix, Yahoo, and 
eBay use Spark at massive scale.



More about Spark
● It started as a research project at UC 

Berkeley.

● Published the
Resilient Distributed Datasets (RDD)
paper in NSDI 2012.

● Best Paper award that year.



Motivation
Hadoop MapReduce indeed made analyzing large 

datasets easy.

However, MapReduce was still not good for:

● iterative jobs, such as machine learning and graph 

computation

● interactive and ad-hoc queries



Can we do better?
The reason why MapReduce is not good for iterative 

jobs is because of the high I/O overhead as each 

iteration needs to read/write data from/to HDFS.

So, what if we use RAM between each iteration?



Iter. 1

HDFS
read

HDFS
write

Iter. 2

HDFS
read

HDFS
write

HDFS
read

Input

Iter. 1 Iter. 2

Input

Instead of storing intermediate outputs into HDFS, 
using RAM would be faster



HDFS read
Query 1

Input

Query 2

Query 3

Result 1

Result 2

Result 3
HDFS read

HDFS read

HDFS read

Query 1

Input

Query 2

Query 3

HDFS
read

Result 1

Result 2

Result 3

Instead of reading 
input from HDFS 
every time you run 
query, 
bring the input into 
RAM first then run 
multiple queries.



Challenge
But RAM is a volatile storage…

What happens if a machine faults?

Iter. 1 Iter. 2

Input



Although the probability of a machine failure is low, 
the probability of a machine failing among thousands of 
machines is common.

In other words, how can we create an efficient, 
fault-tolerant, and distributed RAM storage?



Some Approaches
Some data processing frameworks, such as RAMCloud 

or Piccolo, also used RAM to improve the performance.

And they supported fine-grained update of data in RAM.

But it is hard to achieve fault tolerance with fine-grained 

update while having a good performance.



Spark’s Approach
What if we use RAM as read-only?

This idea is RDD, Resilient Distributed Datasets!

Which is the title of the Spark paper and the core idea 

behind Spark!



Resilient Distributed Datasets
What are the properties of RDD?

● read-only, partitioned collections of records

● you can only create RDD from input files in a storage or RDD

partition 
of records

ben
dzimitry
hutomo
ivan
kevin
pierre
quan
randolf
...RDD

RDD RDD RDDOR



RDD (cont.)
What’s good about RDD again?

● RDD is read-only (immutable). 
Thus, it hasn’t been changed since it got created.

● That means 
if we just record how the RDD got created 
from its parent RDD (lineage), 
it becomes fault-tolerant!



RDD (cont.)
But how do you code in Spark using RDD?

● Coding in Spark is 
creating a lineage of RDDs 
in a directed acyclic graph (DAG) form.

Data
Source

Data
Source

Data
Source

Data
Source

Map

Map

Union

Reduce

Match

Group Data
Sink



RDD Operators
Transformations & Actions



Lazy Execution

● Transformation functions simply creates a lineage of RDDs.
● An action function that gets called in the end triggers the 

computation of the whole lineage of transformation functions 
and outputs the final value.

RDD

Transformation

Action Value



Two Types of Dependencies



Narrow Dependency
● The task can be done in 

one node.

● No need to send data 
over network to 
complete the task.

● Fast.



Wide Dependency
● The task needs shuffle.

● Need to pull data from 
other nodes via network.

● Slow.

● Use wide dependencies 
wisely.



Job Scheduling
● One job contains one action 

function and possibly many 
transformation functions.

● A job is represented by the DAG 
of RDDs.

● Compute the job following the 
DAG.

● New stage gets created if a RDD 
requires shuffle from an input 
RDD.



Task Distribution
● Similar to MR

● One master, multiple 
workers

● One RDD is divided 
into multiple partitions



How fast is Spark?
● Skip the first iteration, 

since it’s just text 
parsing.

● In later iterations, 
Spark is much faster 
(black bar).

● HadoopBM writes 
intermediate data in 
memory not HDFS.



What if the number of nodes 
increases?



Apache Spark Ecosystem
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