

Announcement
● Jung - I have switched my office hours

from Thursdays 1pm - 2pm
to Thursdays 3pm - 4pm
at the same location, N303B.

● In HW2, you will be writing Spark applications and
run them on AWS EC2 instances.

Google MapReduce
CompSci 516

Junghoon Kang

Big Data
it cannot be stored

in one hard disk drive

 need to split it into
multiple machines

Google File System

it cannot be processed
by one CPU

parallelize computation
on multiple machines

MapReduceToday!

Where does Google use MapReduce?

MapReduce

Input

Output

● crawled documents
● web request logs

● inverted indices
● graph structure of web documents
● summaries of the number of pages

crawled per host
● the set of most frequent queries in a

day

What is MapReduce?

It is a programming model

that processes large data by:

apply a function to each logical record in the input (map)

categorize and combine the intermediate results
into summary values (reduce)

Understanding MapReduce
(example by Yongho Ha)

I am a class president

borrowed slide

An English teacher asks you:

“Could you count the number of occurrences of
each word in this book?”

borrowed slide

Um... Ok...
borrowed slide

Let’s divide the workload among classmates.

map

cloud 1
data 1

parallel 1
data 1
computer 1

map 1
cloud 1
parallel 1

computer 1
map 1
scientist 1

reduce 1
map 1
scientist 1

borrowed slide

And let few combine the intermediate results.

cloud 1
data 1

parallel 1
data 1
computer 1

map 1
cloud 1
parallel 1

computer 1
map 1
scientist 1

reduce 1
map 1
scientist 1

reduce

cloud 2
computer 2
data 2

map 3
parallel 2

reduce 1
scientist 2

I will collect
from A ~ G H ~ Q R ~ Z

borrowed slide

Why did MapReduce

become so popular?

borrowed slide

Is it because Google uses it?

borrowed slide

Distributed Computation
Before MapReduce

Things to consider:

● how to divide the workload among multiple machines?

● how to distribute data and program to other machines?

● how to schedule tasks?

● what happens if a task fails while running?

● … and … and ...
borrowed slide

Distributed Computation
After MapReduce

Things to consider:

● how to write Map function?

● how to write Reduce function?

borrowed slide

MapReduce has made distributed computation
an easy thing to do!

Developers needed
before MapReduce

Developers needed
after MapReduce

borrowed slide

Given the brief intro to
MapReduce,

let’s begin our journey to real
implementation details in

MapReduce !

Key Players in MapReduce
One Master
● coordinates many workers.
● assigns a task* to each worker.

(* task = partition of data + computation)

Multiple Workers
● Follow whatever the Master asks to do.

Execution Overview
1. The MapReduce library in the user program first splits
the input file into M pieces.

gfs://path/input_file

partition_1 partition_2 partition_4partition_3 partition_M

2. The MapReduce library in the user program then
starts up many copies of the program on a cluster of
machines: one master and multiple workers .

master

worker 1 worker 2 worker 3

There are M map tasks and R reduce tasks to assign.
(The figures below depicts task = data + computation)

partition_#

map
function

Computation

Data

Map Task

partition_#

reduce
function

Computation

Data

Reduce Task

3. The master picks idle workers and assigns each one
a map task.

worker 1

worker 2

worker 3

master

Time

4. Map Phase (each mapper node)

1) Read in a corresponding input partition.

2) Apply the user-defined map function to each key/value pair

in the partition.

3) Partition the result produced by the map function into R

regions using the partitioning function.

4) Write the result into its local disk (not GFS).

5) Notify the master with the locations of each partitioned

intermediate result.

Map Phase

mappermaster

Google File System

1. assign
map task

2. where is
my partition

3. here is your input partition

Inside
kth

map task

4. here are the locations of partitioned intermediate results

partition_k

map function

temp_k1 temp_k2 temp_kR

hash (mod R)

5. After all the map tasks are done, the master picks idle
workers and assigns each one a reduce task.

worker 1

worker 2

worker 3

master

Time

6. Reduce Phase (each reducer node)

1) Read in all the corresponding intermediate result

partitions from mapper nodes.

2) Sort the intermediate results by the intermediate keys.

3) Apply the user-defined reduce function on each

intermediate key and the corresponding set of

intermediate values.

4) Create one output file.

Reduce Phase

reducermaster

1. assign
reduce task

2. send
intermediate
result to this

reducer

3. here are your intermediate result partitions

Inside
kth

reduce task

mappers

temp_1k

sort

temp_2k temp_Mk

reduce function

output_k

Google File System
4. store the output file into GFS

(reduce phase will generate the total of R output files)

Fault Tolerance

Although the probability of a machine failure is low,
the probability of a machine failing among thousands of
machines is common.

How does MapReduce
handle machine failures?

Worker Failure
● The master sends heartbeat to each worker node.
● If a worker node fails, the master reschedules the tasks

handled by the worker.
Master Failure
● The whole MapReduce job gets restarted through a

different master.

Locality

● The input data is managed by GFS.

● Choose the cluster of MapReduce machines such that

those machines contain the input data on their local

disk.

● We can conserve network bandwidth.

Task Granularity

● It is preferable to have the number of tasks to be

multiples of worker nodes.

● Smaller the partition size, faster failover and better

granularity in load balance.

But it incurs more overhead. Need a balance.

Backup Tasks

● In order to cope with a straggler, the master

schedules backup executions of the remaining

in-progress tasks.

MapReduce Pros and Cons
● MapReduce is good for off-line batch jobs on large

data sets.

● MapReduce is not good for iterative jobs due to high

I/O overhead as each iteration needs to read/write

data from/to GFS.

● MapReduce is bad for jobs on small datasets and

jobs that require low-latency response.

Apache Hadoop
Apache Hadoop is an open-source version of

GFS and Google MapReduce.

Google Apache Hadoop

File System GFS HDFS

Data Processing
Engine

Google
MapReduce

Hadoop
MapReduce

References
● MapReduce: Simplified Data Processing on Large Cluster -

Jeffrey Dean, et al. - 2004
● The Google File System - Sanjay Ghemawat, et al. - 2003
● http://www.slideshare.net/yongho/2011-h3

http://www.slideshare.net/yongho/2011-h3
http://www.slideshare.net/yongho/2011-h3

Apache Spark
CompSci 516

Junghoon Kang

About Spark
● Spark is a distributed large-scale data processing engine that

exploits in-memory computation and other optimizations.

● One of the most popular data processing engine in the industry
these days; many large companies like Netflix, Yahoo, and
eBay use Spark at massive scale.

More about Spark
● It started as a research project at UC

Berkeley.

● Published the
Resilient Distributed Datasets (RDD)
paper in NSDI 2012.

● Best Paper award that year.

Motivation
Hadoop MapReduce indeed made analyzing large

datasets easy.

However, MapReduce was still not good for:

● iterative jobs, such as machine learning and graph

computation

● interactive and ad-hoc queries

Can we do better?
The reason why MapReduce is not good for iterative

jobs is because of the high I/O overhead as each

iteration needs to read/write data from/to HDFS.

So, what if we use RAM between each iteration?

Iter. 1

HDFS
read

HDFS
write

Iter. 2

HDFS
read

HDFS
write

HDFS
read

Input

Iter. 1 Iter. 2

Input

Instead of storing intermediate outputs into HDFS,
using RAM would be faster

HDFS read
Query 1

Input

Query 2

Query 3

Result 1

Result 2

Result 3
HDFS read

HDFS read

HDFS read

Query 1

Input

Query 2

Query 3

HDFS
read

Result 1

Result 2

Result 3

Instead of reading
input from HDFS
every time you run
query,
bring the input into
RAM first then run
multiple queries.

Challenge
But RAM is a volatile storage…

What happens if a machine faults?

Iter. 1 Iter. 2

Input

Although the probability of a machine failure is low,
the probability of a machine failing among thousands of
machines is common.

In other words, how can we create an efficient,
fault-tolerant, and distributed RAM storage?

Some Approaches
Some data processing frameworks, such as RAMCloud

or Piccolo, also used RAM to improve the performance.

And they supported fine-grained update of data in RAM.

But it is hard to achieve fault tolerance with fine-grained

update while having a good performance.

Spark’s Approach
What if we use RAM as read-only?

This idea is RDD, Resilient Distributed Datasets!

Which is the title of the Spark paper and the core idea

behind Spark!

Resilient Distributed Datasets
What are the properties of RDD?

● read-only, partitioned collections of records

● you can only create RDD from input files in a storage or RDD

partition
of records

ben
dzimitry
hutomo
ivan
kevin
pierre
quan
randolf
...RDD

RDD RDD RDDOR

RDD (cont.)
What’s good about RDD again?

● RDD is read-only (immutable).
Thus, it hasn’t been changed since it got created.

● That means
if we just record how the RDD got created
from its parent RDD (lineage),
it becomes fault-tolerant!

RDD (cont.)
But how do you code in Spark using RDD?

● Coding in Spark is
creating a lineage of RDDs
in a directed acyclic graph (DAG) form.

Data
Source

Data
Source

Data
Source

Data
Source

Map

Map

Union

Reduce

Match

Group Data
Sink

RDD Operators
Transformations & Actions

Lazy Execution

● Transformation functions simply creates a lineage of RDDs.
● An action function that gets called in the end triggers the

computation of the whole lineage of transformation functions
and outputs the final value.

RDD

Transformation

Action Value

Two Types of Dependencies

Narrow Dependency
● The task can be done in

one node.

● No need to send data
over network to
complete the task.

● Fast.

Wide Dependency
● The task needs shuffle.

● Need to pull data from
other nodes via network.

● Slow.

● Use wide dependencies
wisely.

Job Scheduling
● One job contains one action

function and possibly many
transformation functions.

● A job is represented by the DAG
of RDDs.

● Compute the job following the
DAG.

● New stage gets created if a RDD
requires shuffle from an input
RDD.

Task Distribution
● Similar to MR

● One master, multiple
workers

● One RDD is divided
into multiple partitions

How fast is Spark?
● Skip the first iteration,

since it’s just text
parsing.

● In later iterations,
Spark is much faster
(black bar).

● HadoopBM writes
intermediate data in
memory not HDFS.

What if the number of nodes
increases?

Apache Spark Ecosystem

References
● Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing - Matei Zaharia, et al. -
2012

● https://databricks.com/spark/about
● http://www.slideshare.net/yongho/rdd-paper-review
● https://www.youtube.com/watch?v=dmL0N3qfSc8
● http://www.tothenew.com/blog/spark-1o3-spark-internals/
● https://trongkhoanguyenblog.wordpress.com/2014/11/27/un

derstand-rdd-operations-transformations-and-actions/

https://databricks.com/spark/about
https://databricks.com/spark/about
http://www.slideshare.net/yongho/rdd-paper-review
http://www.slideshare.net/yongho/rdd-paper-review
https://www.youtube.com/watch?v=dmL0N3qfSc8
https://www.youtube.com/watch?v=dmL0N3qfSc8
http://www.tothenew.com/blog/spark-1o3-spark-internals/
http://www.tothenew.com/blog/spark-1o3-spark-internals/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/

