
COMPSCI 527 — Homework 3
Due on September 29, 2016

Please refer to homework 1 and the class mechanics web page for homework policies and formatting/submission instructions. The
submission checklist for this assignment is as follows:

hw3.pdf, imagePCA.m, encode.m, decode.m

Keep in mind that your code must also show up in hw3.pdf .

Image Gradients
Suppose that you are given a column vector g with k > 1 samples of a 1-dimensional Gaussian function, properly normalized, and a
column vector d with k samples of the derivative of a 1-dimensional Gaussian function, properly normalized. For instance,

g =


0.0003
0.1065
0.7866
0.1065
0.0003

 and d =


0.0025
0.4951
0.0000
−0.4951
−0.0025

 .

Then, the derivative Ih of an image I in the horizontal direction can be computed as follows:

Ih = I ∗ g ∗ dT (1)

where the asterisk denotes convolution. Assume that I is much larger than the convolution kernels, and ignore image boundary effects
in your answers (so it does not matter if your convolution is 'full', 'same', or 'valid').

1. Why are parentheses not needed in the expression for Ih above?

2. Which of the following two mathematically equivalent computations is computationally more efficient, and why?

Ih = I ∗ (g ∗ dT )

Ih = (I ∗ g) ∗ dT

In your answer, assume that the image I is n×n with n much greater than k, and give the approximate cost in arithmetic operations per
pixel of I for the two versions.

3. The Laplacian of an image I(x, y) is defined as the image

L =
∂2I

∂x2
+
∂2I

∂y2
.

Write an equation in the same style as equation (1) that use convolutions with vectors g and d and their transposes gT and dT to compute
the Laplacian L of the image I .

4. Add parentheses to your expression to reflect an efficient ordering of the computation.

5. Let I be a three-dimensional, n × n × n array of pixels, perhaps obtained by stacking one after another the n consecutive frames
of a gray-level video sequence of frames that are sized n by n pixels each. With three or more dimensions, the notation with transposes
used earlier is no longer sufficient, since there is no notation that transposes a vector “into the third dimension.”. Instead, given vectors
g and d as defined above, let g1 be a k × 1× 1 version of g, that is, let the k samples of g be arranged into a three-dimensional array of
dimensions k, 1, and 1, in this order. Similarly, let g2 be a 1× k × 1 version of g, and let g3 be a 1× 1× k version of g. Define d1, d2,
and d3 similarly.

Write equations that use convolutions with vectors gi and di (for i = 1, 2, 3) to compute the magnitude ‖∇I‖ of the gradient of I
using the smallest possible number of arithmetic operations, at the cost of extra variables. Write several simple equations rather than
one complicated one. You will need a last equation without convolutions that computes the magnitude. You need not parenthesize your
expressions.
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SVD
It was stated in class that the unit vectors vi that map into the axes of the ellipsoid b = Ax with ‖x‖ = 1 are orthogonal to each other.
The general proof of existence of the SVD given in an Appendix in the notes implies this result. In the problem below, you are asked to
prove the same fact more directly for small matrices.

6. Prove by direct calculus that the columns v1 and v2 of the matrix V in the SVD A = UΣV T of any 3× 2 matrix A are orthogonal.
Hints: Let x(θ) = [cos θ, sin θ]T . Where does the function f(θ) = ‖Ax(θ)‖ achieve its maximum and minimum values? It is OK
to look up trigonometric identities as you study this function. Here are a few that may or may not be useful, depending on how you
approach the problem:

cos 2α = cos2 α− sin2 α

sin 2α = 2 sinα cosα

u cosα+ v sinα =
√
u2 + v2 cos(α− φ)

In the last expression,

φ = arctan2(v, u) =


arctan( vu ) if u > 0
π + arctan( vu ) if u < 0
π
2 if u = 0 and v > 0
−π2 if u = 0 and v < 0
0 if u = 0 and v = 0

denotes the two-argument arc-tangent.

PCA
The MNIST handwritten digit database was developed by NYU’s Yann LeCun in the late Nineties to provide a benchmark for software
that recognizes isolated handwritten digits. The site http://yann.lecun.com/exdb/mnist/ describes the database, which is
contained in the four files in the data directory in the homework zip file.

If you make the code directory in the zip file your MATLAB working directory and type

data = readMNISTDatabase('../data');

then the resulting structure data will contain a set of 60,000 digit images, each annotated with a label that specifies what digit that
image depicts. These images are said to be manually annotated with these labels. More specifically, the data structure has a field
data.image with 60,000 gray-level images of size 28× 28 pixels of type uint8 arranged in a single array of size 28× 28× 60,000.
Each image shows a single handwritten digit between 0 and 9, properly sized and centered. There is also a field data.label with the
corresponding 60,000 labels (each label is a uint8 number between 0 and 9).

Your code may assume that all images are gray-level.

7. Write a MATLAB function with header

function [code, sigma2] = imagePCA(images, d, sampling)

that takes an r× c×n array images of uint8 images like data.image, an integer dimension d that is no greater than m = rc, and
an optional, positive, integer sampling factor sampling. The function returns a data structure code with the result of performing the
Principal Component Analysis (PCA) on the array images. The output vector sigma2 collects the squares of the m (not d) singular
values of the PCA.

More specifically, if you reshape all the images into anm×n arrayA of type double, the structure code has a field code.centroid
with the centroid of all the images, and a field code.decoder with the m × d PCA matrix for the given images. The centroid is an
m-dimensional column vector equal to the average of all the columns ofA. The PCA matrix is the appropriate submatrix of the matrix U
of left singular vectors of A. Processing all the images in images may be too expensive, so the argument sampling allows working
with just images(:, :, 1:sampling:end) instead. For instance, if sampling is 60 (the default value) and an array of 60,000
images is provided, only 1,000 images are used to compute the PCA.

Each column of code.decoder has as many entries as each input image has pixels, and can therefore be reshaped into an image
(with signed values). It is instructive to look at some of these images.

Hand in your code (both in the PDF file and as a separate MATLAB file) for imagePCA, as well as a single figure that shows all
the 32 singular-vector images corresponding to the columns of code.decoder obtained by running the function on data.image
with d = 32 and with the default value of sampling. Use the MATLAB imagesc and axis commands to display the images with
the proper aspect ratio. Arrange the 32 images into a 6 × 6 array (with the last four entries empty) on the page, and label each with a
well-visible integer between 1 and 32, so you know which image is which.
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[Hint: You may either write the PCA code from scratch or use the MATLAB function pca. The former solution is easier, since
pca uses shape conventions and terminology that are different from what we used in class. If you use pca, it is your responsibility to
understand its input and output arguments precisely.]

8. Once the PCA code data structure for a data set is known, one can encode further images from the data set with the same procedure:
Turn the new image into a vector x, subtract code.centroid from it, and compute the vector y of the coefficients that express x in
the orthonormal basis given by the columns of code.decoder.

Write a MATLAB function with header

function y = encode(img, code)

that takes an image img and a code as produced by imagePCA and returns the d×1 PCA vector y for img. Sizes of img and the
fields of code must be compatible, but your code need not check that this is the case. [Hint: remember to cast img to double.]

Hand in your code (both in the PDF file and as a separate MATLAB file). No figures yet.

9. A vector y produced by encode is a compact, approximate representation of the original image img. The image approximation
can be recreated from y by linearly combining the columns of code.decoder with the coefficients in y, adding code.centroid
to the result, and reshaping the result into an image of the appropriate size.

Write a MATLAB function with header

function img = decode(y, code, sz)

that takes a PCA vector y as produced by code, the structure code itself, and the size sz of the original image. The function returns
the corresponding uint8 image img. Same caveat for sizes as for encode.

Hand in your code (both in the PDF file and as a separate MATLAB file). No figures yet.

10. Use the instruction

[˜, which] = unique(data.label);

to obtain a vector which with one image index for each digit from 0 to 9. These images are used here as samples to show the effects of
PCA.

For d = 2, 4, 8, 16, 32, compute the reconstruction of the ten sample images from their PCA with d components. [Hint: You only
need to encode once. Just pass parts of the resulting code to decode. Remember to cast img to uint8 before returning it.]

Hand in a single figure with the ten original sample images, and then five more figures, each with the resulting reconstruction for
a different value of d. Arrange the 10 images in each figure into a 3 × 4 array (with the last two entries empty), and label each with a
well-visible integer between 0 and 9. Show clearly which figure is for which value of d. Also give a table that for each value of d shows
the fraction (a number between 0 and 1) of total variance captured by the PCA. State how you computed the entries in the table, but do
not show your code.
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