
Training Convolutional Neural Nets

Carlo Tomasi

The supervised training of a deep neural net amounts to setting the entries in the weight matrices W `,
which are collectively called the parameters of the net, to fit a training set of input-output pairs

T = {(x1,y1), . . . , (xN ,yN)}

where the outputs yn are scalars in a classification problem or possibly vectors in regression or when the
deep net is used to generate a feature vector. Fitting involves minimizing the training error

E(w) = err(w, T) =
1

N

N∑
n=1

En(w) where En(w) = L(yn, f(xn,w)) . (1)

In this expression, the loss functionL depends on the type of problem addressed, the (possibly vector-valued)
function f represents the computation performed by the net, and the vector w collects all the weight-matrix
entries. More specifically,

w =

 w(1)

...
w(L)


where

w(`) = [W
(`)
11 ,W

(`)
21 , . . . ,W

(`)

D(`),D(`−1)+1
]T

denotes the entries of the matrix W (`) arranged into a column vector and has length

J (`) = D(`)(D(`−1) + 1) .

The parameter vector w is fit to the training set by an iterative procedure that starts with some initial
values w0 for w, and then at step k

• computes the gradient of the error,
∂E

∂w

∣∣∣∣
w=wk−1

,

and possibly1 higher-order derivatives of it, and then

• takes a step that reduces the value of E by one of many numerical optimization methods.

The gradient computation is called error back-propagation and is described next.
1However, higher order derivatives are typically not computed in practice, because of the high cost involved.

1

1 Back-Propagation

The computation of the n-th error term En(w) can be rewritten as follows:

x(0) = xn

x(`) = h(`)(W (`)x̃(`−1)) for ` = 1, . . . , L

En = L(yn,x
(L))

where (xn,yn) is the n-th training sample and, if the first Lc layers of the net are convolutional layers with
max-pooling,

h(`)(a) =


π(h(a)) for ` = 1, . . . , Lc

h(a) for ` = Lc + 1, . . . , L− 1
hy(a) for ` = L

(the last layer sometimes has a different activation function hy, as discussed earlier).
Computation of the derivatives of the error term En(w) can be understood with reference to Figure 1.

The term En depends on the parameter vector w(`) for layer ` through the output x(`) from that layer and
nothing else, so that we can write

∂En

∂w(`)
=

∂En

∂x(`)

∂x(`)

∂w(`)
for ` = L, . . . , 1 (2)

and the first gradient on the right-hand side satisfies the backward recursion

∂En

∂x(`−1) =
∂En

∂x(`)

∂x(`)

∂x(`−1) for ` = L, . . . , 2 (3)

because En depends on the output x(`−1) from layer ` − 1 only through the output x(`) from layer `. The
recursion (3) starts with

∂En

∂x(L)
=
∂L
∂y

(4)

where y is the second argument to the loss function L.
All the derivatives of En in the equations above are row vectors, and the two matrices

∂x(`)

∂w(`)
=


∂x

(`)
1

∂w
(`)
1

· · · ∂x
(`)
1

∂w
(`)

J(`)

...
...

∂x
(`)

D(`)

∂w
(`)
1

· · ·
∂x

(`)

D(`)

∂w
(`)

J(`)

 and
∂x(`)

∂x(`−1) =


∂x

(`)
1

∂x
(`−1)
1

· · · ∂x
(`)
1

∂x
(`−1)

D(`−1)

...
...

∂x
(`)

D(`)

∂x
(`−1)
1

· · ·
∂x

(`)

D(`)

∂x
(`−1)

D(`−1)

 (5)

are the Jacobian matrices of the layer output x(`) with respect to the layer parameters and inputs. Compu-
tation of the entries of these Jacobians is a simple exercise in differentiation, and is left to the Appendix.

The equations (2-4) are the basis for the back-propagation algorithm for the computation of the gradient
of the training error E(w) with respect to the parameter vector w of the neural net (Algorithm 1). The
algorithm loops over the training samples. For each sample, it feeds the input xn to the net to compute the
layer outputs x(`) for that sample, and temporarily stores all their values, which are needed to compute the
required derivatives. This computation is called forward propagation (of the inputs). The algorithm then
revisits the layers in reverse order while computing the derivatives in equations (2) and (3), and concatenates

2

(1)h h(2) h(3)

w(1) w(2) w(3)

(1)x (2)x (3)x = y(0)xn x= En

ny

L

Figure 1: Example data flow for the computation of the error term En for a neural net with L = 3 layers.
When viewed from the error termEn, the output x(`) from layer ` (pick for instance ` = 2) is a bottleneck of
information for both the parameter vector w(`) for that layer and the output x(`−1) from the previous layer
(` − 1 = 1 in the example). This observation justifies the use of the chain rule for differentiation to obtain
equations (2) and (3).

the resulting L layer gradients into a single gradient ∂En
∂w . This computation is called back-propagation (of

the derivatives). The gradient of E(w) is the average (from equation (1)) of the gradients computed for each
of the samples:

∂E

∂w
=

1

N

N∑
n=1

∂En

∂w
=

1

N

N∑
n=1


∂En

∂w(1)

...
∂En

∂w(L)

 .

This average vector can be accumulated as back-propagation progresses. For succinctness, operations are
expressed as matrix-vector computations in Algorithm 1. In practice, the matrices would be very sparse, and
convolutions and explicit loops over appropriate indices are used instead.

Algorithm 1 Backpropagation

function ∇E ← backprop(T,w, D(0), . . . , D(L))
∇E = zeros(size(w))
for n = 1, . . . , N do

x(0) = xn

for ` = 1, . . . , L do . Forward propagation
W ← reshape(w(`), D(`), D(`−1) + 1) . Turn vector w(`) into a matrix
x(`) ← h(`)(W x̃(`−1)) . Compute layer outputs to be used in back-propagation

end for
∇En = [] . Initially empty contribution of the n-th sample to the error gradient
g = ∂L(yn,x(L))

∂y . g is ∂En

∂x(`)

for ` = L, . . . , 2 do . Back-propagation
∇En ← [g ∂x(`)

∂w(`) ;∇En] . Derivatives are evaluated at w(`) and x(`)

g← g ∂x(`)

∂x(`−1) . Ditto
end for
∇E ← (n−1)∇E+∇En

n . Accumulate the average
end for

end function

3

µt = min

(
µmax, 1−

1

2

1⌊
t

250

⌋
+ 1

)

t

0 500 1000 1500 2000 2500 3000

µ
t

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 2: A possible schedule [7] for the momentum coefficient µt.

2 Gradient Descent

In principle, a neural net can be trained by minimizing the training error E(w) defined in equation (1) by
any of a vast variety of numerical optimization methods [4, 2]. At one end of the spectrum, methods that
make no use of gradient information take too many steps to converge. At the other end, methods that use
second-order derivatives (Hessian) to determine high-quality steps tend to be too expensive in terms of both
space and time at each iteration, although some researchers advocate these types of methods [3]. By far the
most widely used methods employ gradient information, computed by back-propagation [1].

The momentum method [5, 7] starts from an initial value w0 chosen at random and iterates as follows:

vt+1 = µtvt − α∇E(wt)

wt+1 = wt + vt+1 .

The vector vt+1 is the step or velocity that is added to the old value wt to compute the new value wt+1.
The scalar α > 0 is the learning rate that determines how fast to move in the direction opposite to the error
gradient∇E(w), and the time-dependent scalar µt ∈ [0, 1] is the momentum coefficient. Gradient descent is
obtained when µt = 0. Greater values of µt encourage steps in a consistent direction (since the new velocity
vt+1 has a greater component in the direction of the old velocity vt than if no momentum were present), and
these steps accelerate descent when the gradient of E(w) is small, as is the case around shallow minima.
The value of µt is often varied according to some schedule like the one in Figure 2. The rationale for the
increasing values over time is that momentum is more useful in later stages, in which the gradient magnitude
is very small as wt approaches the minimum.

The learning rate α is often fixed, and is a parameter of critical importance [8]. A rate that is too large
leads to large steps that often overshoot, and a rate that is too small leads to very slow progress. In practice,
α is chosen by cross-validation to be some value much smaller than 1.

Mini-Batches. The gradient of the error E(w) is expensive to compute, and one tends to use as large a
learning rate as possible so as to minimize the number of steps taken. One way to prevent the resulting
overshooting would be to do online learning, in which each step µtvt − α∇En(wt) (there is one such
step for each training sample) is taken right away, rather than accumulated into the step µtvt − α∇E(wt)
(no subscript n here). In contrast, using the latter step is called batch learning. Computing ∇En is much
less expensive (by a factor of N) than computing ∇E. In addition—and most importantly for convergence

4

behavior—online learning breaks a single batch step into N small steps, after each of which the error func-
tion is re-evaluated. As a result, the online steps can follow very “curved” paths, whereas a single batch
step can only move in a straight line. Because of this greater flexibility, online learning converges faster
than batch learning for the same overall computational effort. The small online steps, however, have high
variance, because each of them is taken based on minimal amounts of data. One can improve convergence
further by processing mini-batches of training data: Accumulate B gradients ∇En from the data in one
mini-batch into a single gradient ∇E, take the step, and move on to the next mini-batch. It turns out that
small values ofB achieve the best compromise between reducing variance and keeping steps flexible. Values
of B around a few dozen are common.

Termination. When used outside learning, gradient descent is typically stopped when steps make little
progress, as measured by step size ‖wt − wt−1‖ and/or decrease in function value |E(wt) − E(wt−1)|.
When training a deep net, on the other hand, descent is often stopped earlier to improve generalization.
Specifically, one monitors the error on a validation set, rather than on the training set, and stops when the
validation-set error bottoms out, even if the training-set error would continue to decrease. A different way
to improve generalization, sometimes used in combination with early termination, is discussed in Section 3.

3 Dropout

Since deep nets have a large number of parameters, they would need impractically large training sets to
avoid overfitting if no special measures are taken during training. Early termination, described at the end of
the previous section, is one such measure. In general, the best way to avoid overfitting in the presence of
limited data would be to build one net for every possible setting of the parameters, compute the posterior
probability of each setting given the training set, and then aggregate the nets into a single predictor that
computes the average output weighted by the posterior probabilities. This approach is obviously infeasible
to implement for nontrivial nets.

One way to approximate this scheme in a computationally efficient way is called the dropout method [6].
Given a deep net to be trained, a dropout net is obtained by flipping a biased coin for each node of the original
net and “dropping” that node if the flip turns out heads. Dropping the node means that all the weights and
biases for that node are set to zero, so that the node becomes effectively inactive.

One then trains the net by using mini-batches of training data, and performs one iteration of training
on each mini-batch after turning off neurons independently with probability 1 − p. When training is done,
all the weights in the network are multiplied by p, and this effectively averages the outputs of the nets with
weights that depend on how often a unit participated in training. The value of p is typically set to 1/2.

Each dropout net can be viewed as a different net, and the dropout method effectively samples a large
number of nets efficiently.

5

Appendix: The Jacobians for Back-Propagation

If h(`) is a point function, that is, if it is R→ R, the individual entries of the Jacobian matrices (5) are easily
found to be (reverting to matrix subscripts for the weights)

∂x
(`)
i

∂W
(`)
qj

= δiq
dh(`)

da
(`)
i

x̃
(`−1)
j and

∂x
(`)
i

∂x
(`−1)
j

=
dh(`)

da
(`)
i

W
(`)
ij .

The Kronecker delta

δiq =

{
1 if i = q
0 otherwise

in the first of the two expressions above reflects the fact that x(`)i depends only on the i-th activation, which
is in turn the inner product of row i of W (`) with x̃(`−1). Because of this, the derivative of x(`)i with respect
to entry W (`)

qj is zero if this entry is not in that row, that is, when i 6= q. The expression

dh(`)

da
(`)
i

is shorthand for
dh(`)

da

∣∣∣∣∣
a=a

(`)
i

,

the derivative of the activation function h(`) with respect to its only argument a, evaluated for a = a
(`)
i .

For the ReLU activation function h` = h,

dh(`)

da
=

{
1 for a ≥ 0
0 otherwise

.

For the ReLU activation function followed by max-pooling, h`(·) = π(h(·)), on the other hand, the
value of the output at index i is computed from a window P (i) of activations, and only one of the activations
(the one with the highest value) in the window is relevant to the output2. Let then

p
(`)
i = max

q∈P (i)
(h(a(`)q))

be the value resulting from max-pooling over the window P (i) associated with output i of layer `. Further-
more, let

q̂ = arg max
q∈P (i)

(h(a(`)q))

be the index of the activation where that maximum is achieved, where for brevity we leave the dependence
of q̂ on activation index i and layer ` implicit. Then,

∂x
(`)
i

∂W
(`)
qj

= δqq̂
dh(`)

da
(`)
q̂

x̃
(`−1)
j and

∂x
(`)
i

∂x
(`−1)
j

=
dh(`)

da
(`)
q̂

W
(`)
q̂j .

2In case of a tie, we attribute the highest values in P (i) to one of the highest inputs, say, chosen at random.

6

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[2] S. Boyd and L. Vandeberghe. Convex Optimization. Cambdrige University Press, 2004.

[3] J. Martens. Learning recurrent neural networks with Hessian-free optimization. In Proceedings of the
28th International Conference on Machine Learning, pages 735–742, 2011.

[4] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, 1999.

[5] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[7] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
in deep learning. In Proceedings of the 30th International Conference on Machine Learning, pages
1139–1147, 2013.

[8] D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient descent learning.
Neural Networks, 16:1429–1451, 2003.

7

	Back-Propagation
	Gradient Descent
	Dropout

