Linear Systems

Carlo Tomasi

Section [I| characterizes the existence and multiplicity of the solutions of a linear system in terms of the
four fundamental spaces associated with the system’s matrix and of the relationship of the left-hand side
vector of the system to that subspace. Sections [2] and [3] then show how to use the SVD to solve a linear
system in the sense of least squares. When not given in the main text, proofs are in Appendix

1 The Solutions of a Linear System

Let
Ax=Db
be an m X n system (m can be less than, equal to, or greater than n). Also, let
r = rank(A)

be the number of linearly independent rows or columns of A. Then,

b & range(A) = no solutions
b € range(4A) = 00" " solutions

with the convention that oo = 1. Here, oo is the cardinality of a k-dimensional vector space on the reals.

In the first case above, there can be no linear combination of the columns (no x vector) that gives b, and
the system is said to be incompatible. In the second, compatible case, three possibilities occur, depending
on the relative sizes of r, m, n:

* When r = n = m, the system is invertible. This means that there is exactly one x that satisfies the
system, since the columns of A span all of R™. Notice that invertibility depends only on A, not on b.

* When r = n and m > n, the system is redundant. There are more equations than unknowns, but
since b is in the range of A there is a linear combination of the columns (a vector x) that produces b.
In other words, the equations are compatible, and exactly one solution exists

* When r < n the system is underdetermined. This means that the null space is nontrivial (i.e., it has
dimension A > 0), and there is a space of dimension h = n — r of vectors x such that Ax = 0. Since
b is assumed to be in the range of A, there are solutions x to Ax = b, but then for any y € null(A)
also x + y is a solution:

Ax=b, Ay =0 = A(x+y)=Db

h' = o™= solutions mentioned above.

and this generates the oo

"Notice that the technical meaning of “redundant” has a stronger meaning than “with more equations than unknowns.” The
case r < n < m is possible, has more equations (m) than unknowns (n), admits a solution if b € range(A), but is called
“underdetermined” because there are fewer () independent equations than there are unknowns (see next item). Thus, “redundant”
means “with exactly one solution and with more equations than unknowns.”



b in range(A)

yes no
r=n incompatible
yes no
m=n underdetermined
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invertible redundant

Figure 1: Types of linear systems.

Notice that if » = n then n cannot possibly exceed m (or else the columns of A would form an n-dimensional
subspace of an m-dimensional space with m < n, an impossibility), so the first two cases exhaust the
possibilities for » = n. Also, r cannot exceed either m or n. All the cases are summarized in figure
Thus, a linear system has either zero (incompatible), one (invertible or redundant), or more (underde-
termined) solutions. In all cases, we can say that the set of solutions forms an affine space, that is, a linear
space plus a vector:
A=x+L.

Recall that the sum here means that the single vector x is added to every vector of the linear space L to
produce the affine space .A. For instance, if £ is a plane through the origin (recall that all linear spaces must
contain the origin), then A is a plane (not necessarily through the origin) that is parallel to L.

In the underdetermined case, the nature of .4 is obvious. The notation above also applies to the incom-
patible case: in this case, £ is the empty linear space, so X + £ is empty as well, and X is undetermined.

Please do not confuse the empty linear space (a space with no elements) with the linear space that
contains only the zero vector (a space with one element). The latter yields either the invertible or the
redundant case.

Of course, listing all possibilities does not provide an operational method for determining the type of
linear system for a given pair A, b. The next two sections show how to do so, and how to solve the system.
They also give meaning to the expression “solving the system” when no exact solution exists, which occurs
most of the time in practice. Section [3] in particular, defines a concept of “solution” that is typically useful
and interesting in the case b = 0, when the exact solution would be trivial and uninteresting.

2 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least squares
sense. A linear system of the form
Ax=Db (1)

arising from a real-life application may or may not admit a solution, that is, a vector x that satisfies this
equation exactly. Often more measurements are available than strictly necessary, because measurements
are unreliable. This leads to more equations than unknowns (the number m of rows in A is greater than
the number n of columns), and equations are often mutually incompatible because they come from inexact



measurements. Even when m < n the equations can be incompatible, because of errors in the measurements
that produce the entries of A. In these cases, it makes more sense to find a vector x that minimizes the norm

[Ax — D]

of the residual vector
r=Ax—-b

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy any of the m
equations in the system, but it tries to satisfy all of them as closely as possible, as measured by the sum of
the squares of the discrepancies between left- and right-hand sides of the equations.

In other circumstances, not enough measurements are available. Then, the linear system is under-
determined, in the sense that it has fewer independent equations than unknowns (its rank 7 is less than
n).

Incompatibility and under-determinacy can occur together: the system admits no solution, and the least-
squares solution is not unique. For instance, the system

T+ X2
T+ T2 =

r3 =

has three unknowns, but rank 2, and its first two equations are incompatible: x; + x5 cannot be equal to both
1 and 3. A least-squares solution turns out to be x = [1 1 2]7 with residual

110 1 1 2 1 1
r=Ax—-b=|[1 1 0 1)1 -3 |=12|-|3|=]-1],
0 01 2 2 2 2 0

which has norm /2 (admittedly, this is a rather high residual, but this is the best we can do for this problem,
in the least-squares sense). However, any other vector of the form

1 -1
=11+« 1
2 0

is as good as x. For instance, x’ = [0 2 2|, obtained for a = 1, yields exactly the same residual as x (check
this).

In summary, an exact solution to the system (1)) may not exist, or may not be unique. An approximate
solution, in the least-squares sense, always exists, but may fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out to be
shorter than all the others, that is, its norm ||x|| is smallest. One can therefore redefine what it means to
“solve” a linear system so that there is always exactly one solution. This minimum-norm solution is the
subject of the following theorem, which both proves uniqueness and provides a recipe for the computation
of the solution. The theorem is proven in an Appendix.



Theorem 2.1. The minimum-norm least-squares solution to a linear system Ax = b, that is, the shortest
vector X that achieves the
min ||Ax — b||,
xX

is unique, and is given by

x=VZiUuTp )
where ~ -
1/0y 0O --- 0
ni— 1/o,
0
i 0 0 0 |
The matrix
At =vxstuT

is called the pseudoinverse of A.

3 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 2.1 works regardless of the value of the right-hand side vector b. When b = 0, that is, when the
system is homogeneous, the solution is trivial: the minimum-norm solution to

Ax=0 3)

is

x=0,
which happens to be an exact solution. Of course it is not necessarily the only one (any vector in the null
space of A is also a solution, by definition), but it is obviously the one with the smallest norm.

Thus, x = 0 is the minimum-norm solution to any homogeneous linear system. Although correct, this
solution is not too interesting. In many applications, what is desired is a nonzero vector x that satisfies the
system (3) as well as possible. Without any constraints on x, we would fall back to x = 0 again. For
homogeneous linear systems, the meaning of a least-squares solution is therefore usually modified, once
more, by imposing the constraint

|| =1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily admit
a unique solution. The following theorem provides a recipe for finding this solution, and shows that there is
in general a whole hypersphere of solutions.



Theorem 3.1. Let
A=UxvT

be the singular value decomposition of A. Furthermore, let v,, k1, ..., Vy be the k columns of V whose
corresponding singular values are equal to the last singular value oy, that is, let k be the largest integer
such that

On—k4+1=...=0np .

Then, all vectors of the form
X=01Vp—kt1 t ... F vy

with
af+...+ap=1

are unit-norm least-squares solutions to the homogeneous linear system
Ax =0,

that is, they achieve the

min || Ax| .
[Ix[l=1

Note: when o, is greater than zero the most common case is £ = 1, since it is very unlikely that different
singular values have exactly the same numerical value. When A is rank deficient, on the other case, it may
often have more than one singular value equal to zero. In any event, if £ = 1, then the minimum-norm
solution is unique, x = v,,. If £ > 1, then x = v,, is still a unit-norm least-squares solution. In addition, in
this case the theorem above shows how to express all solutions as a linear combination of the last k£ columns
of V.



A Proofs

Theorem 2.1

The minimum-norm least-squares solution to a linear system Ax = b, that is, the shortest vector x that
achieves the
min ||Ax — b|| ,
xX

is unique, and is given by

x=VxiuTh 4)

where _
1/01 0o --- 0

Proof. The minimum-norm least-squares solution to

Ax=Db
is the shortest vector x that minimizes
[Ax —b||
that is,
|USVTx — b .
This can be written as
IU(EVTx—U"b)] (5)

because U is an orthogonal matrix, UU” = I. But orthogonal matrices do not change the norm of vectors
they are applied to, so that the last expression above equals

|12VTx — UTh|
or, withy = VIixandc=UTh,
Xy —c]| .

In order to find the solution to this minimization problem, let us spell out the last expression. We want to
minimize the norm of the following vector:

o 0 Ol »n ] [ & ]
0 - 0
Or Yr - Cr
0 : Yr+1 Cr+1
i 0 0 L Yn | . Cm |




The last m — r differences are of the form

and do not depend on the unknown y. In other words, there is nothing we can do about those differences:
if some or all the ¢; for i = r» + 1, ..., m are nonzero, we will not be able to zero these differences, and
each of them contributes a residual |c;| to the solution. Each of the first r differences, on the other hand,
can be zeroed exactly by letting y; = ¢;/o; for the i-th difference. In addition, in these first r differences,
the last n — r components of y are multiplied by zeros, so they have no effect on the solution. Thus, there
is freedom in their choice. Since we look for the minimum-norm solution, that is, for the shortest vector x,
we also want the shortest y, because x and y are related by an orthogonal transformation. We therefore set

Yr41 = ... = Yn = 0. In summary, the desired y has the following components:
Yi = G fore=1,...,r
o
y, = 0 fori=r+1,...,n.

When written as a function of the vector c, this is
y=%Tc.

Notice that there is no other choice for y, which is therefore unique: minimum residual forces the choice
of y1,...,yr, and minimum-norm solution forces the other entries of y. Thus, the minimum-norm, least-
squares solution to the original system is the unique vector

x=Vy=VSte=VEtU">

as promised. The residual, that is, the norm of || Ax —b|| when x is the solution vector, is the norm of Xy —c,
since this vector is related to Ax — b by an orthogonal transformation (see equation (5)). In conclusion, the
square of the residual is

IAx = b[? =[Sy —c|*= Y = (ufb)?

1=r+1 1=r+1

which is the projection of the right-hand side vector b onto the complement of the range of A.

Theorem 3.1]
Let
A=UxvT
be the singular value decomposition of A. Furthermore, let V,,_j11,...,Vy be the k columns of V whose

corresponding singular values are equal to the last singular value o, that is, let k be the largest integer
such that

Opn—ktl = ... =0n .

Then, all vectors of the form
X=Q1Vpy_—kt1 + ...+ apvy



with
A4 tai=1
are unit-norm least-squares solutions to the homogeneous linear system
Ax =0,
that is, they achieve the
min [|Ax]|| .

[Ix[|=1

Proof. The reasoning is similar to that for the previous theorem. The unit-norm least-squares solution to

Ax =0
is the vector x with ||x|| = 1 that minimizes
[ Ax]|
that is,
IUSVTx| .

Since orthogonal matrices do not change the norm of vectors they are applied to, this norm is the same as
1=V x|

or, withy = V7x,
12yl -

Since V' is orthogonal, ||x|| = 1 translates to ||y|| = 1. We thus look for the unit-norm vector y that
minimizes the norm (squared) of Xy, that is,

a%y%+...+02yi.

This is obviously achieved by concentrating all the (unit) mass of y where the os are smallest, that is by
letting
Y1=-..=Ynk =0 (6)

Fromy = VTx we obtain x = Vy =vy1v1 + ...+ yn vy, so that equation @ is equivalent to
X=Q1Vpy—kt1 + ...+ avy

with &1 = Ypn—_k+1,- ., ®k = Yn, and the unit-norm constraint on y yields

ol +...+ap=1.
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