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This note describes a method for computing estimates of the rigid transformation aTb = (aRb,
atb) be-

tween two cameras a and b and estimates of the coordinates aP1, . . . ,
aPn of a set of n points in the reference

system of one of the two cameras from the n pairs (apa,1,
bpb,1), . . . (

apa,n,
bpb,n) of noisy measurements

of their corresponding images. The transformation aTb is called camera motion, and the point coordinates
aP1, . . . ,

aPn are collectively called the scene structure. The image points apa,i and bpb,i are regarded as
3D points with their third coordinate equal to 1, the standard focal distance. The classic method described
below is called the eight-point algorithm and is was invented by Hugh Christopher Longuet-Higgins in
1981 [3]. Its main goal is to find aTb. Triangulation, that is, the calculation of structure from the image
points and aTb, is outlined in Appendix B.

To simplify notation in the manipulations that follow, we again let

a = apa , b = bpb , A = aP , B = bP , R = aRb , t = atb ,

adding a subscript to a, b, or A when necessary to distinguish different points.
Since cameras fundamentally measure angles, both structure and motion can be estimated only up to a

common nonzero multiplicative scale factor. The resulting degree of freedom is eliminated by assuming that

‖t‖ = 1 . (1)

An initial version of the method described below appeared in 1981 [3] and is often called the eight-point
algorithm, because it requires a minimum of n = 8 pairs of corresponding image points.

The epipolar constraint described in a previous note can be rewritten in the following form:

cTη = 0 where c = a⊗ b =

 a1 b
a2 b
a3 b

 (2)

is the Kronecker product1 of a =
[
a1 a2 a3

]T and b, and

η = E(:) =
[
e11 e21 e31 e12 e22 e32 e13 e23 e33

]T
is the stack of entries in E read by columns. Equation (2) can be replicated n times, one per image point
pair, to yield a linear system

Cη = 0 where C =
[
c1 · · · cn

]T
1More generally, the Kronecker product of two matrices F and G where F is m× n is defined as follows:

F ⊗G =

 f11G . . . f1nG
...

...
fm1G . . . fmnG

 .
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is an n × 9 matrix. The homogeneous nature of this system reflects the fact that translation t and therefore
the essential matrix E are defined up to a nonzero multiplicative scale factor. As we know from a previous
note, to prevent the trivial solution η = 0 and at the same time solve the system above in the least-squares
sense to account for measurement inaccuracies, one computes

η = arg min
‖η‖=1

‖Cη‖ = v9 where C = UCΣCV
T
C

is the Singular Value Decomposition (SVD) of C and v9 is the last column of VC . The resulting vector η is
then reshaped into an estimate E of the essential matrix.2

As we know, the null space of E is the one-dimensional space spanned by t, which also spans the null
space of the skew matrix [t]×. So an estimate of t is

t1,2 = ±v3

where v3 is the last column of V in the SVD E = UΣV T of E. The ambiguity in the sign of t will be
resolved later.

Given t, one can construct the skew matrix [t]×, and then estimateR by solving the following Procrustes
problem [1]:

E ≈ R [t]× . (3)

where the approximation is in the Frobenius norm. That is,

R = arg min
R
‖E −R [t]×‖F =

√∑
i,j

d2ij where D = [dij ] = E −R [t]× .

Appendix A shows3 that if E and [t]× were full rank, the solution to problem (3) would be

R = Qdet(Q) where Q = UFV
T
F and F = UFΣFV

T
F

is the SVD of the 3× 3 matrix
F = E [t]T× ,

and where the multiplication by det(Q) ensures that the resulting orthogonal matrix is a rotation. This
multiplication is allowed, because if E is an essential matrix then so is −E.

However, the two matrices E and [t]× have rank 2. Since their third singular value is therefore zero, the
third singular vectors (both left and right) of these two matrices are defined up to a sign. Recall that the third
right singular vector is the direction of the translation t from camera a to camera b in the reference frame
of a. Similarly, the third left singular vector is the direction of the translation s = −RT t from camera b to
camera a in the reference frame of b. Because of this sign ambiguity in the solution, the Procrustes problem
has two solutions:

R1,2 = Q1,2 det(Q1,2) where Q1,2 = α1β
T
1 + α2β

T
2 ±α3β

T
3

where
UF =

[
α1 α2 α3

]
, VF =

[
β1 β2 β3

]
.

2As we found out in a previous note, the two nonzero singular values of the essential matrix are equal to each other, and the
matrix Ẽ that satisfies this constraint and is closest to E in the Frobenius norm is Ẽ = Udiag([1, 1, 0])V T where E = UΣV T is
the SVD of E. However, the singular values of Ẽ are not needed in the computation that follows, so this correction is unnecessary.

3Let A = E and B = [t]× in that proof, so that p = n = 3.
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Combining the twofold ambiguity in t with that in R yields four solutions, each corresponding to a different
essential matrix:

(t, R1) , (−t, R2) , (t, R2) , (−t, R1) .

Appendix C shows that only one of these solutions places all reconstructed world points in front of
both cameras. The correct solution can then be identified by computing structure for all four cases by
triangulation, and choosing the one solution that enforces structure to be in front of both cameras. Allowing
for reconstruction errors, a safer approach is to chose the solution with a majority of points in front of the
camera. Appendices B and C show the details of this calculation and Figures 1 and 2 list the complete
MATLAB code for 3D reconstruction with two cameras.
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function [T, X, Y] = longuetHiggins(x, y)

% Number of point correspondences
n = size(x, 2);

if size(y, 2) ˜= n
error('The number of points in the two images must be the same');

end

% Transform images from 2D to 3D in the standard reference frame
o = ones(1, n);
x = [x; o];
y = [y; o];

% Set up matrix A such that A*E(:) = 0, where E is the essential matrix.
% This system encodes the epipolar constraint y' * E * x = 0 for each of
% the points x and y
A = zeros(n, 9);
for i = 1:n

A(i,:) = kron(x(:,i),y(:,i))';
end

if rank(A) < 8
error('Measurement matrix rank deficient')

end;

% The singular vector corresponding to the smallest singular value of A
% is the arg min_{norm(e) = 1} A * e, and is the LSE estimate of E(:)
[˜, ˜, V] = svd(A);
E = reshape(V(:,9), 3, 3);

% The two possible translation vectors are t and -t, where t is a unit
% vector in the null space of E. The vector t (or -t) is also the
% second epipole of the camera pair
[˜, ˜, VE] = svd(E);
t = VE(:, 3);

% Two rotation matrix choices are found by solving the Procrustes problem
% for the rows of E and skew(t), and allowing for the ambiguity resulting
% from the sign of the null-space vectors (both E and skew(t) are rank 2).
% These two choices are independent of the sign of t, because both E and -E
% are essential matrices
tx = skew(t);
[UF, ˜, VF] = svd(E * tx);
R1 = UF * VF';
R1 = R1 * det(R1);
UF(:, 3) = -UF(:, 3);
R2 = UF * VF';
R2 = R2 * det(R2);

% Combine the two sign options for t with the two choices for R
t = [t, t, -t, -t];
R = cat(3, R1, R2, R1, R2);

% Pick the combination of t and R that yields the greatest number of
% positive depth (Z) values in the structure results for the frames of
% reference of both cameras. Ideally, all depth values should be positive
npd = zeros(3, 1);
X = zeros(3, n, 4);
Y = zeros(3, n, 4);
for k = 1:4

T.R = R(:, :, k);
T.t = t(:, k);
[X(:, :, k), Y(:, :, k)] = triangulate(x, y, T);
npd(k) = sum(X(3, :, k) > 0 & Y(3, :, k) > 0);

end
[˜, best] = max(npd);
T.R = R(:, :, best);
T.t = t(:, best);
X = X(:, :, best);
Y = Y(:, :, best);

Figure 1: Main function of the MATLAB code for 3D reconstruction with two cameras.
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function [A, B] = triangulate(a, b, T)

n = size(a, 2);

A = zeros(3, n);
iT = T.R(1, :);
jT = T.R(2, :);
kT = T.R(3, :);
kTt = kT * T.t;
iTjT = [iT; jT];
iTjTt = iTjT * T.t;

C = [eye(2), zeros(2, 1); zeros(2, 3)];
c = zeros(4, 1);

for m = 1:n
C(1:2, 3) = -a(1:2, m);
C(3:4, :) = b(1:2, m) * kT - iTjT;
c(3:4, 1) = kTt * b(1:2, m) - iTjTt;
A(:, m) = C \ c;

end

B = T.R * (A - T.t * ones(1, size(A, 2)));

function T = skew(t)

T = [0 -t(3) t(2); t(3) 0 -t(1); -t(2) t(1) 0];

Figure 2: Auxiliary MATLAB functions for 3D reconstruction with two cameras.
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Appendix A: Solving the Procrustes Problem

This proof is adapted from a classical text on matrix computations [1], and applies to any two matrices A
and B of size p× n that encode two sets of n data points in p dimensions.

Theorem .1. Let corresponding columns of the two matricesA,B ∈ Rp×n encode n pairs of corresponding
points in Rp with p ≤ n. The following algorithm finds an orthogonal matrix Q ∈ Rp×p that minimizes the
Frobenius norm of ‖A−QB‖F .

C = ABT

[U,Σ, V ] = svd(C)

Q = UV T

Proof. The trace tr(C) of a matrixC is the sum of its diagonal entries, and from the definition of Frobenius
norm of a matrix C,

‖C‖2F =
∑
i,j

c2ij = tr(CCT ) .

Then,
‖A−QB‖2F = tr[(A−QB)(A−QB)T ] = tr(AAT ) + tr(BBT )− 2 tr(ABTQT )

where we used the fact that Q is orthogonal and that the trace of the sum of several matrices is the sum of
their traces.

The first two terms in the right-hand side of the equation above do not depend on Q, so minimizing
‖A−QB‖2F is the same as maximizing tr(ABTQT ). If

ABT = UΣV T

is the SVD of ABT , then we want to find the maximum of

tr(UΣV TQT ) = tr(UΣV TQTUUT ) = tr(UΣZUT ) where Z = V TQTU

is an orthogonal matrix. It is easy to verify that the trace is a commutative operator, so that

tr(UΣZUT ) = tr(ΣZUTU) = tr(ΣZ) =

p∑
i=1

σizii .

Since Z is the product of orthogonal matrices, it is itself orthogonal. The rows of orthogonal matrices have
unit norm, so no entry in an orthogonal matrix can have magnitude greater than 1. So the sum in the last
term above is maximized when

z11 = . . . = zpp = 1 ,

which occurs when Z is the p× p identity matrix Ip. So one solution is achieved when

Z = Ip that is, V TQTU = Ip or QT = V UT .

The last equation was obtained by multiplying the previous one by V on the left and by UT on the right.
Thus,

Q = UV T
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as promised.
If the matrix C is full rank (so that both A and B are full rank), then this is the only solution. Otherwise,

this is just a solution, because some of the σi are zero, so the corresponding values zii do not matter. The
case in which rank(C) = p − 1 is both simple and relevant to the eight-point algorithm. In that case, the
null space of C has dimension 1, so the only ambiguity in U and V that pertains to the last singular value is
the sign of its last singular vectors up and vp. Changing the sign of both vectors leaves the product UV T

unaltered, because

UV T =
[
u1 . . . up

] [
v1 . . . vp

]T
=

p∑
i=1

uiv
T
i .

So if UV T is one solution, then the other one is[
u1 . . . −up

] [
v1 . . . vp

]T
which is the same as [

u1 . . . up

] [
v1 . . . −vp

]T
.

∆

Appendix B: Approximate Triangulation

Triangulation is the process of computing the coordinates A of each point in space from its projections a
and b in the two images, given that the transformation (R, t) between the two cameras is known. This
Appendix shows a simple triangulation method obtained by solving the two projection equations for A.

There are four scalar projection equations (one for each point coordinate in the two images) in three
unknowns (the coordinates of A), so the resulting linear system in A is over-constrained. In this Appendix,
this system is solved in the sense of least squares, by minimizing the norm of the discrepancy between
the left-hand side and the right-hand side of this system. The least-squares solution is optimal when this
discrepancy, called the algebraic error, is Gaussian and isotropic. However, this is typically not the case:
What is likely Gaussian and sometimes isotropic is the image reprojection error, that is, the norm of the
difference between the measured image point coordinates a and b and the coordinates obtained by projecting
the solution A onto the two images.

Because of this, the solution to triangulation given here is not optimal. However, the solution found
by using Longuet-Higgins’s algorithm is typically used to initialize bundle adjustment, a computation that
refines both motion (R, t) and structure (A1, . . . ,An) to minimize the image reprojection error—a nonlin-
ear function of the unknowns. As a consequence, the approximate triangulation method described here is
typically adequate, both as an initializer for bundle adjustment and to resolve the sign ambiguity discussed
in Appendix C.

The projection equations for each point A can be written as follows for the two cameras:

a =
1

Z

[
X
Y

]
and b =

1

kT (A− t)

[
iT (A− t)
jT (A− t)

]
.

where iT , jT , kT are the rows of the rotation matrix R and A = (X,Y, Z)T . Multiplying each equation
by the denominator in its right-hand side and rearranging terms yield the following over-constrained 4 × 3
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system of linear equations in A: I −a

bkT −
[

iT

jT

] A =

 0

(kT t)b−
[

iT

jT

]
t


where I is the 2× 2 identity matrix and 0 is a column vector with two zeros. The solution A to this system
can be found by the Least Squares method, and B can be computed by transforming A to the reference
system of camera b :

B = R (A− t) .

This procedure is to be repeated for each of the image-point pairs.

Appendix C: Resolving the Sign Ambiguity

Because of the sign ambiguity in s and t, the Procrustes problem has two solutions:

R1,2 = W1,2 det(W1,2) where W1,2 = α1β
T
1 + α2β

T
2 ± stT

where
UB =

[
α1 α2 −s

]
, VB =

[
β1 β2 t

]
.

Equivalently, if UB and VB are first replaced by their rotation versions UB det(UB) and VB det(VB) (so
that their determinants are equal to 1), we have

R1 = α1β
T
1 + α2β

T
2 − stT and R2 = −α1β

T
1 −α2β

T
2 − stT . (4)

These equations reveal that R1 and R2 relate to each other through a 180-degree rotation of either camera
reference system around the baseline. To see this, write the transformation between these two frames of
reference as a transformation from frame 1 to the world frame composed with one from world frame to
frame 2:

R2R
T
1 = (−α1β

T
1 −α2β

T
2 − stT )(β1α

T
1 + β2α

T
2 − stT ) = −α1α

T
1 −α2α

T
2 + s(s)T ,

and this rotation maps α1 to −α1, α2 to −α2, and s (or t) to itself, as promised.
The transformation between the first and the last of the four solutions above places camera 2 on the

opposite side of camera 1 along the baseline.4 This transformation can equivalently described as leaving
the cameras where they are, pointing in the same way, but replacing all structure vectors Ai and Bi by their
opposites −Ai and −Bi. This transformation is said to change the chirality of structure in the literature [2],
because superposing the original structure with the transformed one requires a change of handedness of the
reference system (that is, a mirror flip). This transformation has the effect of placing the scene behind the
two cameras if it is in front of them to begin with. With some abuse of terminology, a change of chirality
in computer vision means merely changing whether structure is in front or behind a camera. In this sense,
structure has two values of chirality, one per camera. A 180-degree rotation around the baseline—obtained
by replacing R1 with R2 or vice versa—changes chirality once more, but only for the camera being rotated.

4Of course, the same transformation can be described as a displacement of camera 1 relative to camera 2.
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The four motion solutions given earlier correspond to using top right, top left, bottom right, and bottom
left camera pairs in Figure 3, in this order. The two top pairs in the figure are said to form a twisted pair,
and so are the two bottom pairs.

Only one of these solutions puts the scene points in front of both cameras. So the correct solution can be
identified by computing structure for all four cases by triangulation, as shown in Appendix B, and choosing
the one solution that enforces most of the structure solution (allowing for a few reconstruction errors) to be
in front of both cameras:

eT3 Ai > 0 and eT3 Bi > 0 for i = 1, . . . , n where eT3 =
[

0 0 1
]
.

P

XC

ZC

C

XD

ZD

D

P

XC

ZC

C XD’

ZD’
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ZD

D XC

ZC

C
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CXD’

ZD’
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Figure 3: The fourfold ambiguity of reconstruction corresponds to the two ways to pick the sign of t (left or
right diagrams) and the two ways to choose the rotation matrix R (top or bottom diagrams). A circle with a
cross (a dot) denotes a Y axis pointing into (out of) the page. Only the arrangement in the top right has the
scene structure (represented by the single point P and its two projection rays) in front of both cameras.
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