
Pedestrian Detection

Carlo Tomasi

A program that detects people in images has a multitude of potential applications, including tracking
for biomedical applications or surveillance, activity recognition for person-device interfaces (device con-
trol, video games), organizing personal picture collections, and much more. However, detecting people is
difficult, as the appearance of a person can vary enormously because of changes in viewpoint or lighting,
clothing style, body pose, individual traits, occlusion, and more. It then makes sense that the first people
detectors were really detectors of pedestrians, that is, people walking at a measured pace on a sidewalk, and
viewed from a fixed camera. Pedestrians are nearly always upright, their arms are mostly held along the
body, and proper camera placement relative to pedestrian traffic can virtually ensure a view from the front
or from behind (Figure 1). These factors reduce variation of appearance, although clothing, illumination,
background, occlusions, and somewhat limited variations of pose still present very significant challenges.

Figure 1: Images of pedestrians [2].

The prototypical pedestrian detector places a standard-sized window at all positions and at all levels of
a Gaussian pyramid constructed on the input image, computes some feature vector in the window, and runs
a classifier on the vector. In one instance proposed by Dalal and Triggs [2], the window is 64 × 128 (in
portrait mode), the features are Histograms of Oriented Gradients (HOG), and the classifier is a Support
Vector Machine (SVM) [1]. This note examines a few technical aspects and recent extensions of pedestrian
detection.

1 Non-Maximum Suppression

If window W is centered on a pedestrian and the classifier returns the correct answer, then windows that
significantly overlap with W are also likely to be classified as pedestrians. Non-Maximum Suppression
(NMS) eliminates all but one of these detections. In its simplest form, NMS picks the window with the
highest score p(y|x) in the image as a true detection, then eliminates all the windows that overlap with the
winner. The procedure is then repeated on the remaining windows until no windows remain unexamined.

If two people are so close to each other in the image that their windows overlap, this greedy procedure
will miss to report one of them. Because of this, one often introduces a measure of difference between

1

windows—for instance, the Euclidean distance between their two feature vectors—and suppresses overlap-
ping windows only if the difference is large enough. More principled and global NMS methods have been
proposed [7].

2 Training and Performance

The SVM used in the Dalal and Triggs detector [2] is trained on a set of 1239 manually cropped and labeled
images of pedestrians—together with their left-right reflections—as positive examples.

For negative examples, images of other than people are of course very easy to obtain. However, some
of them are so obviously not people that they are only moderately useful for classification. To understand
this, think of a binary classifier abstractly as a hyper-surface in feature space: any feature on one side of the
surface is categorized as a positive feature, that is, a feature from the set to be recognized (pedestrian), and
any feature on the other side is classified as negative. A good training set will have examples that are very
close to the hyper-surface, so that they determine it tightly. Random patches out of person-free images are
generally not very likely to be close to the surface: To be so, they would have to look very much like people
but not be people.

To address this problem, negative examples are initially chosen as a set of 12180 patches sampled at
random from 1218 person-free photographs, and a preliminary detector is trained. That detector is then run
on all windows in Gaussian pyramids built on top of the person-free photos. The false positives found in this
run are considered to be “hard examples” and are added to the training set as negative training samples. The
detector is then retrained on the augmented set to produce the final classifier. This data mining technique
has been shown to improve performance significantly [2].

Overall, the authors report an 11 percent miss rate for a false positive rate per window of 10−4 on a small
test set of 640×480 images. To understand what these figures mean, consider that a Gaussian pyramid with
a sampling factor of s = 1.2 has L = 8 levels greater than 128× 64 pixels, and therefore has a total of

1− s−2L

1− s−2
≈ 3.1

times as many pixels as there are in the original image. So there are about (640− 64 + 1)× (480− 128 +
1)×3.1/82 ≈ 9860 possible window positions in the pyramid if a window stride of 8 pixels is used. A false
positive rate of 10−4 per window then means that about one false positive occurs on average in each image.
In other words, a reasonably small false-positive rate per image requires a very small false-positive rate per
window. If that rate is achieved, then about 11 percent of the pedestrians in the performance evaluation
database are not detected.

3 Hough Forests

The Dalal and Triggs detector evaluates the appearance within a window as a whole: Either the whole
window looks like a pedestrian centered in it, or it does not. A part-based method, on the other hand, learns
to recognize parts of a pedestrian (head, shoulders, legs, feet, ...) separately, and infers the presence of a
pedestrian as the result on some consensus among part detectors. A part-based detector has the potential to
be less sensitive to occlusions, changes in body configuration, and variations due to viewpoint, if the way to
reach consensus among detectors is flexible enough.

2

(a) – Original image with three
sample patches emphasized

(b) – Votes assigned to these
patches by the Hough forest

(c) – Hough image aggregating
votes from all patches

(d) – The detection hypothesis
corresponding to the peak in (c)

Figure 2: For each of the three patches emphasized in (a), the pedestrian class-specific Hough forest casts a vote
about the possible location of a pedestrian centroid (b) (each color channel corresponds to the vote of a sample patch).
Note the weakness of the vote from the background patch (green). After the votes from all patches are aggregated into
a Hough image (c), the pedestrian can be detected (d) as a peak in this image. [Both figure and captions are from Gall and
Lempitsky [5].]

Hough forests are one such part-based detection scheme [5, 6]. Just as before, the result of detection is
a set of positions for equally-sized windows within an image pyramid that are deemed to contain a pedes-
trian1. However, these window positions are determined by sliding a smaller (16 × 16 pixels) patch over
the pyramid, and some feature x is computed for each patch. This feature could be a single histogram of
oriented gradients, or other information such as color, texture, or even the raw image intensities. A patch
classifier is trained to detect parts of the object of interest and to vote for the centroid of a window that
might contain the whole object. At test time, image locations that receive many votes are returned. Figure 2
illustrates the idea. This idea is now fleshed out by describing training and testing.

3.1 Training Hough Forests

During training, a binary random-forest classifier with M trees (M = 15) is learned to classify patch
features as positive if they come from a window containing an instance of the object of interest, and negative
if they do not. So “recognizing a part” means just this. The classifier does not distinguish between a head
and a shoulder, or any other body part. A node in the tree is a leaf when its depth is 15 or when it has
information from fewer than 20 patches. As usual, each leaf L contains the probability pL = p(1|L) that a
patch that lands on L has a positive label. Obviously, p(0|L) = 1 − pL, and the single number pL encodes
a Bernoulli distribution that is empirically estimated on the training data. For instance, pL = 1 means that
all the training samples that landed on L belonged to some window containing the object of interest. In
addition, in a Hough forest, the leaf L also contains a list DL of two-dimensional displacement vectors, one
for each positive patch in the training set that is classified into leaf L. Specifically, if a training patch was
found at image position v within a window centered at (known) image position w, then the displacement
vector

d = v −w

is stored with L. If all patches in L are negative, the list DL is empty. As an example, the red dots in Figure
2 (b) are the centroid vectors w found in the forest leaves into which the patch in the red rectangle in Figure

1Or some other object. The original paper shows results for pedestrians, cars, and horses.

3

2 (a) was classified. These dots are computed as

w = v − d

from the patch position v and from the displacements d found in the lists for the 15 leaves (one leaf per tree
in the forest) that the red patch fell into.

The split rule at each node τ in the random forest picks two pixels at predetermined positions in the
patch and compares the difference in their values to a threshold:{

τ.L if I(τ.a)− I(τ.b) < τ.t
τ.R otherwise

.

More specifically, the five scalar parameters in τ.a, τ.b, τ.t are chosen as follows. A list of 20,000 random
pairs of points are chosen ahead of training, with coordinates drawn uniformly at random from the set of
valid patch coordinates. During training, a point pair is chosen at random out of this list for each node, and
the threshold τ.t is computed that leads to the greatest reduction of impurity, defined as either class-label
uncertainty

kH(c) where H(c) = −c log c− (1− c) log(1− c)
or offset uncertainty ∑

j:cj=1

(dj −md)
T (dj −md) .

In these expressions, k is the number of patches at the node,

c = E[y|L] = pL

is the mean label value among all patches at the node (label 1 means “positive” and label 0 means “nega-
tive”), and md is the mean displacement for the patches at the node. Thus, class-label uncertainty grows
with the number of patches and the entropy H(c) (see Figure 3) of the label distribution: There is no un-
certainty when c = 0 or c = 1, and the maximum uncertainty is when c = 1/2. The notation “j : cj = 1”
means “sum over displacements for patches with positive label,” so that the offset uncertainty is proportional
to the squared spread of the displacements around their mean.

c

0 0.5 1

H

0

0.5

1

Figure 3: The entropy function H(c) = −c log c− (1− c) log(1− c).

A random coin flip determines which measure of impurity to use for each node, with the exception
that offset uncertainty is always used when the fraction of positive patches at the node is at least c =
0.95. Interleaving impurity measures leads to relatively pure label distributions and a low variance in the
displacements at each leaf. Using only offset uncertainty for nearly-pure positive nodes tightens the spread
of their displacements, when reducing class label uncertainty would have little effect.

4

3.2 Hough-Forest Object Detection

The procedure for detecting object window candidates at test time can be described as follows. A patch
is slid over every image in a Gaussian pyramid with scale factor φ (with 0 < φ < 1). A vote pyramid
V`(x) of the same size as the input pyramid is initialized to zero, and accumulates votes cast by every patch.
Specifically, suppose that a patch centered at v at level ` of the pyramid is classified into leaf Lm in tree
number m, for m = 1, . . . ,M . The probability that the patch at v has a positive label given that it lands in
leaf Lm is pLm , and the leaf contains a list

DLm = {dm1, . . . ,dm|DLm |}

of displacements. The leaf casts a vote pLm which is equally spread into |DLm | displacement votes, one
vote per vector in DLm . As a result, displacement dmj casts a vote

pLm

|DLm |
for position v − dmj of the vote image V`(x) .

The resulting votes suffer from quantization problems similar to the bin quantization problems we encoun-
tered in connection with HOG features: Small changes in either v or dmj can cause a vote to land in a
different pixel in the vote image V`. To address this problem, each vote image is smoothed by convolution
with a Gaussian of fixed factor σ. This solution is in concept similar to voting by bilinear interpolation, but
different in the shape of the smoothing kernel. The original paper [5] uses σ = 3 pixels.

The result of this computation is a pyramid of vote images V`(x). One can view these images as samples
of a vote function V(y, s) that is continuous in both position y (measured in the original, full-resolution
image coordinates) and scale s. A mode-seeking algorithm called mean shift [4], described in Appendix A,
can be used to find the local maxima of V . While mean-shift was first developed for probability distributions,
it can also be used with other nonnegative functions. The resulting triples of the form (y∗, s∗,V(y∗, s∗))
indicate where in space (y∗) and scale (s∗) the maxima occur and their confidence (that is, supporting vote)
V(y∗, s∗). A confidence threshold V0 tuned by cross-validation can be used to select the windows to return
as the result of detection. There is no need for non-maximum suppression, because the mean-shift algorithm
returns one point per local maximum.

The notion of parts voting for whole objects is called Hough voting, by reference to an analogous tech-
nique originally used to find lines and circles in images [3]. The original papers on Hough forests [5, 6]
derive the quantitative aspects of Hough voting from probabilistic considerations. However, these are based
on arguable assumptions, and it is not clear that the probabilistic viewpoint adds useful insights.

3.3 Performance of Hough-Forest Object Detection

Object detection with random forests was tested on several benchmark databases and resulted in Recall-
Precision Equal-Error Rates (RPEER) between 94.4 and 98.6 percent [5, 6]. The significance of this per-
formance measure is as follows. Let precision be defined as the fraction of the reported detections that are
correct, and recall as the fraction of all true detections that are reported. Then, low values of the confi-
dence threshold V0 lead to many positives, both true and false, resulting in low precision and high recall.
As the threshold increases, recall decreases because some of the true positives go undetected, and precision
increases as some of the false positives disappear. For some value V∗0 , precision and recall are equal to each
other. The RPEER is the common value that precision and recall achieve at V∗0 . In other words, if precision
and recall are considered equally important and therefore required to be equal to each other, the best value
that can be achieved for them is between 94.4 and 98.6 percent on the benchmarks that were used in the

5

experiments. More details on various performance measures for retrieval and detection systems are given in
Appendix B.

References

[1] N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines. Cambridge University
Press, Cambridge, UK, 2000.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 886–893, June 2005.

[3] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves in pictures.
Communications of the ACM, 15:11–15, 1972.

[4] K. Fukunaga and L. D.Hostetler. The estimation of the gradient of a density function, with applications
in pattern recognition. IEEE Transactions on Information Theory, 21(1):32–40, 1975.

[5] J. Gall and V. Lempitsky. Class-specific Hough forests for object detection. In IEEE Conference on
Computer vision and Pattern Recognition, pages 143–157, 2009.

[6] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking,
and action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11):2188–
2202, 2011.

[7] R. Rothe, M. Guillaumin, and L. van Gool. Non-maximum suppression for object detection by passing
messages between windows. In Asian Conference on Computer Vision, pages 290–306, 2014.

6

Appendices

A The Mean Shift Algorithm

The mean shift algorithm [4] finds the mode of a probability function p(z) given a set Z = {z1, . . . , zN} of
data points in Rd that are assumed to be drawn from p(z). Weights can also be associated to the points, with
the understanding that a point zn with weight wn represents a probability density2 wn at zn.

Let Kh(z) be a Gaussian kernel defined as follows:

Kh(z) = e
−
(

‖z‖
h

)2

where h > 0 is called the bandwidth of the kernel (Kh(z) is not a probability density, as it is not normalized
to integrate to one). The quantity

φh(z) =
N∑
n=1

wnKh(z− zn) , (1)

is a measure of the local density of the data in a neighborhood of z: If there are many data points zn near z,
then the value of φh(z) is large. The vector

µh(z) =

∑N
n=1 znwnKh(z− zn)∑N
n=1wnKh(z− zn)

(2)

is an average of the data zn weighted by both the weights wn and a decreasing function of their distance
from z, and can therefore be interpreted as the local centroid (or mean) of the data around z. If the data is
locally Gaussian, the density at the centroid µh(z) is no less than the density at z. Figure 4 illustrates this
point.

z

z'

Figure 4: This drawing assumes wi = 1 for simplicity. The large circle suggests a Gaussian function
centered at z (small hollow circle). The distribution of points (black dots) under this Gaussian is lopsided,
and the weighted mean z′ (small hollow square) of the data does not coincide with z. If z is moved (arrow)
to point z′, then the local density increases.

Equation (1) gives a way to measure the data density around any point z ∈ Rd and equation (2) computes
a new point z′ = µh(z) where the density is equal to or greater than that at z. These observations yield an

2Equivalently, but somewhat loosely, this means that if M points are drawn out of p(z), then about Mwn/
∑

k wk land very
close to zn.

7

astonishingly simple algorithm that seeks the mode of the density of the data in Z: Start anywhere (at some
initial point zstart) and keep shifting from z to the local mean µh(z) (which becomes the new z), until z and
µh(z) coincide. Of course, this algorithm is local, and which mode it finds depends on zstart. To find all the
modes, it is customary to run this search with

zstart = zn

in turn for each n. Several starting points may lead to convergence to the same end point. A list of the
distinct points these runs converge to is then returned. Algorithm 1 summarizes this procedure. In addition,
what “local” means depends on the value of the bandwidth parameter h, which is therefore usually tuned by
cross-validation.

When applied to the Hough vote image V(y, s), one can think of each position x at level ` in the pyramid
as a point zn with weight

wn = V(x, `) .

Algorithm 1. The mean shift algorithm
Input: z1, . . . , zN , h > 0, ε > 0 . ε is a termination threshold

for k = 1, . . . , N do
z′ ← zk
repeat

z← z′

z′ ←
∑N

n=1 znwnKh(z−zn)∑N
n=1 wnKh(z−zn)

until ‖z− z′‖ ≤ ε . Stop if there is not enough improvement
yk ← z′

end for
return unique({y1, . . . ,yN}) . List of distinct elements in {y1, . . . ,yN}

Output: y

8

B Performance Measures for Retrieval and Detection Systems

Several different measures are used in the literature to quantify the performance of a retrieval or detection
system. This Appendix introduces some of these measures in a unified way with the intent of emphasizing
the connections between them.

Given a collection C of C items of information (web pages, images, video clips, documents, or other)
and a predicate R(i) that takes an item i ∈ C as input and is true when the item i is relevant, a retrieval
system returns all items i ∈ C for which it estimatesR(i) to be true.

Given an image, a collection C of C windows in the image, and a predicate R(i) that takes a window
i ∈ C as input and is true when the window i is relevant, a detector returns all windows i ∈ C for which it
estimatesR(i) to be true.

Thus, at this level of abstraction, detectors and retrieval systems are the same, and the term system will
henceforth refer to either.

B.1 The Four Basic Sets of Items

Whether item i is really relevant or the system deems it to be so is of course a different matter. We define

R = {i ∈ C | R(i) is true} and R = |R|

to be the set and number of (really) relevant items. We also define

P = {i ∈ C | P(i) is true} and P = |P|

as the positive set (and number) of items that are returned or detected. Thus, P(i) means that the system
estimates R(i) to be true, correctly or otherwise. The complements of these sets, ¬R and ¬P, are the sets
of irrelevant and negative items, with sizes

I = |¬R| and N = |¬P| .

The following four basic sets and sizes can be defined from R and P by set intersection ‘A ∩B’ and set
complement:

True positives : R ∩ P of size TP

False negatives : R ∩ ¬P of size FN

False positives : ¬R ∩ P of size FP

True negatives : ¬R ∩ ¬P of size TN .

In words, true positives are relevant items that are returned; false positives are irrelevant items that are
returned; false negatives are relevant items that are not returned; and true negatives are irrelevant items that
are not returned.

From these definitions, we have

R = TP + FN , I = FP + TN , P = TP + FP , N = FN + TN ,

and
R+ I = P +N = C where C = |C| .

The following table summarizes the sizes of these sets:

9

∩ R ¬R
P TP FP P

¬P FN TN N

R I C

Values in the margins of this table are sums of the numbers in the respective rows and columns.

B.2 System Performance Measures

The performance of a system for a particular predicate is quantified by two numbers that describe the items
in P that are either in excess or in defect relative to those in R. The literature uses different pairs of numbers
depending on context and tradition: (recall, precision), (false positive rate, true positive rate), or (specificity,
sensitivity).

Recall, true positive rate, and sensitivity are different names for the same quantity

ρ =
TP

R
,

equal to the fraction of relevant items that the system returns. A high value for this measure is desirable, as
it indicates that the system misses few of the relevant items.

Precision measures the fraction of returned items that are relevant:

π =
TP

P
.

High precision is also desirable, as it entails a low fraction of junk, or irrelevant items, in the set the system
returns. So does a high value of specificity, that is, of the fraction of irrelevant items that the system does
not return:

σ =
TN

I
.

The false positive rate measures the fraction of irrelevant items that the system does return, that is, it
measures the flip side of what precision and specificity measure:

φ =
FP

I
= 1− σ .

While specificity and false positive rate are exactly complementary to each other, precision and false
positive rate are merely decreasing functions of each other.

B.3 Relationships between Different Measures

To determine the relationships between ρ, π, σ, and φ, we first write expressions for TP , TN , FP , and FN
as functions of ρ, π, σ, φ, R, and I . Straightforward manipulation yields the following equalities:

TP = ρR

FN = R(1− ρ)

FP = φI = (1− σ)I = ρR
1− π
π

TN = (1− φ)I = σI = I − ρR(1− π) .

10

Using the appropriate equalities in this group in the definitions of π, σ, and φ yields the desired relationships:

π =
TP

TP + FP
=

ρ

ρ+ (1− σ)ν
=

ρ

ρ+ φν
(3)

σ =
TN

TN + FP
= 1− ρ

ν

1− π
π

= 1− φ

φ =
FP

FP + TN
=
ρ

ν

1− π
π

= 1− σ ,

where
ν =

I

R

is the ratio of the number of irrelevant over relevant items in the collection C.
The precision π is bounded from below once recall ρ and the collection parameter ν are given. This

is because a certain level of recall requires a sufficiently large number TP of true positives, and precision
increases with TP as well. The resulting bound on π can be obtained from the constraint that TN is a
nonnegative number:

0 ≤ TN = I − FP ⇒ 0 ≤ I

R
− FP

R
= ν −

ρR 1−π
π

R
= ν − ρ1− π

π

and solving for π yields
π ≥ ρ

ρ+ ν
. (4)

No analogous bounds are needed for either σ or φ, because these quantities depend on negative returns,
which can be set independently of the positive returns.

Figure 5 shows plots of the relationships among π, σ, and φ for specific values of ρ and ν. Non-identical
relationships that involve π are nonlinear.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

/

/(/)
m(/)
q(/)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

/(m)
m(m)
q(m)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

/(q)
m(q)
q(q)

Figure 5: Plots of precision π, specificity σ, and false-positive rate φ versus each other for ν = 0.9 and
ρ = 0.3. The bound (4) causes the plots on the left to be undefined for π < 0.25. For values of precision
lower than this, a recall ρ = 0.3 cannot be achieved when ν = 0.9.

B.4 Trade-Off Curves

As mentioned in the previous Section, the performance of a retrieval or detection system is often evaluated
in the literature by one of the following pairs:

11

• (ρ, π) = (TPR , TPP) = (recall, precision)

• (φ, ρ) = (FPI ,
TP
R) = (false positive rate, true positive rate)

• (σ, ρ) = (TNI ,
TP
R) = (sensitivity, specificity)

Given a collection C and a predicate P (the system’s estimate of the true predicate R), there is a trade-
off between the two quantities in each pair above. For instance, recall can be improved by increasing P ,
the number of returned items. However, this improvement comes usually at the price of more irrelevant
items being returned as well, resulting in a lower precision. This trade-off can be tuned by varying some
parameter, for instance, a threshold t that determines whether an item does or does not satisfy P(i). Perhaps
a low value of t corresponds to a liberal threshold, and causes many items to be returned, thereby yielding
high recall and low precision. As t is increased, recall decreases and precision increases.

Three parametric curves can therefore be constructed:

(ρ(t), π(t)) , (φ(t), ρ(t)) , (σ(t), ρ(t)) ,

with the first value forming the abscissa and the second the ordinate. These are called the precision-recall
curve, the Receiver-Operating-Characteristic (or ROC) curve, and the specificity-sensitivity curve, respec-
tively (the name of the ordinate appears first in these names, where applicable). Because of the relationships
derived in the previous Section, these curves convey mutually equivalent information.

A different curve could be constructed for each predicate P . Typically, however, a single curve is traced
through statistical aggregates (means or medians) of the performance values over a large set of predicates,
one aggregate pair per value of the parameter t.

For perfect systems, there is at least one value of t for which

(ρ(t), π(t)) = (1, 1) , (φ(t), ρ(t)) = (0, 1) , (σ(t), ρ(t)) = (1, 1) .

Away from these points, it is most desirable for an ideal system to have an optimal value for either measure
regardless of the value of the other. In other words, the perfect trade-off curve is a pair of straight segments—
one horizontal and one vertical—as shown by the dashed lines in Figure 6.

For a system that draws items at random out of C—thereby using no information about the data—the
ratio TP/FP of relevant to irrelevant items in the returned set P is on average equal to the ratio R/I of
relevant to irrelevant items in the whole collection C. Because of this, ρ = TP/R and φ = FP/I are equal
for a random system, whose average performance is therefore on the identity line

ρ = φ

in ROC space. Which point of the identity is achieved depends on the ratio between the size P of P and the
size C of C. The average recall value ρ is the ratio between number of relevant items in the returned set P
and number of relevant items in the collection C. For a random system, this ratio is on average equal to the
ratio between P and C, the sizes of P and C:

ρ =
P

C
.

Since σ = 1− φ, the same system has a specificity-sensitivity curve of the form

ρ = 1− σ .

12

Setting ρ = φ in equation (3) shows that a random system has precision

π =
1

1 + ν
=
R

C
,

a value that is independent of the recall value ρ. This reflects the fact that the precision π is the fraction
of relevant items in the returned set P, and for a random system this fraction is on average equal to the
fraction R/C of relevant items in the whole collection C. For a fixed collection C, the parameter t affects
only P , the size of the set P of returned items, and therefore leaves recall unaffected. Because of this, the
precision-recall curve for a random system is a horizontal line segment with ordinate R/C.

Figure 6 plots the three curves for an ideal and a random system.

0 1
0

R/C

1

l

/

random
ideal

0 1
0

1

q

l

random
ideal

0 1
0

1

m

l

random
ideal

Figure 6: Precision-recall (left), ROC (center), and specificity-sensitivity (right) curves for an ideal (dashed)
and a random (solid) system.

The area under the graph of any of the three curves for a perfect system is 1. Curves for actual systems
are inside the convex hulls of the ideal curves, and their Area Under the Curve (AUC) is therefore less than
1. The value of this area is often taken as a measure of the quality of a retrieval or detection system that can
be tuned through a threshold t. A random system has an AUC of 1/2 for ROC and specificity-sensitivity,
and of R/C for precision-recall.

Another scalar measure of quality of a retrieval or detection system is the Equal-Error Rate (EER),
defined as for the common value of the two quantities on the axes when they are constrained to be equally
good. Thus, the EER for precision-recall and for specificity-sensitivity is the abscissa or ordinate (they are
equal to each other) of the intersection of the curve with the identity line. For ROC, a good false-positive
rate φ is a low rate, so the ROC-EER is the abscissa or ordinate of the intersection of the ROC curve with
the line ρ+ φ = 1.

13

	Non-Maximum Suppression
	Training and Performance
	Hough Forests
	Training Hough Forests
	Hough-Forest Object Detection
	Performance of Hough-Forest Object Detection

	The Mean Shift Algorithm
	Performance Measures for Retrieval and Detection Systems
	The Four Basic Sets of Items
	System Performance Measures
	Relationships between Different Measures
	Trade-Off Curves

