
The Singular Value Decomposition

Carlo Tomasi

Section 1 defines the concepts of orthogonality and projection for general m×n matrices. The Sections
thereafter use these concepts to introduce the Singular Value Decomposition (SVD) of a matrix and principal
component analysis. When not given in the main text, proofs are in Appendix A.

1 Orthogonal Matrices

Let S be an n-dimensional subspace of Rm (so that we necessarily have n ≤ m), and let v1, . . . ,vn be
an orthonormal basis for S. Consider a point P in S. If the coordinates of P in Rm are collected in an
m-dimensional vector

p =

 p1
...
pm

 ,

and since P is in S , it must be possible to write p as a linear combination of the vjs. In other words, there
must exist coefficients

q =

 q1
...
qn


such that

p = q1v1 + . . .+ qnvn = V q

where
V =

[
v1 · · · vn

]
is an m× n matrix that collects the basis for S as its columns. Then for any i = 1, . . . , n we have

vTi p = vTi

n∑
j=1

qjvj =

n∑
j=1

qjv
T
i vj = qi ,

since the vj are orthonormal. This is important, and may need emphasis:

If

p =

n∑
j=1

qjvj

and the vectors of the basis v1, . . . ,vn are orthonormal, then the coefficients qj are the
signed magnitudes of the projections of p onto the basis vectors:

qj = vTj p . (1)
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In matrix form,
q = V Tp . (2)

Also, we can collect the n2 equations

vTi vj =

{
1 if i = j
0 otherwise

into the following matrix equation:
V TV = I (3)

where I is the n × n identity matrix. A matrix V that satisfies equation (3) is said to be orthogonal. Thus,
a matrix is orthogonal if its columns are orthonormal. Since the left inverse of a matrix V is defined as the
matrix L such that

LV = I , (4)

comparison with equation (3) shows that the left inverse of an orthogonal matrix V exists, and is equal to
the transpose of V .

Of course, this argument requires V to be full rank, so that the solution L to equation (4) is unique.
However, V is certainly full rank, because it is made of orthonormal columns.

Notice that V R = I cannot possibly have a solution when m > n, because the m ×m identity matrix
has m linearly independent 1 columns, while the columns of V R are linear combinations of the n columns
of V , so V R can have at most n linearly independent columns.

Of course, this result is still valid when V ism×m and has orthonormal columns, since equation (3) still
holds. However, for square, full-rank matrices (r = m = n), the distinction between left and right inverse
vanishes. Since the matrix V V T contains the inner products between the rows of V (just as V TV is formed
by the inner products of its columns), the argument above shows that the rows of a square orthogonal matrix
are orthonormal as well. We can summarize this discussion as follows:

Theorem 1.1. The left inverse of an orthogonal m × n matrix V with m ≥ n exists and is equal to the
transpose of V :

V TV = I .

In particular, if m = n, the matrix V −1 = V T is also the right inverse of V :

V square ⇒ V −1V = V TV = V V −1 = V V T = I .

Sometimes, when m = n, the geometric interpretation of equation (2) causes confusion, because two
interpretations of it are possible. In the interpretation given above, the point P remains the same, and the
underlying reference frame is changed from the elementary vectors ej (that is, from the columns of I) to
the vectors vj (that is, to the columns of V ). Alternatively, equation (2) can be seen as a transformation, in
a fixed reference system, of point P with coordinates p into a different point Q with coordinates q. This,
however, is relativity, and should not be surprising: If you spin clockwise on your feet, or if you stand still
and the whole universe spins counterclockwise around you, the result is the same.2

Consistently with either of these geometric interpretations, we have the following result:
1Nay, orthonormal.
2At least geometrically. One solution may be more efficient than the other in other ways.
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Theorem 1.2. The norm of a vector x is not changed by multiplication by an orthogonal matrix V :

‖V x‖ = ‖x‖ .

The proof is a one-liner, so it is included here:

‖V x‖2 = xTV TV x = xTx = ‖x‖2 .

We conclude this section with an obvious but useful consequence of orthogonality. First, define the
projection p of a point b ∈ Rn onto a subspace C as the point in C that is closest to b. The following
theorem shows how to project a point onto the range of an orthogonal matrix, and how the point and its
projection relate to each other.

Theorem 1.3. Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto range(U).
Furthermore, the difference vector between b and its projection p onto range(U) is orthogonal to range(U):

UT (b− p) = 0 .

2 The Singular Value Decomposition

Here is the main intuition captured by the Singular Value Decomposition (SVD) of a matrix:

An m× n matrix A of rank r maps the r-dimensional unit hypersphere in rowspace(A) into an
r-dimensional hyperellipse in range(A).

Thus, a hypersphere is stretched or compressed into a hyperellipse, which is a quadratic hypersurface that
generalizes the two-dimensional notion of ellipse to an arbitrary number of dimensions. In three dimensions,
the hyperellipse is an ellipsoid, in one dimension it is a pair of points. In all cases, the hyperellipse in
question is centered at the origin.

For instance, the rank-2 matrix

A =
1√
2

 √3
√

3
−3 3
1 1

 (5)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 1 shows
the map

b = Ax .

Two diametrically opposite points on the unit circle are mapped into the two endpoints of the major
axis of the ellipse, and two other diametrically opposite points on the unit circle are mapped into the two
endpoints of the minor axis of the ellipse. The lines through these two pairs of points on the unit circle are
always orthogonal. This result can be generalized to any m× n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cumbersome. It
is, on the other hand, a straightforward consequence of the following fundamental theorem, which states the
existence of the SVD.
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Figure 1: The matrix in equation (5) maps a circle on the plane into an ellipse in space. The two small boxes
are corresponding points.

Theorem 2.1. If A is a real m× n matrix then there exist orthogonal matrices

U =
[
u1 · · · um

]
∈ Rm×m

V =
[
v1 · · · vn

]
∈ Rn×n

such that
UTAV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

The columns of V are the right singular vectors of A, and those of U are its left singular vectors. The
diagonal entries of Σ are the singular values of A. The ratio

κ(A) = σ1/σp (6)

is the condition number of A, and is possibly infinite.
The singular value decomposition is “almost unique”. There are two sources of ambiguity. The first is in

the orientation of the singular vectors. One can flip any right singular vector, provided that the corresponding
left singular vector is flipped as well, and still obtain a valid SVD. Singular vectors must be flipped in pairs
(a left vector and its corresponding right vector) because the singular values are required to be nonnegative.
This is a trivial ambiguity. If desired, it can be removed by imposing, for instance, that the first nonzero
entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrixAmaps a hypersphere into another hypersphere,
the axes of the latter are not defined. For instance, the identity matrix has an infinity of SVDs, all of the
form

I = UIUT
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where U is any orthogonal matrix of suitable size. More generally, whenever two or more singular values
coincide, the subspaces identified by the corresponding left and right singular vectors are unique, but any
orthonormal basis can be chosen within, say, the right subspace and yield, together with the corresponding
left singular vectors, a valid SVD. Except for these ambiguities, the SVD is unique.

Even in the general case, the singular values of a matrix A are the lengths of the semi-axes of the
hyperellipse E defined by

E = {Ax : ‖x‖ = 1} .

The SVD reveals a great deal about the structure of a matrix. If we define r by

σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0 ,

that is, if σr is the smallest nonzero singular value of A, then

rank(A) = r

null(A) = span{vr+1, . . . ,vn}
range(A) = span{u1, . . . ,ur} .

The sizes of the matrices in the SVD are as follows: U ism×m, Σ ism×n, and V is n×n. Thus, Σ has
the same shape and size as A, while U and V are square. However, if m > n, the bottom (m−n)×n block
of Σ is zero, so that the last m− n columns of U are multiplied by zero. Similarly, if m < n, the rightmost
m × (n − m) block of Σ is zero, and this multiplies the last n − m rows of V . This suggests a “small,”
equivalent version of the SVD. If p = min(m,n), we can define Up = U(:, 1 : p), Σp = Σ(1 : p, 1 : p), and
Vp = V (:, 1 : p), and write

A = UpΣpV
T
p

where Up is m× p, Σp is p× p, and Vp is n× p.
Moreover, if p − r singular values are zero, we can let Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r), and

Vr = V (:, 1 : r), then we have

A = UrΣrV
T
r =

r∑
i=1

σiuiv
T
i ,

which is an even smaller, minimal, SVD.
Finally, both the 2-norm and the Frobenius norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

and

‖A‖2 = sup
x 6=0

‖Ax‖
‖x‖

(7)

are neatly characterized in terms of the SVD:

‖A‖2F = σ21 + . . .+ σ2p

‖A‖2 = σ1 .

In the next section we introduce a first fundamental application of the SVD.
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3 Principal Component Analysis

Principal Component Analysis (PCA) is a lossy data compression technique. Given a set of vectors in a
space Rm with large m, it is often the case that most of the variation in the set occurs along a number k of
dimensions that is much smaller thanm. PCA finds an orthogonal basis for the smaller, k-dimensional space
and projects the data down to it, so that subsequent data processing is more efficient. In machine learning,
this compression often also leads to better generalization.

Data variation is measured by empirical covariance, which is in turn an estimate of the statistical co-
variance of a probability distribution that is assumed to have generated the data. This section recalls the
definitions of statistical and empirical covariance, introduces the PCA, and states its main properties, which
are proven in the Appendix.

The (statistical) covariance matrix of a random vector a ∈ Rm is defined as the m×m matrix

Σa = E[(a−ma)(a−ma)T ] where ma = E[a] .

This matrix describes the spread of the vector around its mean ma. If the vector is Gaussian, then the
ellipsoids with equation

(a−ma)TΣ−1a (a−ma) = c

are the loci of constant probability density, and

P[(a−ma)TΣ−1a (a−ma) ≤ c] = Fχ2
n
(c) ,

where the right-hand side is the cumulative distribution function of the chi-square random variable with n
degrees of freedom. Approximately half of the probability mass of a is in the ellipsoid for c = m, and about
90 percent of the mass is in the ellipsoid for c = m + 2

√
m (for large m). For m = 1, the scalar Σa = σ2a

is the variance of the random variable a.
The empirical covariance matrix for a set of n independent samples A = [a1, . . . ,an] from a random

variable a is an unbiased estimate of the covariance of a and is defined as follows:

Q(A) =
1

n− 1
AcA

T
c where Ac = A− µ(A)1Tn

and 1n is a column vector of n ones. The vector

µ(A) =
1

n
A1n

is an unbiased estimate of the mean of a, so the columns of Ac can be viewed as the result of centering the
columns of A around their mean.

Given any m× n matrix A = [a1, . . . ,an] and integer k ≤ min(m,n), let

Ac = UcΣcV
T
c with Σc = diag[σ1, . . . , σmin(m,n)]

be the SVD of the centered data matrix Ac and define the m× k orthogonal matrix

U = Uc(:, 1:k) .

The process of computing the k × n matrix

B = UTAc (8)

is called the Principal Component Analysis (PCA) of A. Algorithm 1 summarizes the computation. Some-
times, the matrix B itself is called the PCA of A.
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Algorithm 1 Principal Component Analysis
Input: An m× n matrix A (the columns of A are the data points) and an integer k ≤ min(m,n)
µ← A1n/n
Ac ← A− µ1Tn
[U, S,∼]← svd(Ac) . The “small” SVD suffices, and the matrix V of right singular vectors is unused
U ← U(:, 1:k)
s← diag(S(1:k, 1:k)) . These are standard deviations, not variances
B ← UTAc . The columns of B are the transformed data
return U , µ, B, s

Output: An m × k matrix U with UTU = Ik, the m-dimensional centroid µ of the data in A, a k × n
matrix B, and a vector s of k standard deviations

Theorem 3.1. Let A be an m×n matrix of n data points in Rm whose centered matrix Ac = A−µ(A)1Tn
has singular values σ1, . . . , σmin(m,n). Also, let k be an integer no greater than min(m,n). The columns of
the k × n matrix B = UTAc computed by PCA of A enjoy the following properties:

• They live in a space Rk with dimensionality no greater than m,

k ≤ m .

• They are uncorrelated, with empirical covariance matrix

Q(B) =
1

n− 1
diag[σ21, . . . , σ

2
k] with σ21 ≥ . . . ≥ σ2k .

• They capture the dimensions of greatest variance in A, in the sense that

‖A− UB‖2 = sup
‖x‖6=0

‖(A− UB)x‖
‖x‖

= σk+1 ≤ σk .

In geometric terms, if we approximate the distribution of the columns of A with an m-dimensional
ellipsoid E(A) centered at µ(A) and with covariance Q(A), then the k-dimensional ellipsoid E(B) that
approximates the columns of B is centered at the origin. Its k axes are equal in length to the k longest axes
of E(A) and are aligned with the axes of the new reference system (because Q(B) is diagonal).

A diagonal covariance matrix also means that the components (i.e., the coordinates) of the transformed
data in B are mutually uncorrelated. As a consequence, variances along the diagonal add. The variance
in B is σ21 + . . . + σ2k, while the variance in A is σ21 + . . . + σ2n. Since the singular values are listed in
non-increasing order along the diagonal of Q(B), the transformation performed by the matrix U preserves
the greatest possible fraction of the variance of the data in A among all linear projections, and that fraction
is

σ21 + . . .+ σ2k
σ21 + . . .+ σ2n

.

CAVEAT: Preserving variance is often useful, but is not always what is needed. For instance, most of the
variance of the data in Figure 2 is in the horizontal direction. However, if plusses and minuses represent
two different classes in a classification problem, then the component that matters most for classification is
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Figure 2: PCA would project this data onto an approximately horizontal line, obliterating most class-
discriminative information in the process.

the vertical one. In this example, taking a k = 1-dimensional PCA of this m = 2-dimensional daat set
would project all points onto a horizontal line, irreversibly mixing plusses and minuses. So while PCA can
help by reducing the size of the feature space, it can also hurt by removing information that is relevant for
classification. Because of this, the value of k should be chosen with care, and dimensionality reduction
should not be too aggressive if the data is used for classification.

A Proofs

Theorem 1.3

Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto range(U). Furthermore,
the difference vector between b and its projection p onto range(U) is orthogonal to range(U):

UT (b− p) = 0 .

Proof. A point p in range(U) is a linear combination of the columns of U :

p = Ux

where x is the vector of coefficients (as many coefficients as there are columns in U ). The squared distance
between b and p is

‖b− p‖2 = (b− p)T (b− p) = bTb + pTp− 2bTp = bTb + xTUTUx− 2bTUx .

Because of orthogonality, UTU is the identity matrix, so

‖b− p‖2 = bTb + xTx− 2bTUx .

The derivative of this squared distance with respect to x is the vector

2x− 2UTb

which is zero iff
x = UTb ,

that is, when
p = Ux = UUTb

as promised.
For this value of p the difference vector b− p is orthogonal to range(U), in the sense that

UT (b− p) = UT (b− UUTb) = UTb− UTb = 0 .
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Theorem 2.1

If A is a real m× n matrix then there exist orthogonal matrices

U =
[
u1 · · · um

]
∈ Rm×m

V =
[
v1 · · · vn

]
∈ Rn×n

such that
UTAV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

Proof. Let x and y be unit vectors in Rn and Rm, respectively, and consider the bilinear form

z = yTAx .

The set
S = {x, y | x ∈ Rn, y ∈ Rm, ‖x‖ = ‖y‖ = 1}

is compact, so that the scalar function z(x,y) must achieve a maximum value on S, possibly at more than
one point 3. Let u1, v1 be two unit vectors in Rm and Rn respectively where this maximum is achieved,
and let σ1 be the corresponding value of z:

max
‖x‖=‖y‖=1

yTAx = uT1Av1 = σ1 .

It is easy to see that u1 is parallel to the vectorAv1. If this were not the case, their inner product uT1Av1

could be increased by rotating u1 towards the direction of Av1, thereby contradicting the fact that uT1Av1

is a maximum. Similarly, by noticing that

uT1Av1 = vT1 A
Tu1

and repeating the argument above, we see that v1 is parallel to ATu1.
The vectors u1 and v1 can be extended into orthonormal bases for Rm and Rn, respectively. Collect

these orthonormal basis vectors into orthogonal matrices U1 and V1. Then

UT1 AV1 = S1 =

[
σ1 0T

0 A1

]
.

In fact, the first column of AV1 is Av1 = σ1u1, so the first entry of UT1 AV1 is uT1 σ1u1 = σ1, and its
other entries are uTj Av1 = 0 because Av1 is parallel to u1 and therefore orthogonal, by construction, to
u2, . . . ,um. A similar argument shows that the entries after the first in the first row of S1 are zero: the row
vector uT1A is parallel to vT1 , and therefore orthogonal to v2, . . . ,vn, so that uT1Av2 = . . . = uT1Avn = 0.

The matrix A1 has one fewer row and column than A. We can repeat the same construction on A1 and
write

UT2 A1V2 = S2 =

[
σ2 0T

0 A2

]
3Actually, at least at two points: if uT

1 Av1 is a maximum, so is (−u1)
TA(−v1).
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so that [
1 0T

0 UT2

]
UT1 AV1

[
1 0T

0 V2

]
=

 σ1 0 0T

0 σ2 0T

0 0 A2

 .

This procedure can be repeated until Ak vanishes (zero rows or zero columns) to obtain

UTAV = Σ

where UT and V are orthogonal matrices obtained by multiplying together all the orthogonal matrices used
in the procedure, and

Σ = diag(σ1, . . . , σp) .

Since matrices U and V are orthogonal, we can premultiply the matrix product in the theorem by U and
postmultiply it by V T to obtain

A = UΣV T ,

which is the desired result.
It only remains to show that the elements on the diagonal of Σ are nonnegative and arranged in non-

increasing order. To see that σ1 ≥ . . . ≥ σp (where p = min(m,n)), we can observe that the successive
maximization problems that yield σ1, . . . , σp are performed on a sequence of sets each of which contains
the next. To show this, we just need to show that σ2 ≤ σ1, and induction will do the rest. We have

σ2 = max
‖x̂‖=‖ŷ‖=1

ŷTA1x̂ = max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
S1

[
0
x̂

]
= max

‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
UT1 AV1

[
0
x̂

]
= max

‖x‖ = ‖y‖ = 1
xTv1 = yTu1 = 0

yTAx ≤ σ1 .

To explain the last equality above, consider the vectors

x = V1

[
0
x̂

]
and y = U1

[
0
ŷ

]
.

The vector x is equal to the unit vector [0 x̂]T transformed by the orthogonal matrix V1, and is therefore
itself a unit vector. In addition, it is a linear combination of v2, . . . ,vn, and is therefore orthogonal to v1.
A similar argument shows that y is a unit vector orthogonal to u1. Because x and y thus defined belong to
subsets (actually sub-spheres) of the unit spheres in Rn and Rm, we conclude that σ2 ≤ σ1.

The σi are nonnegative because all these maximizations are performed on unit hyper-spheres. The σis
are maxima of the function z(x,y) which always assumes both positive and negative values on any hyper-
sphere: If z(x,y) is negative, then z(−x,y) is positive, and if x is on a hyper-sphere, so is −x.
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Theorem 3.1

Let A be an m× n matrix of n data points in Rm whose centered matrix Ac = A− µ(A)1Tn has singular
values σ1, . . . , σmin(m,n). Also, let k be an integer no greater than min(m,n). The columns of the k × n
matrix B = UTAc computed by PCA of A enjoy the following properties:

• They live in a space Rk with dimensionality no greater than m,

k ≤ m .

• They are uncorrelated, with empirical covariance matrix

Q(B) =
1

n− 1
diag[σ21, . . . , σ

2
k] with σ21 ≥ . . . ≥ σ2k .

• They capture the dimensions of greatest variance in A, in the sense that

‖A− UB‖2 = sup
‖x‖6=0

‖(A− UB)x‖
‖x‖

= σk+1 ≤ σk .

Proof. The first property of B is immediate. For the second property, we have

(n− 1)Q(B) = BBT = UTAcA
T
c U = UTUcΣcV

T
c (UcΣcV

T
c )TU

= UTUcΣcV
T
c VcΣcU

T
c U = UTUcΣ

2
cU

T
c U

where
UTc U = UTc Uc(:, 1:k) = [Ik | 0k×(n−k)]

so that
(n− 1)Q(B) = Σ2

c(1:k, 1:k) .

To prove the third property of B, let us first understand the meaning of the residual matrix

R = A− UB = A− UUTA = (Im − UUT )A = LLTA

where Im is the m×m identity matrix and the columns of

L = Uc(:, (k + 1):n)

span the left null space of A (see theorem 1.3). The transformation (8) can be written as

bj = UTaj for j = 1, . . . , n ,

so equation (2) implies that the entries of bj are the coefficients of aj in the orthonormal basis spanned by
the columns of U . Thus, B contains the coefficients of the projection of the columns of A onto RT , the
range of U , and the part of A that B fails to capture is the projection of the columns of A onto LT , the left
null space of U .

Since LLT projects ontoRT , the greatest singular value of R is

sup
‖x‖6=0

‖(A− UB)x‖
‖x‖

= σk+1 ≤ σk

where the last inequality follows from the ordering property of the singular values. Thus, the 2-norm of the
part of the data in A that B fails to capture is at most equal to the standard deviation σk along the direction
of least variance in B.

11


	Orthogonal Matrices
	The Singular Value Decomposition
	Principal Component Analysis
	Proofs

