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Linear Programming
and Game Theory

Ron Parr
CPS 570

With thanks to Vince Conitzer for some content

What are Linear Programs?
• Linear programs are constrained optimization problems
• Constrained optimization problems ask us to maximize or 

minimize a function subject to mathematical constraints on 
the variables
– Convex programs have convex objective functions and convex 

constraints
– Linear programs (special case of convex programs) have linear 

objective functions and linear constraints

• LPs = generic language for wide range problems
• LP solvers = widely available hammers
• Entire classes and vast expertise invested in making 

problems look like nails

Linear programs: example

maximize 3x + 2y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

• Make reproductions of 2 paintings

• Painting 1:
• Sells for $30

• Requires 4 units of blue, 1 green, 1 red
• Painting 2

• Sells for $20
• Requires 2 blue, 2 green, 1 red

• We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize 3x + 2y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0 2

0

4

6

8

2 4 6 8

optimal solution: 
x=3, y=2

Feasible region = region not violating constraints
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Linear Programs in General

• Linear constraints, linear objective function
– Maximize (minimize):

– Subject to:

• Can swap maximize/minimize, ≤/≥; can add equality
• View as search:  Searches space of values of x
• Alternatively:  Search for tight constraints w/high 

objective function value

    f (x)

  Ax £ b

Linear function of vector x

Matrix A

What Happens In Higher Dimensions (1)
Understanding the Feasible Region
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Intuition: 
• Objective function defines “down”
• Feasible region is a “bowl”
• Want to find lowest point on the rotated bowl

• Inequality w/2 variables -> one side of a line
• 3 variables -> one side of a plane
• k variables -> one side of hyperplane
• Physical intuition: 

What Happens In Higher Dimensions (2)
lines->hyperplanes

http://www.rubylane.com/item/623546-4085/Orrefors-x22Zenithx22-Pattern-Crystal-Bowl

Solving linear programs (1)

• Optimal solutions always exist at vertices of the 
feasible region
– Why?
– Assume you are not at a vertex, you can always push further 

in direction that improves objective function (or at least 
doesn’t hurt)

– How many vertices does a kxn matrix imply?

• Dumb(est) algorithm:
– Given n variables, k constraints
– Check all k-choose-n = O(kn) possible vertices
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Solving linear programs (2)

• Smarter algorithm (simplex)
– Pick a vertex
– Repeatedly hop to neighboring (one different tight 

constrain) vertices that improve the objective function
– Guaranteed to find solution (no local optima)
– May take exponential time in worst case (though rarely)

• Still smarter algorithm
– Move inside the interior of the feasible region, in direction 

that increases objective function
– Stop when no further improvements possible
– Tricky to get the details right, but weakly polynomial time

Solving LPs in Practice

• Use commercial products like cplex or gurobi

• Do not try to implement an LP solver yourself!

• Do not use matlab’s linprog for anything other 
than small problems. Really. No – REALLY!

Modified LP
maximize 3x + 2y

subject to
4x + 2y ≤ 15

x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

Optimal solution: x = 2.5, y = 2.5

Solution value = 7.5 + 5 = 12.5

Half paintings?

Integer (linear) program
maximize 3x + 2y

subject to
4x + 2y ≤ 15

x + 2y ≤ 8
x + y ≤ 5

x ≥ 0, integer
y ≥ 0, integer 2
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optimal LP 
solution: x=2.5, 
y=2.5 
(objective 12.5)

optimal IP 
solution: x=2, y=3 
(objective 12)
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Mixed integer (linear) program
maximize 3x + 2y

subject to
4x + 2y ≤ 15

x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0, integer 2
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optimal LP 
solution: x=2.5, 
y=2.5 
(objective 12.5)

optimal IP 
solution: x=2, y=3 
(objective 12)

optimal MIP 
solution: x=2.75, 
y=2 
(objective 12.25)

Solving (M)IPs

• (Mixed) Integer programs are NP-hard to solve
• Intuition: Constraint surface is jagged; no obvious 

way to avoid checking exponential number of 
assignments to integer variables

• In practice:
– Constraints often give clues on how to restrict number 

of solutions considered
– Smart solvers (cplex, gurobi) can sometimes find 

solutions to large (M)IPs surprisingly quickly (and 
surprisingly slowly)

• Suppose you have a huge number of constraints, but a 
small number of variables (k>>n)

• Constraint generation:
– Start with a subset of the constraints
– Find solution to simplified LP
– Find most violated constraint, add back to LP
– Repeat

• Why does this work?
– If missing constraints are unviolated, then adding them back 

wouldn’t change the solution
– Sometimes terminates after adding in only a fraction of total 

constraints
– No guarantees, but often helpful in practice

LP Trick (one of many) Duality

• For every LP there is an equivalent “Dual” probelm
• Solution to primal can be used to reconstruct 

solution to dual, and vice versa
• LP duality:

0: 
:to subject
:minimize




x
bx

xcT

A
0: 

:to subject

:maximize




y
cy

yb
T

T

A
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MDP Solved as an LP

Issue:  Turn the non-linear max into a collection of linear constraints

V(s)max
a
R(s,a)+g P(s'|s,a)V(s')

s'å

  
"s,a :V(s) R(s,a)+g P(s' | s,a)V(s')

s'
å

MINIMIZE:
  

V(s)
s

å Optimal action has
tight constraints

What is Game Theory? I
• Very general mathematical framework to study situations 

where multiple agents interact, including:
– Popular notions of games
– Everything up to and including multistep, multiagent, 

simultaneous move, partial information games
– Example Duke CS research: Aiming sensors to catch hiding 

enemies, assigning guards to posts
– Can even include negotiating, posturing and uncertainty about 

the players and game itself

• von Neumann and Morgenstern (1944) was a major 
launching point for modern game theory

• Nash: Existence of equilibria in general sum games (wikipedia)

What is game theory? II
• Study of settings where multiple agents each have

– Different preferences (utility functions),
– Different actions

• Each agent’s utility (potentially) depends on all agents’ actions
– What is optimal for one agent depends on what other agents do
– Can be circular

• Game theory studies how agents can rationally form beliefs over 
what other agents will do, and (hence) how agents should act

• Useful for acting and (potentially) predicting behavior of others

• Not necessarily descriptive

Real World Game Theory Examples

• War
• Auctions
• Animal behavior
• Networking protocols
• Peer to peer networking behavior
• Road traffic

• Mechanism design:
– Suppose we want people to do X?
– How to engineer situation so they will act that way?
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Covered Today

• 2 player, zero sum simultaneous move games
• Example: Rock, Paper, Scissors

• Linear programming solution

Linear Programs (max formulation)

• Note:  min formulation also possible
– Min: cTx
– Subject to:  Ax≥b

• Some use equality as the canonical representation
(introducing slack variables)

• LP tricks
– Multiply by -1 to reverse inequalities
– Can easily introduce equality constraints, or arbitrary domain constraints

0: 
:to subject
:maximize


£

x
bx

xcT

A

Rock, Paper, Scissors Zero Sum Formulation

• In zero sum games, one player’s loss is other’s gain
• Payoff matrix:

• Minimax solution maximizes worst case outcome
    

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Rock, Paper, Scissors Equations

• R,P,S = probability that we play rock, paper, or 
scissors respectively (R+P+S = 1)

• U is our expected utility
• Bounding our utility:

– Opponent rock case:  U ≤ P – S
– Opponent paper case: U ≤ S – R
– Opponent scissors case: U ≤ R – P

• Want to maximize U subject to constraints
• Solution: (1/3, 1/3, 1/3)
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Rock, Paper, Scissors LP Formulation

• Our variables are:  x=[U,R,P,S]T

• We want:
– Maximize U
– U ≤ P – S
– U ≤ S – R
– U ≤ R – P
– R+P+S = 1

• How do we make this fit:
0: 

:to subject
:maximize


£

x
bx

xcT

A ?

Rock Paper Scissors LP Formulation

x  [U,R,P,S]T

A

1 0 -1 1
1 1 0 -1
1 -1 1 0
0 1 1 1
0 -1 -1 -1

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

b  [0,0,0,1,-1]T

c  [1,0,0,0]T

0: 
:to subject
:maximize


£

x
bx

xcT

A

Rock, Paper, Scissors Solution

• If we feed this LP to an LP solver we get:
– R=P=S=1/3
– U=0

• Solution for the other player is:
– The same…
– By symmetry

• This is the minimax solution
• This is also an equilibrium

– No player has an incentive to deviate
– (Defined more precisely later)

Tangent:  Why is RPS Fun?

• OK, it’s not…

• Why might RPS be fun?
– Try to exploit non-randomness in your friends
– Try to be random yourself
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Minimax Solutions in General
• What do we know about minimax solutions?

– Can a suboptimal opponent trick minimax?
– When should we abandon minimax?

• Minimax solutions for 2-player zero-sum games can always be 
found by solving a linear program

• The minimax solutions will also be equilibria

• For general sum games:
– Minimax does not apply
– Equilibria may not be unique
– Need to search for equilibria using more computationally intensive 

methods

Outline

• Digression: Linear Programming

• 2 player, zero sum simultaneous move games
• Example: Rock, Paper, Scissors

• Linear programming solution

• General sum games

“Chicken”

0, 0 -1, 1

1, -1 -5, -5

D

S

D S

S

D

D

S

• Two players drive cars towards each other
• If one player goes straight, that player wins
• If both go straight, they both die

not zero-sum

Source: wikipedia

Rock-paper-scissors – Seinfeld variant

0, 0 1, -1 1, -1

-1, 1 0, 0 -1, 1

-1, 1 1, -1 0, 0

MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER: I thought paper covered rock.
MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?
MICKEY: (looks at hand) Nothing beats rock.
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Dominance
• Player i’s strategy si strictly dominates si’ if 

– for any s-i, ui(si , s-i) > ui(si’, s-i) 
• si weakly dominates si’ if 

– for any s-i, ui(si , s-i) ≥ ui(si’, s-i); and
– for some s-i, ui(si , s-i) > ui(si’, s-i)

0, 0 1, -1 1, -1

-1, 1 0, 0 -1, 1

-1, 1 1, -1 0, 0

strict dominance

weak dominance

-i = “the player(s) other 
than i”

Prisoner’s Dilemma

-2, -2 0, -3

-3, 0 -1, -1

confess

• Pair of criminals has been caught
• District attorney has evidence to convict them of a minor 

crime (1 year in jail); knows that they committed a major 
crime together (3 years in jail) but cannot prove it

• Offers them a deal:
– If both confess to the major crime, they each get a 1 year reduction
– If only one confesses, that one gets 3 years reduction

don’t confess

don’t confess

confess

“Should I buy an SUV?” 

-10, -10 -7, -11

-11, -7 -8, -8

cost: 5

cost: 3

cost: 5 cost: 5

cost: 5 cost: 5

cost: 8 cost: 2

purchasing + gas cost accident cost

“2/3 of the average” game
• Everyone writes down a number between 0 and 100
• Person closest to 2/3 of the average wins
• Example:

– A says 50
– B says 10
– C says 90
– Average(50, 10, 90) = 50
– 2/3 of average = 33.33
– A is closest (|50-33.33| = 16.67), so A wins
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Iterated dominance

• Iterated dominance: remove (strictly/weakly) 
dominated strategy, repeat

• Iterated strict dominance on Seinfeld’s RPS:

0, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0

0, 0 1, -1
-1, 1 0, 0

“2/3 of the average” game revisited

0

100

(2/3)*100

(2/3)*(2/3)*100

…

dominated

dominated after removal of (originally) 
dominated strategies

Mixed strategies
• Mixed strategy for player i = probability distribution

over player i’s (pure) strategies
• E.g. 1/3        , 1/3       , 1/3
• Example of dominance by a mixed strategy:

3, 0 0, 0

0, 0 3, 0

1, 0 1, 0

1/2

1/2

Best Responses

• Let A be a matrix of player 1’s payoffs
• Let s2 be a mixed strategy for player 2
• As2 = vector of expected payoffs for each strategy 

for player 1
• Highest entry indicates best response for player 1
• Any mixture of ties is also BR
• Generalizes to >2 players

0, 0 -1, 1

1, -1 -5, -5
s2
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Nash equilibrium [Nash 50]

• A vector of strategies (one for each player) = a strategy profile
• Strategy profile (σ1, σ2 , …, σn) is a Nash equilibrium if each σi is a 

best response to σ-i
– That is, for any i, for any σi’, ui(σi, σ-i) ≥ ui(σi’, σ-i)

• Does not say anything about multiple agents changing their 
strategies at the same time

• In any (finite) game, at least one Nash equilibrium (possibly using 
mixed strategies) exists [Nash 50]

• (Note - singular: equilibrium, plural: equilibria)

Equilibrium Strategies
vs.

Best Responses

• equilibrium strategy -> best response?

• best response -> equilibrium strategy?

• Consider Rock-Paper-Scissors
– Is (1/3, 1/3, 1/3) a best response to (1/3, 1/3, 1/3)?
– Is (1, 0, 0) a best response to (1/3, 1/3, 1/3)?
– Is (1, 0, 0) a strategy for any equilibrium? 0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

Nash equilibria of “chicken”

0, 0 -1, 1

1, -1 -5, -5
D

S

D S

S

D

D

S

• (D, S) and (S, D) are Nash equilibria
– They are pure-strategy Nash equilibria: nobody randomizes
– They are also strict Nash equilibria: changing your strategy will make you 

strictly worse off

• No other pure-strategy Nash equilibria

Equilibrium Selection

0, 0 -1, 1

1, -1 -5, -5
D

S

D S

S

D

D

S

• (D, S) and (S, D) are Nash equilibria
• Which do you play?
• What if player 1 assumes (S, D), player 2 assumes (D, S)
• Play is (S, S) = (-5, -5)!!!

• This is the equilibrium selection problem
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Rock-paper-scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

• Any pure-strategy Nash equilibria?
• It has a mixed-strategy Nash equilibrium:

Both players put probability 1/3 on each action

Nash equilibria of “chicken”…

0, 0 -1, 1

1, -1 -5, -5

D

S

D S

• Is there a Nash equilibrium that uses mixed strategies -- say, where player 1 uses a 
mixed strategy?

• If a mixed strategy is a best response, then all of the pure strategies that it 
randomizes over must also be best responses

• So we need to make player 1 indifferent between D and S
• Player 1’s utility for playing D = -pc

S

• Player 1’s utility for playing S = pc
D - 5pc

S = 1 - 6pc
S

• So we need -pc
S = 1 - 6pc

S which means pc
S = 1/5

• Then, player 2 needs to be indifferent as well
• Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))

– People may die!  Expected utility -1/5 for each player

-pc
S = probability

that column
player plays s

Computational Issues

• Zero-sum games - solved efficiently as LP
• General sum games may require exponential 

time (in # of actions) to find a single 
equilibrium (no known efficient algorithm and good 
reasons to suspect that none exists)

• Some better news:  Despite bad worst-case 
complexity, many games can be solved quickly

Game Theory Issues

• How descriptive is game theory?
– Some evidence that people play equilibria
– Also, some evidence that people act irrationally
– If it is computationally intractable to solve for equilibria of 

large games, seems unlikely that people are doing this

• How reasonable is (basic) game theory?
– Are payoffs known?
– Are situations really simultaneous move with no 

information about how the other player will act?
– Are situations really single-shot? (repeated games)
– How is equilibrium selection handled in practice?
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Extensions
• Partial information
• Uncertainty about the game parameters, e.g., payoffs (Bayesian 

games)
• Repeated games: Simple learning algorithms can converge to 

equilibria in some repeated games
• Multistep games with distributions over next states (game theory + 

MDPs = stochastic games)
• Multistep + partial information (Partially observable stochastic 

games)

• Game theory is so general, that it can encompass essentially all 
aspects of strategic, multiagent behavior, e.g., negotiating, threats, 
bluffs, coalitions, bribes, etc.


