- Matrix Completion
- recall: netflix challenge
movies

- Low rank matrix M, observe subset of entries
- Goal: recover the low rank matrix
- This lecture: $M=z z^{\top}$ for vet tor Z (rank 1) will show $f(x)=\left\|M-x x^{\top}\right\|_{\Omega}^{2}$

$$
=\sum_{(i, j \mid \in \Omega}\left(M_{i j}-\left(x x^{\top}\right)_{i, j}\right)^{2}
$$

has no bad local optima.

- recall: saddle points, lIst and and order optimality.

$$
\begin{aligned}
g(x) & =\|M-x x\|_{F}^{2} \\
\nabla g(x) & =2\left(M-x x^{\top}\right) x \\
\nabla^{2} g(x) & =4 x x^{\top}-2 M+2\|x\|^{2} \cdot I
\end{aligned}
$$

how to compute? expand

$$
\begin{aligned}
g(x+\Delta)= & \left\|M(x+\Delta)(x+\Delta)^{\top}\right\|_{F}^{2} \\
= & \left\|M-x x^{\top}\right\|_{F}^{2}-\left\langle M-x x^{\top}, x \Delta^{\top}+\Delta x^{\top}\right\rangle \\
& +\left\|x \Delta^{\top}+\Delta x^{\top}\right\|_{F}^{2}-2\left\langle M-x x^{\top}, \Delta \Delta^{\top}\right\rangle
\end{aligned}
$$

- Critical points: $\left(M-x x^{\top}\right) x=0$

$$
\begin{aligned}
& \Rightarrow x= \pm z \text { or } x=0 \\
\nabla^{2} g(x) & \geqslant x \neq 0
\end{aligned}
$$

- generalize this to matrix completion?

$$
\begin{aligned}
\nabla f(x) & =2\left(M-x x^{\top}\right)_{\Omega} x \\
\Delta^{\top}\left(\nabla^{2} f(x)\right) & =\left\|x \Delta^{\top}+\Delta x^{\top}\right\|_{\Omega}^{2}-2 \Delta^{\top} P_{\Omega}\left(M-x x^{\top}\right) \Delta
\end{aligned}
$$

hard to solve for $\nabla f(x)=0$

- "Simple" proof.
$C(a i m:<\nabla g(x), x\rangle=0 \Rightarrow\langle x, z\rangle^{2}=\|x\|^{4}$
Proof: $\langle\nabla g(x), x\rangle=z\left\langle\left(z z^{\top}-x x^{\top}\right) x, x\right\rangle$

$$
=2\left(\langle x, z\rangle^{2}-\left||x|^{4}\right)\right.
$$

$C\left(\operatorname{aim}:\langle\nabla f(x), x\rangle=0 \Rightarrow\langle x, z\rangle^{2} \geqslant\|x\|^{4}-\varepsilon\right.$
Proof: $\langle\nabla f(x), x\rangle=2\left\langle P_{\Omega}\left(z z^{\top}-x x^{\top}\right), x x^{\top}\right\rangle$
expectation

$$
(\text { concentration })=2\left(\left\langle z z^{\top}-x x^{\top}, x x^{\top}\right\rangle \pm \varepsilon\right)
$$

Ind order

Claim: $\quad Z^{\top} \nabla^{2} g(x) z \geqslant 0 \Rightarrow\|x\|^{2} \geqslant \frac{1}{3}$
Proof: $\left.\quad z^{\top} \nabla^{2} g(x) z=4\langle x, z\rangle^{2}-2 z^{\top}\left(z z^{\top}\right) z \quad+2\|x\|^{2} \mid z\right]^{\top}$

$$
\begin{gathered}
\leqslant 6\|x\|^{2}\|z\|^{2}-2\|z\|^{4} \\
2\|z\|^{4} \leq 6\|x\|^{2}\|z\|^{2} \\
\|x\|^{2} \geq \frac{1}{3}\|z\|^{2}=\frac{1}{3}
\end{gathered}
$$

Claim: $z^{\top} \nabla^{2} f(x) z \geqslant 0 \Longrightarrow\|x\|^{2} \geqslant \frac{1}{3}-\varepsilon$
Proof: $\quad z^{\top} \nabla^{2} f(x) z=\left\|x z^{\top}+z x^{\top}\right\|_{\Omega^{2}}^{2}-2 z^{\top} P_{\Omega}\left(z^{\top}-x x^{\top}\right) z$

$$
\approx p\left\|\|_{f}^{2} \approx p z^{\tau} \mid\left(z z^{\tau}-x^{2} \mid z\right.\right.
$$

Now: if $\langle x, z\rangle^{2} \geqslant\|x\|^{4}-\varepsilon$ and $\|x\|^{2} \geqslant \frac{1}{3}-\varepsilon$
$\langle x, z\rangle^{2} \geqslant \frac{1}{9}-O(\varepsilon) \quad$ (already almost corrod)

$$
0=\langle\nabla f(x), z\rangle \approx\langle x, z\rangle\left(\|z\|^{2}-\|x\|^{2}\right)
$$

So $\|x\|^{2} \approx\|z\|^{2}$ and $|\langle x, z\rangle| \approx 1$.

- Incoherence and concentration.

