- Basic mays of working with matrices
- matrix, rank, norms
- Recall: matrix $M \in \mathbb{R}^{n \times m}$ is of rank r, if

$$
M=\sum_{i=1}^{r} u_{i} v_{i}^{\top}
$$

- In ML, often assume matrix is close to low rank. (e.g. in topic model $M=A W$)
- how to measure closeness?
- Def: Frobenius norm $\|M\|_{F}=\sqrt{\sum_{i, j} M_{i-j}{ }^{2}}$

Spectral/operator norm

$$
\|M\|=\max _{\|u\|\| \| \|=1} u^{\top} M v=\max _{\|u\|=1}\|M v\|
$$

- Q: How to find the closest low rank matrix?
- Singular Value Decomposition

Def: The SUD of M has form

$$
M=U D V^{\top}=\sum_{i} \sigma_{i} u_{i} V_{i}^{\top}
$$

U, U orthonormal,$D=\operatorname{digg}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)$

$$
\sigma_{1} \geqslant \sigma_{2} \geqslant \sigma_{3} \geqslant \ldots \geqslant \sigma_{n} \geqslant 0
$$

- Optimization view of SVD

$$
\begin{aligned}
& \sigma_{1}=\max _{\|u\||=|(u \|=1} u^{\top} M \cup \quad\left(u_{1}, v_{1}\right)=\arg \max \\
& \forall i>1 \quad \sigma_{i}=\max _{\substack{\|v\|==\| v|=1 \\
\forall j<i, u| u_{i}}} u^{\top} M_{v} \quad\left(u_{i}, v_{i}\right)=\operatorname{argmax} \\
& \forall j<i, u \perp u_{i}
\end{aligned}
$$

- Relationship to eigenvalue and eigenvedors.
(Recall: if $f u=\lambda v$, then λ is eigen value, $v \neq 0$ is eigenvector r) u_{i}^{\prime} s are eigenvectors of $M M^{\top}$, with eigenvalues σ_{i}^{2} v_{i}^{\prime} 's are eigenvectors of $M^{\top} M$, with eigenvalues σ_{i}^{2}.
- Eckart Young: Let $M_{k}=\sum_{i=1}^{k} \sigma u_{i} v_{i}^{\top}$ be the truncated sUi)

$$
\begin{aligned}
& \left\|M-M_{k}\right\|_{F}=\min _{\operatorname{rank}(A) \leqslant k}\|M-A\|_{F}=\sqrt{\sum_{i=k+1}^{n} \sigma_{i}^{2}} \\
& \left\|M-M_{k}\right\|=\min _{\operatorname{rank}(A) \leqslant k}\|M-A\|=\sigma_{k+1}
\end{aligned}
$$

- Computing SUD: the Power Method.
- SUD can be computed in $O\left(n^{3}\right)$ time.
- rank-K SUD takes $O\left(n^{2} k\right)$ time.

Power method: initialize $u^{(0)}=$ random Gaussian

$$
u^{(t+1)}=\frac{\left(M M^{\top}\right) u^{(t)}}{\left\|\left(M M^{\top}\right) u^{(t)}\right\|}
$$

Lemma: If $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \geqslant 1+\rho$, then after $O\left(\frac{\log \frac{n}{\varepsilon_{s}}}{\min (1, \rho)}\right)$ iterations w.p. $t \delta, U$ beamed ε-close to U_{1} (in (2 norm)

Proof: Since matrix multiplication is linear, can do normalization at the end.
write $u^{(0)}$ in the singular value basis.

$$
\begin{aligned}
& u^{(0)}=\sum_{i=1}^{n} C_{i}^{(0)} u_{i} \\
& u^{(t+1)}=\left(M M^{\top}\right) u^{(t)}=\sum_{i=1}^{n} \sigma_{i} C_{i}^{(t)} u_{i}
\end{aligned}
$$

therefore. $C_{i}^{(t)}=\sigma_{i}^{t} c_{i}^{(0)}$
with probability $\geqslant 1-\delta, \frac{C_{1}^{(0)}}{\sqrt{\sum_{2} c_{i}^{(0)}}+\frac{0.1 \delta}{\substack{\text { and }}} \geq \frac{0}{\sqrt{n}}}$

$$
\begin{aligned}
\frac{C^{(t)} 1}{\sqrt{\sum_{i=2}^{n} c_{i}^{(t)}} \geqslant\left(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)^{t} \frac{c_{1}^{(0)}}{\sqrt{\sum_{i=1}^{\left(c_{i}^{(0)}\right.}}}} & \geqslant(1+\rho)^{t^{t}} \cdot \frac{0.1 \delta}{\sqrt{n}} \\
& \geqslant \frac{10}{\varepsilon} \text { for large } t . \square
\end{aligned}
$$

- Finding top k singular vector
- Method 1: Deflation
after finding $\widehat{u}_{1} \approx u_{1}, \hat{v}_{1} \approx v_{1}, \hat{\sigma}_{1} \approx \sigma_{1}$
after finding $u_{i} \approx u_{1}, v_{1} \approx v_{1}, \sigma_{1} \approx \sigma_{1}$

$$
M<M-\hat{\sigma}_{1} \hat{u}_{1} \hat{v}_{1}^{\top}
$$

recursively find top $k-1$ singular vectors
Pros: can find each singular ve cor with good accura ag
Cons: error might accumulate
often needs spectral gap between all $\sigma_{i}, \sigma_{i+1}(i \leq k)$

- Method 2: Subspace Iteration $U^{(0)}=$ random Gaussian $n \times k$ matrix

$$
U^{(t+1)}=\text { orthonormalize }\left(\left(M M^{\top}\right) U^{(t)}\right)
$$

orthonomalize (U) tries to find R such that

$$
(U R)^{\top}(U R)=I
$$

can be done by $Q R$ factorization
(Search Gram -Schmidt)
Pros: finds top k subspace in one shot only require $\sigma_{k}>\sigma_{k+1}$
Cons: usually no guarantee on individual vectors,

