Differential Privacy and Risk Ratios: The semantics of privacy

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Lecture 5 : 590.03 Fall 16

Differential Privacy

For every pair of inputs that differ in one row

[Dwork ICALP 2006]

For every output ...

Adversary should not be able to distinguish between any D₁ and D₂ based on any O

$$log\left(\frac{Pr[A(D_1) = 0]}{Pr[A(D_2) = 0]}\right) < \epsilon \quad (\epsilon > 0)$$

Privacy Desiderata

- Privacy of an individual is some measure of information leaked by A(D) in comparison to A(D without that individual)
- Privacy should be ensured even if adversary has background knowledge
- Privacy mechanisms should compose (and not degrade under postprocessing)
- Privacy should not be achieved by obscurity

Does differential privacy satisfy all these desiderata?

Privacy Desiderata

- Privacy of an individual is some measure of information leaked by A(D) in comparison to A(D without that individual)
- Privacy should be ensured even if adversary has background knowledge
- Privacy mechanisms should compose (and not degrade under postprocessing)
- Privacy should not be achieved by obscurity

Neighboring databases

For every pair of inputs that differ in one row

What are neighboring databases for ...?

Lecture 5:590.03 Fall 16

Neighboring Databases ...

... differ in one record.

- In graphs, a record can be:
 - An edge (u,v)
 - The adjacency list of node u

What are neighboring databases for ...

Neighboring Databases ...

... differ in one record.

- In location trajectories, a record can be:
 - Each location in the trajectory
 - A sequence of locations spanning a window of time
 - The entire trajectory

10

Lecture 5: 590.03 Fall 16

What do different neighbor definitions mean?

The semantics of privacy

 Suppose we did not want an adversary to tell whether or not an individual record was in or out of the table.

Formally,

Let $\theta(r)$ be adversary's prior over whether record r is in the table Let X denote the domain of record r

Single Record Computation Case

- Let A be a computation on the single record r
- Let y = A(r) be the output of the computation.

Does not make sense for a computation to work on no records.

$$\max_{x_1, x_2 \in X} \max_{y \in range(A)} \frac{\Pr[A(x_1) = y]}{\Pr[A(x_2) = y]} \le e^{\varepsilon}$$

That is, given any output, one can't distinguish between any two possible values that the record can take.

Adversary's odds

- Do not want an adversary to be able to tell whether or not a record satisfies any property (male vs female, red vs blue, etc).
- Any property of a record can be captured by a set of values S
- The adversary's odds that record r has a value in S is:

$$\frac{\Pr[r \in S \mid A(r) = y]}{\Pr[r \notin S \mid A(r) = y]}$$

$$\frac{\Pr\left[r \in S\right]}{\Pr\left[r \notin S\right]}$$

Posterior Odds

Prior Odds

Bayes Risk Ratio

- Do not want an adversary to be able to tell whether or not a record satisfies any property (male vs female, red vs blue, etc).
- Bayes Risk Ratio:

$$\max_{S \subset X} \max_{y \in range(A)} \frac{\Pr[r \in S \mid A(r) = y] / \Pr[r \in S]}{\Pr[r \notin S \mid A(r) = y] / \Pr[r \notin S]} \leq e^{\varepsilon}$$

That is, the ratio of the adversary's posterior odds that r is in S versus r is not in S and his prior odds is bounded for all S and for all outputs y.

An equivalence?

A satisfies ϵ -differential privacy if and only if A has Bayes risk bounded by $\exp(\epsilon)$

Independent of the adversary's prior!

DP => Bounded Bayes Risk

$$\frac{\Pr[r \in S \mid A(r) = y]/\Pr[r \in S]}{\Pr[r \notin S \mid A(r) = y]/\Pr[r \notin S]}$$

$$= \frac{\sum_{x \in S} \Pr[r = x \mid A(r) = y]/\Pr[r \in S]}{\sum_{x \notin S} \Pr[r = x \mid A(r) = y]/\Pr[r \in S]}$$

$$= \frac{\sum_{x \in S} \Pr[A(x) = y] \Pr[r = x]/\Pr[A(r) = y] \Pr[r \in S]}{\sum_{x \notin S} \Pr[A(x) = y] \Pr[r = x]/\Pr[A(r) = y] \Pr[r \in S]}$$

$$\leq \max_{x_{1}, x_{2} \in X} \frac{\Pr[A(x_{1}) = y]}{\Pr[A(x_{2}) = y]} \frac{\sum_{x \in S} \Pr[r = x]/\Pr[A(r) = y] \Pr[r \in S]}{\sum_{x \notin S} \Pr[A(x_{2}) = y]} \frac{\Pr[A(x_{2}) = y] \Pr[r \in S]}{\sum_{x \notin S} \Pr[r = x]/\Pr[A(r) = y] \Pr[r \in S]}$$

$$= e^{\varepsilon}$$

Cancels out

Lecture 5: 590.03 Fall 16

Bounded by DP

Bounded Bayes Risk => DP

 For every pair of values x1, x2 in X, consider an adversary whose prior is: Pr[r = x1] = p and Pr[r = x2] = 1-p

• Let S = {x1}, then
$$\frac{\Pr[r \in S \mid A(r) = y] / \Pr[r \in S]}{\Pr[r \notin S \mid A(r) = y] / \Pr[r \notin S]}$$

$$= \frac{\Pr[r = x1 \mid A(r) = y] / \Pr[r = x1]}{\Pr[r = x2 \mid A(r) = y] / \Pr[r = x2]}$$

$$= \frac{\Pr[A(r) = y \mid r = x1]}{\Pr[A(r) = y \mid r = x2]} = \frac{\Pr[A(x1) = y]}{\Pr[A(x2) = y]}$$

Since Bayes Risk is bounded, DP is ensured.

Extending to databases

 Suppose we did not want an adversary to tell whether or not an individual record was in or out of the table.

Formally,

Let θ be adversary's prior over *the entire database*Let X denote the domain of each record r in the database

Bayes risk

- Let A be a computation on the entire database D
- Let y = A(D) be the output of the computation.

Bayes Risk:

$$\max_{\substack{r \in X, D \ y \in range(A)}} \max_{\substack{p \in range(A)}} \frac{\Pr[r \in D \mid A(D) = y] / \Pr[r \in D]}{\Pr[r \notin D \mid A(D) = y] / \Pr[r \notin D]} \leq e^{\varepsilon}$$

An equivalence

An algorithm A satisfies ε -differential privacy if and only if

A has Bayes risk bounded by $\exp(\varepsilon)$

NO

Example

Adversary thinks there are only two databases with equal probability

 But adversary can tell whether a record is red or blue after seeing output of algorithm that uses Laplace mechanism to release number of red records.

An equivalence

An algorithm A satisfies ϵ -differential privacy if and only if

A has Bayes risk bounded by $\exp(\epsilon)$

For an adversary who thinks the records are independent!

Consequences

 Choose what is a record carefully. The privacy guarantee is about the record.

2. Is there a better definition than differential privacy that protects against all adversaries in terms of Bayes Risk?

3. Is the independence assumption valid?

Correlations and DP

- Want to release the number of edges between blue and green communities.
- Should not disclose the presence/absence of Bob-Alice edge.

Adversary knows how social networks evolve

Depending on the social network evolution model, (d_2-d_1) is *linear* or even *super-linear* in the size of the network.

Lecture 5: 590.03 Fall 16

Differential privacy fails to avoid breach

Output
$$(d_1 + \delta)$$

$$\delta$$
 ~ Laplace(1/ ϵ)

Output
$$(d_2 + \delta)$$

Adversary can distinguish between the two worlds if $d_2 - d_1$ is large.

Lecture 5: 590.03 Fall 16

Reason for Privacy Breach

Space of all possible tables

Reason for Privacy Breach

Space of all possible tables

No Free Lunch Theorem

It is not possible to guarantee any utility in addition to privacy, without making assumptions about

- the data generating distribution
- the background knowledge available to an adversary

[KM11]

[DN 10]

Duke

Lecture 5 : 590.03 Fall 16