Differential Privacy and Risk Ratios:
The semantics of privacy

CompSci 590.03
Instructor: Ashwin Machanavajjhala

Lecture 5 :590.03 Fall 16 1 DUke

UNIVYERSITY



Differential Privacy

[Dwork ICALP 2006]
For every pair of inputs

that differ in one row

D, D,

O

For every output ...

Adversary should not be able to distinguish
between any D, and D, based on any O

Pr[A(D,) = O]
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Privacy Desiderata

Privacy of an individual is some measure of information leaked by
A(D) in comparison to A(D without that individual)

Privacy should be ensured even if adversary has background
knowledge

Privacy mechanisms should compose (and not degrade under
postprocessing)

Privacy should not be achieved by obscurity
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Does differential privacy satisfy all these
desiderata?
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Privacy Desiderata

Privacy of an individual is some measure of information leaked by
A(D) in comparison to A(D without that individual)

Privacy should be ensured even if adversary has background
knowledge

Privacy mechanisms should compose (and not degrade under
postprocessing)

Privacy should not be achieved by obscurity /
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Neighboring databases

For every pair of inputs
that differ in one row

D, D,
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What are neighboring databases for ... ?
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Neighboring Databases ...

... differ in one record.

* In graphs, a record can be:
— An edge (u,v)
— The adjacency list of node u
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What are neighboring databases for ...
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Neighboring Databases ...

... differ in one record.

* Inlocation trajectories, a record can be:
— Each location in the trajectory
— A sequence of locations spanning a window of time
— The entire trajectory

ooooooooooo
Spa G
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What do different neighbor definitions
mean?
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The semantics of privacy

* Suppose we did not want an adversary to tell whether or not an
individual record was in or out of the table.

* Formally,

Let B(r) be adversary’s prior over whether record r is in the table
Let X denote the domain of record r
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Single Record Computation Case

 Let A be a computation on the single record r
e Lety=A(r) bethe output of the computation.

* Does not make sense for a computation to work on no records.

Pride) =y] _

max max
x1,X; € X yerange(A) Pr [A(xz) — }7]

That is, given any output, one can’t distinguish between any two
possible values that the record can take.
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Adversary’s odds

Do not want an adversary to be able to tell whether or not a
record satisfies any property (male vs female, red vs blue, etc).

Any property of a record can be captured by a set of values S
The adversary’s odds that record r has a value in S is:

Prl[re S|A(r) = y] Pr[r € S]
Prir ¢ S |A(r) = y] Pr[r ¢S]
Posterior Odds Prior Odds

Duke
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Bayes Risk Ratio

Do not want an adversary to be able to tell whether or not a
record satisfies any property (male vs female, red vs blue, etc).

* Bayes Risk Ratio:

Pr[r € S|A(r) = y]/Pr[r €S] -
I.Snca))((yerg}lé}g)é(A) Prir g S|A(r) =y]/Pr[r&S] — °

&

That is, the ratio of the adversary’s posterior odds thatrisin S
versus r is not in S and his prior odds is bounded for all S and for all
outputsy.

Lecture 5:590.03 Fall 16 15 Duke

UNITWVYERSIT Y



An equivalence?

A satisfies e-differential privacy
if and only if
A has Bayes risk bounded by exp(g)

Independent of the adversary’s prior!

Lecture 5:590.03 Fall 16 16 Duke

UNIVYERSITY



DP => Bounded Bayes Risk

Pr[re S|A(r) = y]/Pr|

r €S]

Pr[r ¢ S|A(r) = y]/Pr]|

r &S]

_ XxesPrlr =x|A(@) = y]/Pr[r € S]

 YxesPrlr=x|A() = y]/Pr[r €]

_ ZxesPrlA(x) = y| Pr

r = x]/Pr[A(r) = y]|Pr[r € S]

" Yres PrIA(x) = y] Pr
PrlA(x1) =y’
max

r = x]|/Pr[A(r) = y]Pr[r € S]
Yxes Pr[r = x]/Pr[A(r) = y] Pr[r € S]

x1x2€x Prl[A(x2) = y]

=e€

Bounded by DP
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Bounded Bayes Risk => DP

For every pair of values x1, x2 in X, consider an adversary whose
prioris: Pr[r=x1]=p and Pr[r=x2]=1-p

Let S = {x1}, then
Pr[r € S |A(r) = y]/Pr[r € §]

Pr[r ¢ S|A(r) = y]/Pr[r ¢ S]
Prir = x1|A(r) = y]/Pr[r = x1]
Prir = x2 | A(r) = y]/Pr[r = x2]

Pr[A(r) =ylr=x1] Pr[A(x1) =y]
Pr[A(r) = y|r =x2] Pr[A(x2) =]

Since Bayes Risk is bounded, DP is ensured.
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Extending to databases

* Suppose we did not want an adversary to tell whether or not an
individual record was in or out of the table.

* Formally,

Let © be adversary’s prior over the entire database
Let X denote the domain of each record r in the database
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Bayes risk

* Let A be a computation on the entire database D
 Lety=A(D) be the output of the computation.

* Bayes Risk:

Pr[r € D |A(D) = y]/Pr[r € D] -
rnelj;},)l() yErg}’E‘g}é(A) PI‘[T & D |A(D) — y]/Pr [T‘ ¢ D] = €

&E
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An equivalence

An algorithm A satisfies e-differential privacy
if and only if
A has Bayes risk bounded by exp(g)

NO
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Example

* Adversary thinks there are only two databases with equal
probability

* But adversary can tell whether a record is red or blue after seeing
output of algorithm that uses Laplace mechanism to release
number of red records.
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An equivalence

An algorithm A satisfies e-differential privacy
if and only if
A has Bayes risk bounded by exp(g)

For an adversary who thinks the records are independent!
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Consequences

Choose what is a record carefully. The privacy guarantee is
about the record.

Is there a better definition than differential privacy that protects
against all adversaries in terms of Bayes Risk?

Is the independence assumption valid?
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Correlations and DP

 Want to release the number of edges between blue and green

communities.

* Should not disclose the presence/absence of Bob-Alice edge.
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[KM11]

Adversary knows how social networks evolve

World 1:

World 2:

Community A Community B Community A do Community B

Depending on the social network evolution model,
(d,-d,) is linear or even super-linear in the size of the
network.
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Differential privacy fails to avoid breacE

Output (d, +6)

& ~ Laplace(1/g)

Output (d, + 0)

Adversary can distinguish between the two
worlds if d, — d, is large.
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[KM11]

Reason for Privacy Breach

* Pairs of tables that differ
in one tuple
47
/ . %‘: cannot distinguish them
<\ Tables that do not
satisfy background
knowledge

Space of all
possible tables
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Reason for Privacy Breach

gﬁcan distinguish between
every pair of these tables based
on the output

Space of all
possible tables
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No Free Lunch Theorem

It is not possible to guarantee any utility in addition to privacy,
without making assumptions about

* the data generating distribution

* the background knowledge available [KM11]
to an adversary

IDN 10]
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