CompSci 101
Introduction to Computer Science

MATHI101

Green Nocll

Wei Delong
Yavatkar

Oct 26, 2017

Prof. Rodger

compscilOl falll7

DRINKING FOUNTAINS

from
xked

T AVOID DRINKING FOUNTRINS OUTSIDE' BATHROOMS
BECAUSE TM AFRAID OF GETTING TRAPPED IN A LOOP

compscilOl falll7 2

Announcements

Reading and RQ15 due next time
» Assignment 5 due today, Assign 6 out
APT 5 due Tuesday

Today:

— Problem solving using set operations

compscilOl falll7

APT SandwichBar

Problem Statement

It's time to get something to eat
and I've come across a sandwich
bar. Like most people, I prefer filename: SandwichBar.py
certain types of sandwiches. In
fact, I keep a list of the types of
sandwiches I like.

def whichOrder(available, orders):

return zero-based index of first
sandwich in orders, list of strings
The sandwich bar has certain that can be made from ingredients
ingredients available. I will list the in available, list of strings

types of sandwiches I like in order o
of preference and buy the first
sandwich the bar can make for me.
In order for the bar to make a
sandwich for me, it must include all of the ingredients I desire.

you write code here

Given available, a list of Strings/ingredients the sandwich bar can use, and a orders, a list of
Strings that represent the types of sandwiches I like, in order of preference (most preferred
first), return the 0-based index of the sandwich I will buy. Each element of orders represents
one type of sandwich I like as a space-separated list of ingredients in the sandwich. If the bar

can make no sandwiches I like, return _gc')mpscil 01 falll7 4

APT SandwichBar

available = ["cheese", "mustard"”, "lettuce"]
orders = ["cheese ham", "cheese mustard lettuce", "ketchup", "beer"]

Returns: 1

They've run out of ham, but I'll consider other options now.

available = ["cheese", "cheese", "cheese", "tomato"]
orders = ["ham ham ham", "water", "pork", "bread", "cheese tomatoc cheese", "beef"]

Returns: 4

Ignore any duplicate elements in the lists.

compscilOl falll7 5

APT SandwichBar
bit.ly/101£17-1026-1

compscilOl falll7 6

Step 1: work an example by hand

available = ["cheese", "cheese", "cheese", "tomato"]
orders = ["ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef"]

compscilOl falll7 7

Step 1: work an example by hand

available = ["cheese", "cheese", "cheese", "tomato"]
orders = ["ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef"]

 available = ["cheese", "tomato"]

* Look orders
— ["ham ham ham®] to ["ham®] - NO
— ["water’] - NO
—["pork“] - NO
—[*bread”] = NO
—["cheese", "tomato", "cheese"] to

["tomato", "cheese" | —
* Return 4

Step 2: write down algorithm

available = ["cheese", "cheese", "cheese", "tomato"]
orders = ["ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef"]

 Get the unique ingredients
— available = ["cheese", "tomato"]
 Look at first order — ["ham ham ham®]
— Make unique — ["ham®]
— Not all ingredients are available
» Look at second order — ["water”]
— Unique, not all ingredients available
» Look at third order — ["pork®]
— Unique, not all ingredients available 9

Step 2: write down the algorithm

Unique ingredients available = ["cheese", "tomato"]
orders = ["ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef"]

 Look at 4t order - [“bread”]
— Unique, not all ingredients available

* Look at 5t - ["cheese", "tomato", "cheese"]
— Make unique - ["tomato", "cheese" |
— “tomato” is in available
—"cheese“ is in available

— MATCH found return 4 (which is the 5" order
since we start counting at 0)

10

Step 3: Generalize algorithm

available = ["cheese", "cheese", "cheese", "tomato"]
orders = ["ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef"]

* Get the unique ingredients
 For each order

— Make unique

— For each ingredient in order
* Check if ingredient is in available

— If all ingredients are available
* return index number of this order

* Return -1 1f no orders matched

Step 4: work another example

available = ["cheese", "mustard", "lettuce", "mustard"]
orders = ["cheese ham", "ketchup mustard", "cheese mustard lettuce", "beer"]

 available = ["cheese", "mustard", "lettuce"]
* Look orders

— [*cheese ham®] - NO

— [*ketchup mustard®] - NO

—[*cheese mustard lettuce] —
* Return 2

Step 5 — Convert to Code

compscilOl falll7 13

Problems — snarf setExample.py

» Given a list of strings that have the name of
a course (one word), followed by last names
(one word each) of people in the course:

1. Find total number of people taking any course

2. Find number of people taking just one course

['econ101 Abroms Curtson Williams Smith™,
"history230 Black Wrigley Smith™, ...]

Process data — create lists of strings of names for

each course
compscilOl falll7 14

Data for example

[“compscil01 Smith Ye Li Lin Abroms Black®,

“math101 Green Wei Lin Williams DeLong Noell Ye Smith”,
“econ101 Abroms Curtson Williams Smith™,

“frenchl Wills Wrigley Olson Lee™,

"history230 Black Wrigley Smith™]

TO easier format to work with:
[[“Smith’, ‘Ye’, ‘Li’, ‘Lin’, ‘Abroms’, ‘Black’],

[‘Green’, ‘Wet’, ‘Lin’, ‘Williams’, ‘DeLong’, ‘Noell’, ‘Ye’,
‘Smith’], [*Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],]

compscilOl falll7 15

COMPSCI101 Set Picture of

Data

MATHI101

Green Noell
Delong

Yavatkar

FRENCH1

Wills
Lee Olson

compscilOl falll7

16

COMPSCI101 People in

MATHI101
Lin

Wei

Delong
Yavatkar

FRENCHI1

Wills
Lee Olson

compscilOl falll7

HISTORY230

17

CompSci 101

Green Noell

MATHI10]1

Green Noell

Wei

Delong
Yavatkar

FRENCHI1

Wills
Lee Olson

compscilOl falll7

18

Part 1 — processList

bit.ly/101f17-1026-2
» Given a list of strings that have the name of

a course (one word), followed by last names
of people in the course:

— Convert list into lists of strings of names for
each course

['econ101 Abroms Curtson Williams Smith",
"history230 Black Wrigley Smith", ...]

[[‘Abroms’, “Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, ‘Wrigley’, ‘Smith’, ...]]

compscilOl falll7 19

Part 2 — peopleTakingCourses
bit.ly/101£17-1026-3
» Given a list of lists of names, each list
represents the people in one course:
— Find total number of people taking any course

— peopleTakingCourses should return unique list
of names

« Small Example
[[‘Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, ‘Wrigley’, ‘Smith’]]

Answer is 6 unique names

20
compscilOl falll7

People taking
Courses - Union

MATHI101

Green Noell

Wei Delong
Yavatkar

Total

Eumber FRENCHI
17 Wills
unique Lee Olson
names

compscilOl falll7 21

Next, find the number of people
taking just one course

compscilOl falll7

22

Union all sets
But Frenchl

MATHI101
Green Noell

Wei Delong
Yavatkar

FRENCHI1

Wills
Lee Olson

compscilOl falll7

23

To solve this problem

* First let’s write a helper function

compscilOl falll7

24

Part 3 — unionAllSetsButMe
bit.ly/101£17-1026-4
* Given example, a list of sets of strings, and

the index of one of the sets, return the union
of all the sets but that one

example = [set(["a", "b", "c"]), set(["b", "c",
“d", g, set(['e”, "d", "a)]
unionAllSetsButMe(example, 1) is

set(["a", "b", "c", "e", "d"])

compscilOl falll7 25

Part 4 — peopleTakingOnlyOneCourse
bit.ly/101f17-1026-5
* Given a list of lists of strings of names
representing people from courses
— Find number of people taking just one course

[[‘Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, “Wrigley’, ‘Smith’, “Abroms’]]
4

compscilOl falll7 26

People taking

Curtson

\Wi lliams MATH101

Only one course

Green Noell

Wei

Delong
Ya\-'atkir,/

FRENCHI

Wills
LLee Olson

compscilOl falll7 27

