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BECAUSE TM AFRAID OF GETTING TRAPPED IN A LOOP
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Announcements

Reading and RQ15 due next time
» Assignment 5 due today, Assign 6 out
APT 5 due Tuesday

Today:

— Problem solving using set operations
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APT SandwichBar

Problem Statement

It's time to get something to eat
and I've come across a sandwich
bar. Like most people, I prefer filename: SandwichBar.py
certain types of sandwiches. In
fact, I keep a list of the types of
sandwiches I like.

def whichOrder(available, orders):

return zero-based index of first
sandwich in orders, list of strings
The sandwich bar has certain that can be made from ingredients
ingredients available. I will list the in available, list of strings

types of sandwiches I like in order o
of preference and buy the first
sandwich the bar can make for me.
In order for the bar to make a
sandwich for me, it must include all of the ingredients I desire.

# you write code here

Given available, a list of Strings/ingredients the sandwich bar can use, and a orders, a list of
Strings that represent the types of sandwiches I like, in order of preference (most preferred
first), return the 0-based index of the sandwich I will buy. Each element of orders represents
one type of sandwich I like as a space-separated list of ingredients in the sandwich. If the bar

can make no sandwiches I like, return _gc')mpscil 01 falll7 4




APT SandwichBar

available = [ "cheese", "mustard"”, "lettuce" ]
orders = [ "cheese ham", "cheese mustard lettuce", "ketchup", "beer" ]

Returns: 1

They've run out of ham, but I'll consider other options now.

available = [ "cheese", "cheese", "cheese", "tomato" ]
orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomatoc cheese", "beef" ]

Returns: 4

Ignore any duplicate elements in the lists.
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APT SandwichBar
bit.ly/101£17-1026-1
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Step 1: work an example by hand

available = [ "cheese", "cheese", "cheese", "tomato" ]
orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef" ]
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Step 1: work an example by hand

available = [ "cheese", "cheese", "cheese", "tomato" ]
orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef" ]

 available = ["cheese", "tomato" ]

* Look orders
— ["ham ham ham®] to ["ham®] - NO
— ["water’] - NO
—["pork“] - NO
—[*bread”] = NO
—["cheese", "tomato", "cheese" ] to

["tomato", "cheese" | —
* Return 4




Step 2: write down algorithm

available = [ "cheese", "cheese", "cheese", "tomato" ]
orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef" ]

 Get the unique ingredients
— available = ["cheese", "tomato" ]
 Look at first order — ["ham ham ham®]
— Make unique — ["ham®]
— Not all ingredients are available
» Look at second order — ["water”]
— Unique, not all ingredients available
» Look at third order — ["pork®]
— Unique, not all ingredients available 9

Step 2: write down the algorithm

Unique ingredients available = ["cheese", "tomato" ]
orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef" ]

 Look at 4t order - [“bread”]
— Unique, not all ingredients available

* Look at 5t - ["cheese", "tomato", "cheese" ]
— Make unique - ["tomato", "cheese" |
— “tomato” is in available
—"cheese“ is in available

— MATCH found return 4 (which is the 5" order
since we start counting at 0)
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Step 3: Generalize algorithm

available = [ "cheese", "cheese", "cheese", "tomato" ]
orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef" ]

* Get the unique ingredients
 For each order

— Make unique

— For each ingredient in order
* Check if ingredient is in available

— If all ingredients are available
* return index number of this order

* Return -1 1f no orders matched

Step 4: work another example

available = [ "cheese", "mustard", "lettuce", "mustard" ]
orders = [ "cheese ham", "ketchup mustard", "cheese mustard lettuce", "beer" ]

 available = ["cheese", "mustard", "lettuce" ]
* Look orders

— [*cheese ham®] - NO

— [*ketchup mustard®] - NO

—[*cheese mustard lettuce] —
* Return 2




Step 5 — Convert to Code
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Problems — snarf setExample.py

» Given a list of strings that have the name of
a course (one word), followed by last names
(one word each) of people in the course:

1. Find total number of people taking any course

2. Find number of people taking just one course

['econ101 Abroms Curtson Williams Smith™,
"history230 Black Wrigley Smith™, ... ]

Process data — create lists of strings of names for

each course
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Data for example

[“compscil01 Smith Ye Li Lin Abroms Black®,

“math101 Green Wei Lin Williams DeLong Noell Ye Smith”,
“econ101 Abroms Curtson Williams Smith™,

“frenchl Wills Wrigley Olson Lee™,

"history230 Black Wrigley Smith™ ]

TO easier format to work with:
[ [ “Smith’, ‘Ye’, ‘Li’, ‘Lin’, ‘Abroms’, ‘Black’],

[‘Green’, ‘Wet’, ‘Lin’, ‘Williams’, ‘DeLong’, ‘Noell’, ‘Ye’,
‘Smith’], [*Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’], .... ]
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HISTORY230
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Part 1 — processList

bit.ly/101f17-1026-2
» Given a list of strings that have the name of

a course (one word), followed by last names
of people in the course:

— Convert list into lists of strings of names for
each course

['econ101 Abroms Curtson Williams Smith",
"history230 Black Wrigley Smith", ... ]

[ [‘Abroms’, “Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, ‘Wrigley’, ‘Smith’, ...] ]
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Part 2 — peopleTakingCourses
bit.ly/101£17-1026-3
» Given a list of lists of names, each list
represents the people in one course:
— Find total number of people taking any course

— peopleTakingCourses should return unique list
of names

« Small Example
[[‘Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, ‘Wrigley’, ‘Smith’]]

Answer is 6 unique names

20
compscilOl falll7




People taking
Courses - Union

MATHI101

Green Noell

Wei Delong
Yavatkar

Total

Eumber FRENCHI
17 Wills
unique Lee Olson
names

compscilOl falll7 21

Next, find the number of people
taking just one course
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To solve this problem

* First let’s write a helper function
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Part 3 — unionAllSetsButMe
bit.ly/101£17-1026-4
* Given example, a list of sets of strings, and

the index of one of the sets, return the union
of all the sets but that one

example = [set(["a", "b", "c"]), set(["b", "c",
“d", g, set(['e”, "d", "a )]
unionAllSetsButMe(example, 1) is

set(["a", "b", "c", "e", "d" ])
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Part 4 — peopleTakingOnlyOneCourse
bit.ly/101f17-1026-5
* Given a list of lists of strings of names
representing people from courses
— Find number of people taking just one course

[[‘Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, “Wrigley’, ‘Smith’, “Abroms’]]
4
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