COMPSCI 330: Design and Analysis of Algorithms	October 17, 2017
Lecture 12: Graph Algorithms	
Lecturer: Rong Ge	Scribe: Will Long

12.1 Types of Edges

Given a graph G = (V, E), we can use depth-first search to construct a tree on G. An edge $(u, v) \in E$ is in the tree if DFS finds either vertex u or v for the first time when exploring (u, v). In addition to these tree edges, there are three other edge types that are determined by a DFS tree: forward edges, cross edges, and back edges. A forward edge is a non-tree edge from a vertex to one of its descendants. A cross edge is an edge from a vertex u to a vertex v such that the subtrees rooted at u and v are distinct. A back edge is an edge from a vertex to one of its ancestors. The graphic below depicts the four types of edges for a DFS tree that was initialized from vertex s. Solid lines indicate tree edges.

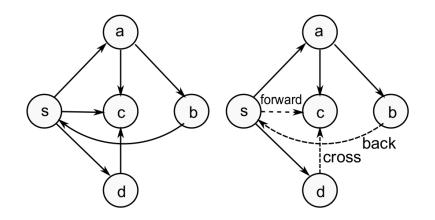


Figure 12.1: The Four Edge Types

For DFS trees, edges can also be classified using the pre-order and post-order of their vertices. Recall that in DFS, the pre-order of a vertex is when it is pushed into the stack, and the post-order is when it is popped off the stack. For a given edge (u, v), we have the following pre/post-orders for each type:

Edge Type (u, v)	Pre/Post-Order
Tree/forward	$\operatorname{pre}(u) < \operatorname{pre}(v) < \operatorname{post}(v) < \operatorname{post}(u)$
Back	$\operatorname{pre}(v) < \operatorname{pre}(u) < \operatorname{post}(u) < \operatorname{post}(v)$
Cross	$\operatorname{pre}(v) < \operatorname{post}(v) < \operatorname{pre}(u) < \operatorname{post}(u)$

We will now show two applications of DFS: cycle-finding and topological sort.

12.2 Cycle Finding

Definition 12.1 A graph G contains a cycle if there is a path in G such that a vertex is reachable from itself. In other words, there is some some path $v_0, v_1, \dots, v_k, v_0$ in G.

Claim 12.2 A graph G has a cycle if and only if it has a back edge with respect to a DFS tree.

Proof: First, suppose that graph G has a back edge (u, v) with respect to a DFS tree on G. Then, by the definition of a back edge, we know that v is an ancestor of u in the DFS tree. Thus, there is a path of tree edges given by v, v_1, \dots, v_n, u . We therefore have a path in G given by v, v_1, \dots, v_n, u, v , which is a cycle.

To prove the opposite direction is true, suppose that graph G contains a cycle v_1, \dots, v_n, v_1 . Let v_i be the first vertex that is visited by DFS on G. Then when v_{i-1} is reached, v_i will still be in the stack, so (v_{i-1}, v_i) will be a back edge.

Altogether, we see that given a graph G, we can determine whether G contains a cycle by running a slightly modified version of DFS. This algorithm will run in the same time as DFS, i.e. O(n + m), where |V| = n, |E| = m.

Algorithm 1 DFS Cycle-Finding

```
Require: G = (V, E) is a graph.
Ensure: Return True if G contains a cycle, False otherwise
  function FIND-CYCLE(G)
     for u \in V do
        if DFS-Cycle(u, G) then
           return True
        end if
     end for
     return False
  end function
  function DFS-CYCLE(u, G)
     Mark u visited
     Mark u in stack
     for v \mid (u, v) \in E do
        if v is in stack then
            return True
        end if
        if v is not visited then
            if DFS-Cycle(v, G) then
               return True
            end if
        end if
     end for
     Mark u as not in stack
     return False
  end function
```

12.3 Topological Sort

Definition 12.3 Given a directed acyclic graph G, a topological sort on the vertices is an ordering such that all edges go from an earlier vertex to a later vertex.

Claim 12.4 The inverse of the post-order values of DFS on G will give a topological sort.

Proof: Recall that the post-order of DFS marks the vertices as they are popped from the stack. A vertex v is only popped from the stack once all of its descendant vertices have been visited. Thus, if v is an ancestor of u, it will be popped from the stack after u, and will thus have a higher post-order. So reversing the post-order will ensure ancestor vertices come before descendant vertices, so all edges lead from earlier vertices to later vertices.

Thus, to give a topological sort on graph G, simply run DFS, sort the vertices by their post-order values, and reverse them.

12.4 Breadth First Search

Breadth first search (BFS) is another possible way to traverse a graph. In BFS, upon visiting a vertex v, we visit all the neighbors of v before we visit any other vertices. BFS can be implemented in a similar manner to DFS, but with use of a queue rather than a stack. Since vertices leave the queue in the same order that they enter it, there is no longer a distinct pre-order and post-order. Instead, the order that the vertices enter/leave the queue is referred to as the BFS order. Like DFS, we have to explore all edges and vertices in the graph and so BFS will run in O(n + m) time. Pseudocode for BFS is below:

```
Algorithm 2 Breadth-First Search
Require: G = (V, E) is a graph.
  function BFS(G)
     for u \in V do
        BFS-Visit(u, G)
     end for
  end function
  function BFS-VISIT(u, G)
     Mark u visited
     Add u to queue Q
     while Q is not empty do
        v \leftarrow \text{head of } Q
        for w \mid (v, w) \in E do
            if w not visited then
               Mark w visited
               Add w to Q
            end if
        end for
        Remove v from Q
     end while
  end function
```

As we did with DFS, we can use BFS to construct a tree on G. An edge $(u, v) \in E$ is in the tree if BFS finds either vertex u or v for the first time when exploring (u, v). We now show that BFS can be used to find the shortest distance between two vertices in an unweighted graph.

Claim 12.5 Given a vertex u in unweighted graph G, a BFS tree rooted at u contains the shortest path to any other vertex $v \in G$

Proof: We will prove this claim by induction. The inductive hypothesis is that BFS from u visits all vertices of distance less than or equal to t before it visits any vertices of distance at least t + 1. We see that for the base case t = 1, this is certainly true, as all of the immediate neighbors of u added to queue in first step before any further vertices are explored.

Now, assume that the inductive hypothesis is true for $t = 1, 2, \dots, k$, we wish to show it's true for t = k + 1. Thus, we want to prove that BFS visits all vertices at distance k + 1 before visiting any at k + 2. Consider the time that the last vertex of distance k is removed from the queue. If v has a distance of k + 1, then there exists a vertex w such that (w, v) is an edge and the distance of w is k. Since all vertices of distance k have been processed, it must therefore be true that v is in the queue. Similarly, by the inductive hypothesis, no vertices of distance k + 1 have been processed yet, so there can be no vertices of k + 2 in the queue. Thus BFS visits all vertices of distance k + 1 before k + 2, completing the proof by induction.