COMPSCI 330: Design and Analysis of Algorithms October 17, 2017

Lecture 12: Graph Algorithms
Lecturer: Rong Ge Scribe: Will Long

12.1 Types of Edges

Given a graph G = (V, E), we can use depth-first search to construct a tree on G. An edge (u,v) € E is in
the tree if DFS finds either vertex u or v for the first time when exploring (u,v). In addition to these tree
edges, there are three other edge types that are determined by a DFS tree: forward edges, cross edges, and
back edges. A forward edge is a non-tree edge from a vertex to one of its descendants. A cross edge is an
edge from a vertex u to a vertex v such that the subtrees rooted at u and v are distinct. A back edge is an
edge from a vertex to one of its ancestors. The graphic below depicts the four types of edges for a DFS tree
that was initialized from vertex s. Solid lines indicate tree edges.

Figure 12.1: The Four Edge Types

For DFS trees, edges can also be classified using the pre-order and post-order of their vertices. Recall that
in DF'S, the pre-order of a vertex is when it is pushed into the stack, and the post-order is when it is popped
off the stack. For a given edge (u,v), we have the following pre/post-orders for each type:

Edge Type (u,v) | Pre/Post-Order

Tree/forward pre(u) < pre(v) < post(v) < post(u)
Back pre(v) < pre(u) < post(u) < post(v)
Cross pre(v) < post(v) < pre(u) < post(u)

We will now show two applications of DFS: cycle-finding and topological sort.

12-1

12-2 Lecture 12: Graph Algorithms

12.2 Cycle Finding

Definition 12.1 A graph G contains a cycle if there is a path in G such that a vertex is reachable from
itself. In other words, there is some some path vg, vy, -+ , vk, Vg in G.

Claim 12.2 A graph G has a cycle if and only if it has a back edge with respect to a DFS tree.

Proof: First, suppose that graph G has a back edge (u,v) with respect to a DFS tree on G. Then, by the
definition of a back edge, we know that v is an ancestor of v in the DFS tree. Thus, there is a path of tree
edges given by v, vy, -+ ,v,,u. We therefore have a path in G given by v, vy, ,v,,u, v, which is a cycle.

To prove the opposite direction is true, suppose that graph G contains a cycle vy, -+ ,v,,v1. Let v; be the
first vertex that is visited by DFS on G. Then when v;_; is reached, v; will still be in the stack, so (v;—1,v;)
will be a back edge. [|

Altogether, we see that given a graph G, we can determine whether G contains a cycle by running a
slightly modified version of DFS. This algorithm will run in the same time as DFS, i.e. O(n + m), where
V] =n,|E| =m.

Algorithm 1 DFS Cycle-Finding
Require: G = (V, E) is a graph.
Ensure: Return True if G contains a cycle, False otherwise

function FIND-CYCLE(G)
for u € V do
if DFS-Cycle(u, G) then
return True
end if
end for
return False
end function

function DFS-CYCLE(u, G)
Mark u visited
Mark w in stack
for v | (u,v) € E do
if v is in stack then
return True
end if
if v is not visited then
if DFS-Cycle(v, G) then
return True
end if
end if
end for
Mark u as not in stack
return False
end function

Lecture 12: Graph Algorithms 12-3

12.3 Topological Sort

Definition 12.3 Given a directed acyclic graph G, a topological sort on the vertices is an ordering such that
all edges go from an earlier vertex to a later vertex.

Claim 12.4 The inverse of the post-order values of DFS on G will give a topological sort.

Proof: Recall that the post-order of DF'S marks the vertices as they are popped from the stack. A vertex v
is only popped from the stack once all of its descendant vertices have been visited. Thus, if v is an ancestor
of u, it will be popped from the stack after u, and will thus have a higher post-order. So reversing the post-
order will ensure ancestor vertices come before descendant vertices, so all edges lead from earlier vertices to
later vertices. |

Thus, to give a topological sort on graph G, simply run DFS, sort the vertices by their post-order values,
and reverse them.

12.4 Breadth First Search

Breadth first search (BFS) is another possible way to traverse a graph. In BFS, upon visiting a vertex v, we
visit all the neighbors of v before we visit any other vertices. BFS can be implemented in a similar manner
to DFS, but with use of a queue rather than a stack. Since vertices leave the queue in the same order that
they enter it, there is no longer a distinct pre-order and post-order. Instead, the order that the vertices
enter/leave the queue is referred to as the BFS order. Like DFS, we have to explore all edges and vertices
in the graph and so BFS will run in O(n + m) time. Pseudocode for BF'S is below:

Algorithm 2 Breadth-First Search
Require: G = (V, E) is a graph.

function BFS(G)
for u € V do
BFS-Visit(u, G)
end for
end function

function BFS-VIsiT(u, G)
Mark w visited
Add u to queue Q
while @ is not empty do
v < head of)
for w | (v,w) € E do
if w not visited then
Mark w visited
Add w to Q
end if
end for
Remove v from @
end while
end function

12-4 Lecture 12: Graph Algorithms

As we did with DFS, we can use BFS to construct a tree on G. An edge (u,v) € F is in the tree if BFS finds
either vertex u or v for the first time when exploring (u,v). We now show that BFS can be used to find the
shortest distance between two vertices in an unweighted graph.

Claim 12.5 Given a verter u in unweighted graph G, a BFS tree rooted at u contains the shortest path to
any other vertex v € G

Proof: We will prove this claim by induction. The inductive hypothesis is that BFS from w visits all vertices
of distance less than or equal to t before it visits any vertices of distance at least ¢ + 1. We see that for the
base case t = 1, this is certainly true, as all of the immediate neighbors of u added to queue in first step
before any further vertices are explored.

Now, assume that the inductive hypothesis is true for t = 1,2, - - - , k, we wish to show it’s true for t = k + 1.
Thus, we want to prove that BFS visits all vertices at distance k + 1 before visiting any at k 4+ 2. Consider
the time that the last vertex of distance k is removed from the queue. If v has a distance of k4 1, then there
exists a vertex w such that (w,v) is an edge and the distance of w is k. Since all vertices of distance k have
been processed, it must therefore be true that v is in the queue. Similarly, by the inductive hypothesis, no
vertices of distance k + 1 have been processed yet, so there can be no vertices of k + 2 in the queue. Thus
BF'S visits all vertices of distance k + 1 before k + 2, completing the proof by induction.]

