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Announcements

• HW3	due	on	Monday,	Nov	20,	11:55	pm	(in	2	
weeks)
– See	some	clarifications	on	Piazza
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Reading	Material
• [RG]

– Parallel	DBMS:	Chapter	22.1-22.5

• [GUW]		
– Parallel	DBMS	and	map-reduce:	Chapter	20.1-20.2
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Reading	Material
• [RG]

– Parallel	DBMS:	Chapter	22.1-22.5
– Distributed	DBMS:	Chapter	22.6	– 22.14

• [GUW]		
– Parallel	DBMS	and	map-reduce:	Chapter	20.1-20.2
– Distributed	DBMS:	Chapter	20.3,	20.4.1-20.4.2,	20.5-20.6

• Recommended	readings:
– Chapter	2	(Sections	1,2,3)	of	Mining	of	Massive	Datasets,	by	Rajaraman and	Ullman:		

http://i.stanford.edu/~ullman/mmds.html
– Original	Google	MR	paper	by	Jeff	Dean	and	Sanjay	Ghemawat,	OSDI’	04:	

http://research.google.com/archive/mapreduce.html
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Parallel	and	Distributed	Data	
Processing

• Recall	from	Lecture	18!
• data	and	operation	distribution	if	we	have	multiple	

machines

• Parallelism
– performance

• Data	distribution
– increased	availability,	e.g.	when	a	site	goes	down
– distributed	local	access	to	data	(e.g.	an	organization	may	have	

branches	in	several	cities)
– analysis	of	distributed	data
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Parallel	vs.	Distributed	DBMS
Parallel	DBMS

• Parallelization	of	various	
operations
– e.g.	loading	data,	building	

indexes,	evaluating	queries

• Data	may	or	may	not	be	
distributed	initially

• Distribution	is	governed	
by	performance	
consideration
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Distributed	DBMS

• Data	is	physically	stored	across	
different	sites
– Each	site	is	typically	managed	by	an	

independent	DBMS

• Location	of	data	and	autonomy	of	
sites	have	an	impact	on	Query	opt.,	
Conc.	Control	and	recovery

• Also	governed	by	other	factors:
– increased	availability	for	system	

crash	
– local	ownership	and	access	

Lecture	18



Parallel	DBMS
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Why	Parallel	Access	To	Data?

At 10 MB/s
1.2 days to scan

1,000 x parallel
1.5 minute to scan.

Parallelism:
divide a big problem 
into many smaller ones
to be solved in parallel.
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Parallel	DBMS
• Parallelism	is	natural	to	DBMS	processing

– Pipeline	parallelism:	many	machines	each	doing	
one	step	in	a	multi-step	process.	

– Data-partitioned	parallelism:	many	machines	doing	
the	same	thing	to	different	pieces	of	data.

– Both	are	natural	in	DBMS!

Pipeline
Any	

Sequential
Program

Any	
Sequential
Program

Partition SequentialSequential SequentialSequential Any 
Sequential
Program

Any 
Sequential
Program

outputs split N ways, inputs merge M ways
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DBMS:	The	parallel	Success	Story

• DBMSs	are	the	most	successful	application	of	
parallelism
– Teradata	(1979),	Tandem	(1974,	later	acquired	by	HP),..
– Every	major	DBMS	vendor	has	some	parallel	server

• Reasons	for	success:
– Bulk-processing	(=	partition	parallelism)
– Natural	pipelining
– Inexpensive	hardware	can	do	the	trick
– Users/app-programmers	don’t	need	to	think	in	parallel
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Some	||	Terminology

• Speed-Up
– More	resources	means	
proportionally	less	time	
for	given	amount	of	data.

• Scale-Up
– If	resources	increased	in	
proportion	to	increase	in	
data	size,	time	is	constant.
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#CPUs	+	size	of	database
degree	of	||-ism

Ideal:
linear	scale-up

Ideal	graphs		
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Some	||	Terminology

• Due	to	overhead	in	parallel	processing

• Start-up	cost
Starting	the	operation	on	many	processor,	
might	need	to	distribute	data

• Interference
Different	processors	may	compete	for	the	
same	resources

• Skew
The	slowest	processor	(e.g.	with	a	huge	
fraction	of	data)	may	become	the	
bottleneck
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In	practice

Ideal:
linear	speed-up

Ideal:
linear	scale-up

Actual:	sub-linear	
speed-up

Actual:	sub-linear	
scale-up
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Architecture	for	Parallel	DBMS

• Among	different	computing	units

– Whether	memory	is	shared
– Whether	disk	is	shared
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Basics	of	Parallelism

• Units:	a	collection	of	processors
– assume	always	have	local	cache
– may	or	may	not	have	local	memory	or	disk	(next)

• A	communication	facility	to	pass	information	
among	processors
– a	shared	bus	or	a	switch	
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Shared	Memory
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Interconnection	Network

P P P

D D D

Global	Shared	Memoryshared
memory



Shared	Disk
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Shared	Nothing
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Interconnection	Network
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local
memory
and	disk

no	two	
CPU	can	access	
the	same
storage	area

all	communication
through	a	
network	connection



Architecture:	At	A	Glance
Shared Memory 

(SMP)
Shared Disk Shared Nothing

(network)

CLIENTS CLIENTSCLIENTS

Memory
Processors

• Easy to program
• Expensive to build
• Low communication 

overhead: shared mem.
• Difficult to scaleup

(memory contention)

• Hard to program and 
design parallel algos

• Cheap to build
• Easy to scaleup and 

speedup
• Considered to be the 

best architecture
Sequent, SGI, Sun VMScluster, Sysplex Tandem, Teradata, SP2

• Trade-off but still 
interference like 
shared-memory 
(contention of memory 
and nw bandwidth)

we	will	assume	shared	nothing
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What	Systems	Worked	This	Way

Shared Nothing
Teradata: 400 nodes
Tandem: 110 nodes
IBM / SP2 / DB2: 128 nodes
Informix/SP2         48 nodes
ATT & Sybase         ? nodes

Shared Disk
Oracle 170 nodes
DEC Rdb 24 nodes

Shared Memory
Informix 9 nodes 
RedBrick ? nodes

CLIENTS

Memory
Processors

CLIENTS

CLIENTS

NOTE:	(as	of	9/1995)!
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Different	Types	of	DBMS	Parallelism
• Intra-operator	parallelism

– get	all	machines	working	to	compute	a	given	
operation	(scan,	sort,	join)

– OLAP	(decision	support)

• Inter-operator	parallelism
– each	operator	may	run	concurrently	on	a	

different	site	(exploits	pipelining)
– For	both	OLAP	and	OLTP

• Inter-query	parallelism
– different	queries	run	on	different	sites
– For	OLTP	

• We’ll	focus	on	intra-operator	parallelism	

⨝

𝝲

⨝

𝝲

⨝

𝝲

⨝

𝝲
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Ack:
Slide	by	Prof.	Dan	Suciu



Data	Partitioning
Horizontally Partitioning a table (why horizontal?):
Range-partition Hash-partition Block-partition 

or Round Robin

Shared disk and memory less sensitive to partitioning, 
Shared nothing benefits from "good" partitioning 

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

• Good for equijoins, 
range queries, group-by
• Can lead to data skew

• Good for equijoins
• But only if hashed 

on that attribute
• Can lead to data 

skew

• Send i-th tuple to 
i-mod-n processor

• Good to spread 
load

• Good when the 
entire relation is 
accessed
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Example

• R(Key,	A,	B)

• Can	Block-partition	be	skewed?
– no,	uniform

• Can	Hash-partition	be	skewed?
– on	the	key:	uniform	with	a	good	hash	function
– on	A:	may	be	skewed,	

• e.g.	when	all	tuples	have	the	same	A-value
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Parallelizing	Sequential	
Evaluation	Code

• “Streams”	from	different	disks	or	the	output	of	
other	operators
– are	“merged”	as	needed	as	input	to	some	operator
– are	“split”	as	needed	for	subsequent	parallel	
processing

• Different	Split and	merge operations	appear	in	
addition	to	relational	operators

• No	fixed	formula	for	conversion
• Next:	parallelizing	individual	operations
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Parallel	Scans

• Scan	in	parallel,	and	merge.
• Selection	may	not	require	all	sites	for	range	or	
hash	partitioning
– but	may	lead	to	skew
– Suppose	sA	=	10R	and	partitioned	according	to	A
– Then	all	tuples	in	the	same	partition/processor

• Indexes	can	be	built	at	each	partition

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 24



Parallel	Sorting

Idea:	
• Scan	in	parallel,	and	range-partition	as	you	go

– e.g.	salary	between	10	to	210,	#processors	=	20
– salary	in	first	processor:	10-20,	second:	21-30,	third:	31-40,	….

• As	tuples	come	in,	begin	“local”	sorting	on	each
• Resulting	data	is	sorted,	and	range-partitioned
• Visit	the	processors	in	order	to	get	a	full	sorted	order
• Problem:	skew!
• Solution:	“sample”	the	data	at	start	to	determine	partition	
points.	
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Parallel	Joins

• Need	to	send	the	tuples	that	will	join	to	the	same	
machine
– also	for	GROUP-BY

• Nested	loop:
– Each	outer	tuple	must	be	compared	with	each	inner	tuple	
that	might	join

– Easy	for	range	partitioning	on	join	cols,	hard	otherwise

• Sort-Merge:
– Sorting	gives	range-partitioning
– Merging	partitioned	tables	is	local
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Parallel	Hash	Join

• In	first	phase,	partitions	get	distributed	to	
different	sites:
– A	good	hash	function	automatically	distributes	
work	evenly

• Do	second	phase	at	each	site.
• Almost	always	the	winner	for	equi-join

Original Relations
(R then S)

OUTPUT

2

B main memory buffers DiskDisk

INPUT
1

hash
function

h
B-1

Partitions

1
2

B-1
.	.	.

Ph
as
e	
1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 27



Dataflow	Network	for	parallel	Join

• Good	use	of	split/merge	makes	it	easier	to	
build	parallel	versions	of	sequential	join	code.
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Example	with	parallel	hash	join	between	A	and	B	

Machine	0 Machine	1 Machine	0 Machine	1

h	mod	2	
=	0

h	mod	2	
=	0

h	mod	2	
=	0

h	mod	2	
=	1

h	mod	2	
=	1h	mod	2	

=	1

h	mod	2	
=	1

h	mod	2	
=	0

h	mod	2	
=	1

h	mod	2	
=	0



Jim Gray & Gordon Bell:  VLDB 95 Parallel Database Systems Survey

Parallel	Aggregates

A...E F...J K...N O...S T...Z

A Table

Count Count Count Count Count

Count

• For	each	aggregate	function,	need	a	decomposition:
– count(S)	=	S count(s(i)),	ditto	for	sum()
– avg(S)	=	(S sum(s(i)))	/	S count(s(i))
– and	so	on...

• For	group-by:
– Sub-aggregate	groups	close	to	the	source.
– Pass	each	sub-aggregate	to	its	group’s	site.

• Chosen	via	a	hash	fn.
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Which	SQL	aggregate	operators	are	not	
good	for	parallel	execution?



• Why?
• Trivial	counter-example:

– Table	partitioned	with	local	secondary	index	
at	two	nodes

– Range	query:	all	of	node	1	and	1%	of	node	2.
– Node	1	should	do	a	scan	of	its	partition.
– Node	2	should	use	secondary	index.

Best	serial	plan	may	not	be	best	||

N..Z

Table
Scan

A..M

Index 
Scan
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Examples
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Example	problem:	Parallel	DBMS
R(a,b)	is	horizontally	partitioned	across	N	=	3	machines.

Each	machine	locally	stores	approximately	1/N	of	the	tuples in	R.	

The	tuples are	randomly	organized	across	machines	(i.e.,	R	is	block	
partitioned	across	machines).

Show	a	RA	plan	for	this	query	and	how	it	will	be	executed	across	the	N	=	3	
machines.	

Pick		an	efficient	plan	that	leverages	the	parallelism	as	much	as	possible.	

• SELECT	a,	max(b)	as	topb
• FROM	R
• WHERE	a	>	0
• GROUP	BY	a
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We	did	this	example	
for	Map-Reduce	in	Lecture	12!



1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb
FROM	R
WHERE	a	>	0
GROUP	BY	a

R(a,	b)
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1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb
FROM	R
WHERE	a	>	0
GROUP	BY	a

R(a,	b)

scan scan scan

If	more	than	one	relation	on	a	machine,	then	“scan	S”,	“scan	R”	etc
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1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb
FROM	R
WHERE	a	>	0
GROUP	BY	a

R(a,	b)

scan scan scan

sa>0 sa>0 sa>0

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 35



1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb
FROM	R
WHERE	a	>	0
GROUP	BY		a

R(a,	b)

scan scan scan

sa>0 sa>0 sa>0

ga,	max(b)-> b ga,	max(b)-> b ga,	max(b)-> b
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1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb
FROM	R
WHERE	a	>	0
GROUP	BY	a

R(a,	b)

scan scan scan

sa>0 sa>0 sa>0

ga,	max(b)-> b ga,	max(b)-> b ga,	max(b)-> b

Hash	on	a Hash	on	a Hash	on	a
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1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb FROM	R
WHERE	a	>	0 GROUP	BY	aR(a,	b)

scan scan scan

sa>0 sa>0 sa>0

ga,	max(b)-> b ga,	max(b)-> b ga,	max(b)-> b

Hash	on	a Hash	on	a Hash	on	a
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1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb FROM	R
WHERE	a	>	0 GROUP	BY	aR(a,	b)

scan scan scan

sa>0 sa>0 sa>0

ga,	max(b)-> b ga,	max(b)-> b ga,	max(b)-> b

Hash	on	a Hash	on	a Hash	on	a

ga,	max(b)->topb ga,	max(b)->topb ga,	max(b)->topb

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 39



Benefit	of	hash-partitioning

• What	would	change	if	we	hash-partitioned	R	
on	R.a before	executing	the	same	query	on	
the	previous	parallel	DBMS	and	MR

• First	Parallel	DBMS

SELECT	a,	max(b)	as	topb
FROM	R

WHERE	a	>	0
GROUP	BY	a
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1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb FROM	R
WHERE	a	>	0 GROUP	BY	aPrev:	block-partition

scan scan scan

sa>0 sa>0 sa>0

ga,	max(b)-> b ga,	max(b)-> b ga,	max(b)-> b

Hash	on	a Hash	on	a Hash	on	a

ga,	max(b)->topb ga,	max(b)->topb ga,	max(b)->topb
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• It	would	avoid	the	data	re-shuffling	phase
• It	would	compute	the	aggregates	locally

SELECT	a,	max(b)	as	topb
FROM	R

WHERE	a	>	0
GROUP	BY	a
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Hash-partition	on	a	for	R(a,	b)



1/3	of	R 1/3	of	R 1/3	of	R

Machine	1 Machine	2 Machine	3

SELECT	a,	max(b)	as	topb FROM	R
WHERE	a	>	0 GROUP	BY	aHash-partition	on	a	for	R(a,	b)

scan scan scan

sa>0 sa>0 sa>0

ga,	max(b)->topb ga,	max(b)->topb ga,	max(b)->topb
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Benefit	of	hash-partitioning
for	Map-Reduce
• For	MapReduce

– Logically,	MR	won’t	know	that	the	data	is	hash-
partitioned

– MR	treats	map	and	reduce	functions	as	black-boxes	
and	does	not	perform	any	optimizations	on	them

• But,	if	a	local	combiner	is	used
– Saves	communication	cost:	

• fewer	tuples will	be	emitted	by	the	map	tasks
– Saves	computation	cost	in	the	reducers:	

• the	reducers	would	have	to	do	anything

SELECT	a,	max(b)	as	topb
FROM	R

WHERE	a	>	0
GROUP	BY	a
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Column	Store
(slides	from	Lecture	19)
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Row	vs.	Column	Store

• Row	store
– store	all	attributes	of	a	tuple	together
– storage	like	“row-major	order”	in	a	matrix

• Column	store
– store	all	rows	for	an	attribute	(column)	together
– storage	like	“column-major	order”	in	a	matrix

• e.g.	
– MonetDB,	Vertica	(earlier,	C-store),	SAP/Sybase	IQ,	
Google	Bigtable (with	column	groups)
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store
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Ack:	Slide	from		VLDB	2009	tutorial	on	Column	store


