CompSci 516 Database Systems

Lecture 20 Parallel DBMS Instructor: Sudeepa Roy

Announcements

- HW3 due on Monday, Nov 20, 11:55 pm (in 2 weeks)
 - See some clarifications on Piazza

Reading Material

• [RG]

- Parallel DBMS: Chapter 22.1-22.5
- [GUW]
 - Parallel DBMS and map-reduce: Chapter 20.1-20.2

Acknowledgement:

The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Reading Material

• [RG]

- Parallel DBMS: Chapter 22.1-22.5
- Distributed DBMS: Chapter 22.6 22.14
- [GUW]
 - Parallel DBMS and map-reduce: Chapter 20.1-20.2
 - Distributed DBMS: Chapter 20.3, 20.4.1-20.4.2, 20.5-20.6
- Recommended readings:
 - Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by Rajaraman and Ullman: <u>http://i.stanford.edu/~ullman/mmds.html</u>
 - Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI' 04: <u>http://research.google.com/archive/mapreduce.html</u>

Acknowledgement:

The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Parallel and Distributed Data Processing

- Recall from Lecture 18!
- data and operation distribution if we have multiple machines
- Parallelism
 - performance
- Data distribution
 - increased availability, e.g. when a site goes down
 - distributed local access to data (e.g. an organization may have branches in several cities)
 - analysis of distributed data

Parallel vs. Distributed DBMS

Parallel DBMS

- Parallelization of various operations
 - e.g. loading data, building indexes, evaluating queries
- Data may or may not be distributed initially
- Distribution is governed by performance consideration

Distributed DBMS Lecture 18

- Data is physically stored across different sites
 - Each site is typically managed by an independent DBMS
- Location of data and autonomy of sites have an impact on Query opt., Conc. Control and recovery
 - Also governed by other factors:
 - increased availability for system crash
 - local ownership and access

Parallel DBMS

Why Parallel Access To Data?

Parallelism: divide a big problem into many smaller ones to be solved in parallel.

Parallel DBMS

- Parallelism is natural to DBMS processing
 - Pipeline parallelism: many machines each doing one step in a multi-step process.
 - Data-partitioned parallelism: many machines doing the same thing to different pieces of data.
 - Both are natural in DBMS!

CompSci 516: Database Systems

DBMS: The parallel Success Story

- DBMSs are the most successful application of parallelism
 - Teradata (1979), Tandem (1974, later acquired by HP),..
 - Every major DBMS vendor has some parallel server
- Reasons for success:
 - Bulk-processing (= partition parallelism)
 - Natural pipelining
 - Inexpensive hardware can do the trick
 - Users/app-programmers don't need to think in parallel

Some || Terminology

Ideal graphs

- Speed-Up
 - More resources means proportionally less time for given amount of data.
- Scale-Up
 - If resources increased in proportion to increase in data size, time is constant.

Some || Terminology

In practice

- Due to overhead in parallel processing
- Start-up cost

Starting the operation on many processor, might need to distribute data

• Interference

Different processors may compete for the same resources

Skew

The slowest processor (e.g. with a huge fraction of data) may become the bottleneck

Architecture for Parallel DBMS

• Among different computing units

- Whether memory is shared
- Whether disk is shared

Basics of Parallelism

- Units: a collection of processors
 - assume always have local cache
 - may or may not have local memory or disk (next)

- A communication facility to pass information among processors
 - a shared bus or a switch

Shared Memory

Shared Disk

Shared Nothing

Architecture: At A Glance

Shared Memory (SMP) **Shared Disk**

we will assume shared nothing Shared Nothing (network)

- Easy to program
- Expensive to build
- Low communication overhead: shared mem.
- Difficult to scaleup (memory contention)

Sequent, SGI, Sun

- Trade-off but still interference like shared-memory (contention of memory and nw bandwidth)
- VMScluster, Sysplex

- Hard to program and design parallel algos
- Cheap to build
- Easy to scaleup and speedup
- Considered to be the best architecture

Tandem, Teradata, SP2

What Systems Worked This Way

NOTE: (as of 9/1995)!

Shared Nothing

Teradata:400 nodesTandem:110 nodesIBM / SP2 / DB2:128 nodesInformix/SP248 nodesATT & Sybase? nodes

Shared Disk

Oracle 170 nodes DEC Rdb 24 nodes

Shared Memory

Informix RedBrick 9 nodes ? nodes

Different Types of DBMS Parallelism

- Intra-operator parallelism
 - get all machines working to compute a given operation (scan, sort, join)
 - OLAP (decision support)
- Inter-operator parallelism
 - each operator may run concurrently on a different site (exploits pipelining)
 - For both OLAP and OLTP
- Inter-query parallelism
 - different queries run on different sites
 - For OLTP

• We'll focus on intra-operator parallelism

Ack: Slide by Prof. Dan Suciu Duke CS, Fall 2017

Data Partitioning

Horizontally Partitioning a table (why horizontal?):Range-partitionHash-partitionBlock-partition

- Good for equijoins, range queries, group-by
- Can lead to data skew

- Good for equijoins
- But only if hashed on that attribute
- Can lead to data skew

Block-partition or Round Robin

- Send i-th tuple to i-mod-n processor
- Good to spread load
- Good when the entire relation is accessed

Shared disk and memory less sensitive to partitioning, Shared nothing benefits from "good" partitioning

Example

- R(<u>Key</u>, A, B)
- Can Block-partition be skewed?
 no, uniform
- Can Hash-partition be skewed?
 - on the key: uniform with a good hash function
 - on A: may be skewed,
 - e.g. when all tuples have the same A-value

Parallelizing Sequential Evaluation Code

- "Streams" from different disks or the output of other operators
 - are "merged" as needed as input to some operator
 - are "split" as needed for subsequent parallel processing
- Different Split and merge operations appear in addition to relational operators
- No fixed formula for conversion
- Next: parallelizing individual operations

Parallel Scans

- Scan in parallel, and merge.
- Selection may not require all sites for range or hash partitioning
 - but may lead to skew
 - Suppose $\sigma_{\text{A = 10}}\text{R}$ and partitioned according to A
 - Then all tuples in the same partition/processor
- Indexes can be built at each partition

Parallel Sorting

Idea:

- Scan in parallel, and range-partition as you go
 - e.g. salary between 10 to 210, #processors = 20
 - salary in first processor: 10-20, second: 21-30, third: 31-40,
- As tuples come in, begin "local" sorting on each
- Resulting data is sorted, and range-partitioned
- Visit the processors in order to get a full sorted order
- Problem: skew!
- Solution: "sample" the data at start to determine partition points.

Parallel Joins

- Need to send the tuples that will join to the same machine
 - also for GROUP-BY
- Nested loop:
 - Each outer tuple must be compared with each inner tuple that might join
 - Easy for range partitioning on join cols, hard otherwise
- Sort-Merge:
 - Sorting gives range-partitioning
 - Merging partitioned tables is local

Parallel Hash Join

- In first phase, partitions get distributed to different sites:
 - A good hash function *automatically* distributes work evenly
- Do second phase at each site.
- Almost always the winner for equi-join

Example with parallel hash join between A and B

Dataflow Network for parallel Join

build parallel versions of sequential join code.

Parallel Aggregates

- For each aggregate function, need a decomposition:
 - count(S) = Σ count(s(i)), ditto for sum()
 - $avg(S) = (\Sigma sum(s(i))) / \Sigma count(s(i))$
 - and so on...
- For group-by:
 - Sub-aggregate groups close to the source.
 - Pass each sub-aggregate to its group's site.
 - Chosen via a hash fn.

Which SQL aggregate operators are not good for parallel execution?

Count Count Count Count Count Count

Best serial plan may not be best ||

- Why?
- Trivial counter-example:
 - Table partitioned with local secondary index at two nodes
 - Range query: all of node 1 and 1% of node 2.
 - Node 1 should do a scan of its partition.
 - Node 2 should use secondary index.

Examples

Example problem: Parallel DBMS

R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is <u>block</u> <u>partitioned</u> across machines).

Show a RA plan for this query and how it will be executed across the N = 3 machines.

Pick an efficient plan that leverages the parallelism as much as possible.

- SELECT a, max(b) as topb
- FROM R
- WHERE a > 0
- GROUP BY a

We did this example for Map-Reduce in Lecture 12! R(a, b)

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

If more than one relation on a machine, then "scan S", "scan R" etc

R(a, b)

SELECT a, max(b) as topb FROM R WHERE > 0 GROUP BY a

R(a, b)

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

Benefit of hash-partitioning

```
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
```

 What would change if we hash-partitioned R on R.a before executing the same query on the previous parallel DBMS and MR

First Parallel DBMS

- It would avoid the data re-shuffling phase
- It would compute the aggregates locally

Benefit of hash-partitioning for Map-Reduce

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

• For MapReduce

- Logically, MR won't know that the data is hashpartitioned
- MR treats map and reduce functions as black-boxes and does not perform any optimizations on them
- But, if a local combiner is used
 - Saves communication cost:
 - fewer tuples will be emitted by the map tasks
 - Saves computation cost in the reducers:
 - the reducers would have to do anything

Column Store (slides from Lecture 19)

Row vs. Column Store

Row store

- store all attributes of a tuple together
- storage like "row-major order" in a matrix
- Column store
 - store all rows for an attribute (column) together
 - storage like "column-major order" in a matrix

• e.g.

 MonetDB, Vertica (earlier, C-store), SAP/Sybase IQ, Google Bigtable (with column groups) Re-use permitted when acknowledging the original @ Starros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

row-store

column-store

- + easy to add/modify a record
- + only need to read in relevant data
- might read in unnecessary data
- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Ack: Slide from VLDB 2009 tutorial on Column store

CompSci 516: Database Systems

Telco Data Warehousing example

- 1 Typical DW installation
- 1 Real-world example

"One Size Fits All? - Part 2: Benchmarking Results" Stonebraker et al. CIDR 2007

QUERY 2

SELECT account.account_number, sum (usage.toll_airtime), sum (usage.toll_price) FROM usage, toll, source, account WHERE usage.toll_id = toll.toll_id AND usage.source_id = source.source_id AND usage.source_id = account.account_id AND tolLtype_ind in ('AE'. 'AA') AND tolLtype_ind in ('AE'. 'AA') AND usage.toll_price > 0 AND source.type != 'CIBER' AND tolLrating_method = 'IS' AND usage.invoice_date = 20051013 GROUP BY account.account_number

	Column-store	Row-store
Query 1	2.06	300
Query 2	2.20	300
Query 3	0.09	300
Query 4	5.24	300
Query 5	2.88	300

Why? Three main factors (next slides)

Re-use permitted when acknowledging the original @ Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (1/3): read efficiency

row store

read pages containing entire rows

one row = 212 columns!

is this typical? (it depends)

What about vertical partitioning? (it does not work with ad-hoc queries) column store

read only columns needed

in this example: 7 columns

caveats:

- "select * " not any faster
- clever disk prefetching
- clever tuple reconstruction

Re-use permitted when acknowledging the original @ Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (2/3): compression efficiency

- Columns compress better than rows
 - 1 Typical row-store compression ratio 1:3
 - 1 Column-store 1 : 10
- 1 Why?
 - 1 Rows contain values from different domains
 - => more entropy, difficult to dense-pack
 - Columns exhibit significantly less entropy
 - Examples:

Male, Female, Female, Female, Male 1998, 1998, 1999, 1999, 1999, 2000

1 Caveat: CPU cost (use lightweight compression)

Telco example explained (3/3): sorting & indexing efficiency

- Compression and dense-packing free up space
 - Use multiple overlapping column collections
 - Sorted columns compress better
 - Range queries are faster
 - Use sparse clustered indexes

