
11/12/17

1

CompSci 516
Database	Systems

Lecture	21
Recursive	Query	Evaluation	

and
Datalog

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Today

• Semantic	of	recursion	in	databases
• Datalog

– for	recursion in	database	queries

• Semi-naïve	evaluation	using
– Incremental	View	Maintenance	(IVM)
– What	is	a	view

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 2

3

http://xkcdsw.com/1105

Recursion!

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

A	motivating	example

• Example:	find	Bart’s	ancestors
• “Ancestor”	has	a	recursive	definition

– 𝑋 is	𝑌’s	ancestor	if
• 𝑋 is	𝑌’s	parent,	or
• 𝑋 is	𝑍’s	ancestor	and	𝑍 is	𝑌’s	ancestor

4

Parent (parent,	child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe
Bart Lisa

MargeHomer

Abe

Ape

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Recursion	in	SQL

• SQL2	had	no	recursion
– You	can	find	Bart’s	parents,	grandparents,	great	
grandparents,	etc.

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

– But	you	cannot	find	all	his	ancestors	with	a	single	
query

5Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Recursion	in	Databases

• Consider	a	graph	G(V,	E).	Can	you	find	out	all	“ancestor”	
vertices	that	can	reach	“x”	using	Relational	Algebra/Calculus?

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 6

11/12/17

2

Recursion	in	Databases

• What	can	we	do	to	overcome	the	limitation?

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 7

Brief	History	of	Datalog

• Motivated	by	Prolog	– started	back	in	80’s	– then	quiet	for	a	long	
time

• A	long	argument	in	the	Database	community	whether	recursion	
should	be	supported	in	query	languages
– “No	practical	applications	of	recursive	query	theory	...	have	been	found	to	

date”—Michael	Stonebraker,	1998
Readings	in	Database	Systems,	3rd	Edition	Stonebraker and	Hellerstein,	
eds.

– Recent	work	by	Hellerstein et	al.	on	Datalog-extensions	to	build	
networking	protocols	and	distributed	systems.	[Link]

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 8

Datalog is	resurging!

• Number	of	papers	and	tutorials	in	DB	conferences

• Applications	in	
– data	integration,	declarative	networking,	program	analysis,	information	

extraction,	network	monitoring,	security,	and	cloud	computing	

• Systems	supporting	datalog in	both	academia	and	industry:
– Lixto (information	extraction)
– LogicBlox (enterprise	decision	automation)
– Semmle (program	analysis)	
– BOOM/Dedalus (Berlekey)
– Coral
– LDL++

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 9

Reading	Material:		Datalog
Optional:
1. The	datalog chapters	in	the	“Alice	Book”	
Foundations	of	Databases
Abiteboul-Hull-Vianu
Available	online:		http://webdam.inria.fr/Alice/

2.	Datalog tutorial
SIGMOD	2011
“Datalog and	Emerging	Applications:	An	
Interactive	Tutorial”

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 10

Acknowledgement:	
Some	of	the	following	slides	have	been	borrowed	from
slides	by	Prof.	Jun	Yang

Recursive	Query	in	SQL

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 11

Recursion	in	SQL

• SQL2	had	no	recursion

• SQL3	introduces	recursion
– WITH clause
– Implemented	in	PostgreSQL	(common	table	
expressions)

12Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

11/12/17

3

base	case

Ancestor	query	in	SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
(
(SELECT parent, child FROM Parent)
UNION

(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

13

Query	using	
the	relation
defined	in	
WITH clause

Define	a
relation

recursively

recursion step

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Fixed	point	of	a	function

• If	𝑓: 𝑇 → 𝑇 is	a	function	from	a	type	𝑇 to	itself,	
a	fixed	point	of	𝑓 is	a	value	𝑥 such	that	𝑓 𝑥 =
𝑥

• Example:	What	is	the	fixed	point	of	𝑓 𝑥 =
𝑥 2⁄ ?
– 0,	because	𝑓 0 = 0 2⁄ = 0

14Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

To	compute	fixed	point	of	a	function	f

• Start	with	a	“seed”:	𝑥 ← 𝑥.
• Compute	𝑓 𝑥

– If	𝑓 𝑥 = 𝑥,	stop;	𝑥 is	fixed	point	of	𝑓
– Otherwise,	𝑥 ← 𝑓 𝑥 ;	repeat

• Example:	compute	the	fixed	point	of	𝑓 𝑥 = 𝑥 2⁄
– With	seed	1:	1,	1/2,	1/4,	1/8,	1/16,	…	→ 0

FDoesn’t	always	work,	but	happens	to	work	for	us!

15Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Fixed	point	of	a	query

• A	query	𝑞 is	just	a	function	that	maps	an	input	table	to	an	output	
table,	so	a	fixed	point	of	𝑞 is	a	table	𝑇 such	that	𝑞 𝑇 = 𝑇

To	compute	fixed	point	of	𝑞

• Start	with	an	empty	table:	𝑇 ← ∅
• Evaluate	𝑞 over	𝑇

– If	the	result	is	identical	to	𝑇,	stop;	𝑇 is	a	fixed	point
– Otherwise,	let	𝑇 be	the	new	result;	repeat

F Starting	from	∅ produces	the	unique	minimal	fixed	point (assuming	
𝑞 is	monotone)

16Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Finding	ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
– Think	of	the	definition	as	Ancestor =	𝑞(Ancestor)

17

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape LisaDuke	CS,	Fall	2017 CompSci	516:	Database	Systems

Intuition	behind	fixed-point	iteration

• Initially,	we	know	nothing	about	ancestor-descendent	
relationships

• In	the	first	step,	we	deduce	that	parents	and	children	
form	ancestor-descendent	relationships

• In	each	subsequent	steps,	we	use	the	facts	deduced	in	
previous	steps	to	get	more	ancestor-descendent	
relationships

• We	stop	when	no	new	facts	can	be	proven

18Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

11/12/17

4

Linear	recursion

• With	linear	recursion,	a	recursive	definition	can	make	only	one	
reference	to	itself

• Non-linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

19Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Linear	vs.	non-linear	recursion

• Linear	recursion	is	easier	to	implement
– For	linear	recursion,	just	keep	joining	newly	generated	
Ancestor rows	with	Parent

– For	non-linear	recursion,	need	to	join	newly	generated	
Ancestor rows	with	all	existing	Ancestor rows

• Non-linear	recursion	may	take	fewer	steps	to	converge,	
but	perform	more	work
– Example:	𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒
– Linear	recursion	takes	4	steps
– Non-linear	recursion	takes	3	steps

• More	work:	e.g.,	𝑎 → 𝑑 has	two	different	derivations

20Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

21

http://xkcdsw.com/3080

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Mutual	recursion	example

• Table	Natural (n)	contains	1,	2,	…,	100

• Which	numbers	are	even/odd?
– An	odd	number	plus	1	is	an	even	number
– An	even	number	plus	1	is	an	odd	number
– 1	is	an	odd	number

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

22

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Semantics	of	WITH

• WITH RECURSIVE 𝑅7 AS 𝑄7, …,
RECURSIVE 𝑅9 AS 𝑄9

𝑄;
– 𝑄 and	𝑄7,… , 𝑄9 may	refer	to	𝑅7,… , 𝑅9

• Semantics
1.	𝑅7 ← ∅,… , 𝑅9 ← ∅

2.	Evaluate	𝑄7,… , 𝑄9 using	the	current	contents	of	𝑅7,… , 𝑅9:
𝑅79<= ← 𝑄7,… , 𝑅99<= ← 𝑄9

3.	If	𝑅>9<= ≠ 𝑅> for	some	𝑖
3.1.	𝑅7 ← 𝑅79<=,… , 𝑅9 ← 𝑅99<=
3.2.	Go	to	2.

4.	Compute	𝑄 using	the	current	contents	of	𝑅7,…𝑅9
and	output	the	result

23Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Computing	mutual	recursion

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

• Even =	∅,	Odd =	∅
• Even =	∅,	Odd =	{1}
• Even =	{2},	Odd =	{1}
• Even =	{2},	Odd =	{1,	3}
• Even =	{2,	4},	Odd =	{1,	3}
• Even =	{2,	4},	Odd =	{1,	3,	5}
• …

24Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

11/12/17

5

Fixed	points	are	not	unique

• But	if	𝑞 is	monotone,	then	
all	these	fixed	points	must	contain	the	fixed	point	we	
computed	from	fixed-point	iteration	starting	with	∅

• Thus	the	unique	minimal fixed	point	is	the	“natural”	answer 25

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa
Note	how	the	bogus	tuple

reinforces	itself!

Bogus Bogus

Bogus Bogus

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Mixing	negation	with	recursion

• If	𝑞 is	non-monotone
– The	fixed-point	iteration	may	flip-flop	and	never	converge
– There	could	be	multiple	minimal	fixed	points—we	wouldn’t	
know	which	one	to	pick	as	answer!

• Example:	popular	users	(pop	≥ 0.8)	join	either	Jessica’s	
Circle	or	Tommy’s	(but	not	both)
– Those	not	in	Jessica’s	Circle	should	be	in	Tom’s
– Those	not	in	Tom’s	Circle	should	be	in	Jessica’s

• WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle)) 26Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Fixed-point	iter may	not	converge
• WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

27

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid uid

TommyCircle JessicaCircle
uid

142

121

uid

142

121

TommyCircle JessicaCircle

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Multiple	minimal	fixed	points
• WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

28

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid

142

uid

121

TommyCircle JessicaCircle
uid

121

uid

142

TommyCircle JessicaCircle

Problem:	What	do	we	answer	if	someone	asks	whether	121	belongs	to	JessicaCircle?Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Legal	mix	of	negation	and	recursion
• Construct	a	dependency	graph

– One	node	for	each	table	defined	in	WITH
– A	directed	edge	𝑅 → 𝑆 if	𝑅 is	defined	in	terms	of	𝑆
– Label	the	directed	edge	“−”	if	the	query	defining	𝑅 is	not	
monotone	with	respect	to	𝑆

• Legal	SQL3	recursion:	no	cycle	with	a	“−”	edge
– Called	stratified	negation

• Bad	mix:	a	cycle	with	at	least	one	edge	labeled	“−”

29

Ancestor

Legal!

TommyCircle JessicaCircle

−

− Illegal!
Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Stratified	negation	example

• Find	pairs	of	persons	with	no	common	ancestors
WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)),

Person(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person

FROM Person p1, Person p2
WHERE p1.person <> p2.person)
EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;

30

Ancestor

Person

NoCommonAnc

−

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

11/12/17

6

Evaluating	stratified	negation

• The	stratum of	a	node	𝑅 is	the	maximum	number	of	“−”	
edges	on	any	path	from	𝑅
in	the	dependency	graph
– Ancestor:	stratum	0
– Person:	stratum	0
– NoCommonAnc:	stratum	1

• Evaluation	strategy
– Compute	tables	lowest-stratum	first
– For	each	stratum,	use	fixed-point	iteration	on	all	nodes	in	that	
stratum

• Stratum	0:	Ancestor and	Person
• Stratum	1:	NoCommonAnc

FIntuitively,	there	is	no	negation	within	each	stratum

31

Ancestor

Person

NoCommonAnc

−

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Summary

• SQL3	WITH recursive	queries
• Solution	to	a	recursive	query	(with	no	negation):	
unique	minimal	fixed	point

• Computing	unique	minimal	fixed	point:	fixed-
point	iteration	starting	from	∅

• Mixing	negation	and	recursion	is	tricky
– Illegal	mix:	fixed-point	iteration	may	not	converge;	
there	may	be	multiple	minimal	fixed	points

– Legal	mix:	stratified	negation	(compute	by	fixed-point	
iteration	stratum	by	stratum)

• Another	language	for	recursion:	Datalog

32Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Datalog

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 33

Datalog:	Another	query	language	for	
recursion

• Ancestor(x,	y)	:- Parent(x,	y)
• Ancestor(x,	y):- Parent(x,	z),	Ancestor(z,	y)

• Like	logic	programming
• Multiple	rules
• Same	“head”	=	union
• “,”	=	AND

• Same	semantics	that	we	discussed	so	far

34Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Recall	our	drinker	example	in	
RC	(Lecture	4)

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

35CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Drinker	example	is	from	slides	by	Profs.	Balazinska and	Suciu
and	the	[GUW]	book

Write	it	as	a	Datalog Rule
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

36CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

RC:
Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)

11/12/17

7

Write	it	as	a	Datalog Rule
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

37CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)

RC:
Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

• Quick	differences:
– Uses	“:-”	not	=
– no	need	for	$ (assumed	by	default)
– Use	“,”	on	the	right	hand	side	(RHS)	
– Anything	on	RHS	the	of	:- is	assumed	to	be	combined	with	∧ by	default
– ",	Þ,	not	allowed	– they	need	to	use	negation	¬
– Standard	“Datalog”	does	not	allow	negation
– Negation	allowed	in	datalog with	negation

• How	to	specify	disjunction	(OR	/	⋁)?

Example:	OR	in	Datalog
Find drinkers that (a) either frequent some bar that serves some beer
they like, (b) or like beer “BestBeer”

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

38CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)
Q(x) :- Likes(x, “BestBeer”)

RC:
Q(x)	=	[$y.	$z.	Frequents(x,	y)∧Serves(y,z)∧Likes(x,z)]					⋁ [Likes(x,	“BestBeer”)]

Example:	OR	in	Datalog
Find drinkers that (a) either frequent some bar that serves some beer
they like, (b) or like beer “BestBeer”, (c) or, frequent bars that “Joe”
frequents

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

39CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Datalog:
JoeFrequents(w)	:- Frequents(“Joe”,	w)
Q(x)	:- Frequents(x,	y),	Serves(y,z),	Likes(x,z)
Q(x)	:- Likes(x,	“BestBeer”)
Q(x)	:- Frequents(x,	w),	JoeFrequents(w)

RC:
Q(x)	=	[$y.	$z.	Frequents(x,	y)∧Serves(y,z)∧Likes(x,z)]			⋁ [Likes(x,	“BestBeer”)]								

⋁ [$w Frequents(x,	w)	∧ Frequents(“Joe”,	w)]

• To	specify	“OR”,	write	multiple	rules	with	the	same	“Head”
• Next:	terminology	for	Datalog

• Each rule is of the form Head :- Body

• Each variable in the head of each rule must appear in
the body of the rule

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

40CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

JoeFrequents(w)	:- Frequents(“Joe”,	w)
Q(x)	:- Frequents(x,	y),	Serves(y,z),	Likes(x,z)
Q(x)	:- Likes(x,	“BestBeer”)
Q(x)	:- Frequents(x,	w),	JoeFrequents(w)

Four	rules

BodyHead

Datalog Rules

Atom

Variable

EDBs	and	IDBs

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 41

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

• Intensional DataBases (IDBs)
– Relations	that	are	derived
– Can	be	intermediate	or	final	output	tables
– e.g.	JoeFrequents,	Q
– Can	be	on	the	LHS	or	RHS	(e.g.	JoeFrequents)

• Extensional	DataBases (EDBs)
– Input	relation	names
– e.g.	Likes,	Frequents,	Serves
– can	only	be	on	the	RHS	of	a	rule

JoeFrequents(w)	:- Frequents(“Joe”,	w)
Q(x)	:- Frequents(x,	y),	Serves(y,z),	Likes(x,z)
Q(x)	:- Likes(x,	“BestBeer”)
Q(x)	:- Frequents(x,	w),	JoeFrequents(w)

Tuple	in	an	EDB	or	
an	IDB:		a	FACT

either	belongs	to	a
given	EDB	relation,	
or	is	derived	in	an	
IDB relation

Graph	Example

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 42

a

b

c

d e

V1 V2
a c
b a
b d
c d
d a
d e

E	(edge	relation)

11/12/17

8

Example	1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 43

E	(edge	relation)

Write	a	Datalog program	to	find	
paths	of	length	two	(output	start	
and	finish	vertices)

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

Example	1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 44

E	(edge	relation)

Write	a	Datalog program	to	find	
paths	of	length	two	(output	start	
and	finish	vertices)

P2(x,	y)	:- E(x,	z),	E(z,	y)

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

Example	1:	Execution

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 45

E	(edge	relation)

Write	a	Datalog program	to	find	
paths	of	length	two	(output	start	
and	finish	vertices)

P2(x,	y)	:- E(x,	z),	E(z,	y)

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

V1 V2

a d
b c
b e
c a
c e
d c

P2

same	as	E	⨝E.V2=E.V1 E

Example	2

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 46

E	(edge	relation)

Write	a	Datalog program	to	find	
all	pairs	of	vertices	(u,	v)	such	
that	v	is	reachable	from	u

• Can	you	write	a	SQL/RA/RC	query	for	reachability?

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

Example	2

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 47

E	(edge	relation)

• Can	you	write	a	SQL/RA/RC	query	for	reachability?
• NO		- SQL/RA/RC	cannot	express	reachability

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e Write	a	Datalog program	to	find	
all	pairs	of	vertices	(u,	v)	such	
that	v	is	reachable	from	u

Example	2

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 48

E	(edge	relation)

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)

Option	1

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e Write	a	Datalog program	to	find	
all	pairs	of	vertices	(u,	v)	such	
that	v	is	reachable	from	u

11/12/17

9

Example	2

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 49

E	(edge	relation)

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)

Option	1 R(x,	y)	:- E(x,	y)
R(x,	y)	:- R(x,	z),	E(z,	y)

Option	2

R(x,	y)	:- E(x,	y)
R(x,	y)	:- R(x,	z),	R(z,	y)

Option	3

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e Write	a	Datalog program	to	find	
all	pairs	of	vertices	(u,	v)	such	
that	v	is	reachable	from	u

linear

non-linear

Linear	Datalog

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 50

• Linear	rule
– at	most	one	atom	in	the	body	that	is	recursive	with	the	
head	of	the	rule

– e.g.	R(x,	y)	:- E(x,	z),	R(z,	y)
• Linear	datalog program

– if	all	rules	are	linear	
– like	linear	recursion

• Top-down	and	bottom-up	evaluation	are	possible
– we	will	focus	on	bottom-up

Example	2:	Execution

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 51

E

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)

Option	1

V1 V2

a c
b a
b d
c d
d a
d e

Iteration	1 R	=	E

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

(vertices	reachable	in	1-hop	by	
a	direct	edge)

Example	2:	Execution

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 52

E

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)

Option	1

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

RIteration	2

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

(vertices	reachable	in	2-hops)

Example	2:	Execution

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 53

E

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)

Option	1

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c
a e
a a
c c
d d

RIteration	3

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

(vertices	reachable	in	3-hops)

Example	2:	Execution

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 54

E

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)

Option	1

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c
a e
a a
c c
d d

RIteration	4

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

R	unchanged	- stop

11/12/17

10

Examples	3	and	4

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 55

E	(edge	relation)

Write	a	Datalog program	to	find	
all	vertices	reachable	from	b

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)
QB(y)	:- R(b,	y)

V1 V2
a c
b a
b d
c d
d a
d e

a

b

c

d e

Write	a	Datalog program	to	find	
all	vertices	u	reachable	from	
themselves	R(u,	u)

R(x,	y)	:- E(x,	y)
R(x,	y)	:- E(x,	z),	R(z,	y)
Q(x)	:- R(x,	x)

Termination	of	a	Datalog Program

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 56

Q.	 A	Datalog program	always	terminates	– why?

Termination	of	a	Datalog Program

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 57

Q. A	Datalog program	always	terminates	– why?

• Because	the	values	of	the	variables	are	coming	from	the	“active	domain”	in	the	
input	relations	(EDBs)

• Active	domain	=	(finite)	values	from	the	(possibly	infinite)	domain	appearing	in	the	
instance	of	a	database

– e.g.	age	can	be	any	integer	(infinite),	but	active	domain	is	only	finitely	many	in	R(id,	name,	
age)

• Therefore	the	number	of	possible	values	in	each	of	the	IDBs	is	finite

• e.g.	in	the	reachability	example	R(x,	y),	the	values	of	x	and	y	come	from	{a,	b,	c,	d,	
e}

– at	most	5	x	5	=	25	tuples	possible	in	the	IDB	R(x,	y)	
– in	any	iteration,	at	least	one	new	tuple	is	added	in	at	least	one	IDB
– Must	stop	after	finite	steps
– e.g.	the	maximum	number	of	iteration	in	the	reachability	example	for	any	graph	with	

five	vertices	is	25	(it	was	only	4	in	our	example)

Bottom-up	Evaluation	of	
a	Datalog Program

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 58

• Naïve	evaluation

• Semi-naïve	evaluation

Naïve	evaluation	- 1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 59

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

Iteration	1:
R	=	E	=	R1	(say)

E

a

b

c

d e

In	all	subsequent	iteration,	check	if	any	of	the	rules
can	be	applied

Do	union	of	all	the	rules	with	the	same	head	IDB

Naïve	evaluation	- 2

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 60

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

Iteration	1:
R	=	E	=	R1	(say)

E

a

b

c

d e

Iteration	2:
R	=	E	∪

E	⨝ R1
=	R2	(say)

R1	≠	R2
so	continue

11/12/17

11

Naïve	evaluation	- 3

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 61

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c
a e
a a
c c
d d

Iteration	1:
R	=	E	=	R1	(say)

E

a

b

c

d e

Iteration	2:
R	=	E	∪

E	⨝ R1
=	R2	(say)

R1	≠	R2
so	continue

Iteration	3:
R	=	E	∪

E	⨝ R2
=	R3	(say)

R2	≠	R3
so	continue

Naïve	evaluation	- 4

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 62

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c
a e
a a
c c
d d

Iteration	1:
R	=	E	=	R1	(say)

E

a

b

c

d e

Iteration	2:
R	=	E	∪

E	⨝ R1
=	R2	(say)

R1	≠	R2
so	continue

Iteration	3:
R	=	E	∪

E	⨝ R2
=	R3	(say)

R2	≠	R3
so	continue

Iteration	4:
R	=	E	∪

E	⨝ R3
=	R4	(say)

R3	=	R4
so	STOP

Problem	with	Naïve	Evaluation

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 63

• The	same	IDB	facts	are	discovered	again	and	again
– e.g.	in	each	iteration	all	edges	in	E	are	included	in	R
– In	the	2nd-4th iterations,	the	first	six	tuples	in	R	are	computed	

repeatedly

• Solution:	Semi-Naïve	Evaluation

• Work	only	with	the	new	tuples	generated	in	the	previous	
iteration

Semi-Naïve	evaluation	- 1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 64

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

Iteration	1:
R	=	E	=	R1	(say)
ΔR1	=	R1

E

a

b

c

d e

Initially:
R	=	Φ

Semi-Naïve	evaluation	- 2

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 65

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

Iteration	1:
R	=	E	=	R1	(say)
ΔR1	=	R1

E

a

b

c

d e

Iteration	2:
R	=	R1	∪

E	⨝ ΔR1
=	R2	(say)

ΔR2	=	R2	– R1

ΔR2	≠	Φ
so	continue

Initially:
R	=	Φ

Semi-Naïve	evaluation	- 3

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 66

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c
a e
a a
c c
d d

Iteration	1:
R	=	E	=	R1	(say)
ΔR1	=	R1

E

a

b

c

d e

Iteration	2:
R	=	R1	∪

E	⨝ ΔR1
=	R2	(say)

ΔR2	=	R2	– R1

ΔR2	≠	Φ
so	continue

Iteration	3:
R	=	R2∪

E	⨝ ΔR2
=	R3	(say)

ΔR3	=	R3	– R2

ΔR3	≠	Φ
so	continue

Initially:
R	=	Φ

11/12/17

12

Semi-Naïve	evaluation	- 4

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 67

V1 V2

a c
b a
b d
c d
d a
d e

V1 V2
a c
b a
b d
c d
d a
d e

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c

V1 V2

a c
b a
b d
c d
d a
d e
a d
b c
b e
c a
c e
d c
a e
a a
c c
d d

Iteration	1:
R	=	E	=	R1	(say)
ΔR1	=	R1

E

a

b

c

d e

Iteration	2:
R	=	R1	∪

E	⨝ ΔR1
=	R2	(say)

ΔR2	=	R2	– R1

ΔR2	≠	Φ
so	continue

Iteration	3:
R	=	R2∪

E	⨝ ΔR2
=	R3	(say)

ΔR3	=	R3	– R2

ΔR3	≠	Φ
so	continue

Iteration	4:
R	=	R3	∪
E	⨝ ΔR3
=	R4	(say)

ΔR4	=	R4	– R3
ΔR	=	Φ
(CHECK	J)
so	STOP

Initially:
R	=	Φ

Incremental	View	Maintenance	(IVM)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 68

• Why	did	the	semi-naïve	algorithm	work?
• Because	of	the	generic	technique	of	Incremental	
“View”	Maintenance	(IVM)

• What	is	a	view?

Views

• A	view is	like	a	“virtual”	table
– Defined	by	a	query,	which	describes	how	to	
compute	the	view	contents	on	the	fly

– DBMS	stores	the	view	definition	query	instead	of	
view	contents

– Can	be	used	in	queries	just	like	a	regular	table

69

Creating	and	dropping	views

• Example:	members	of	Jessica’s	Circle
– CREATE VIEW JessicaCircle AS

SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');

– Tables	used	in	defining	a	view	are	called	“base	tables”
• User and	Member above

• To	drop	a	view
– DROP VIEW JessicaCircle;

70

User(uid,	name)
Member(gid,	uid)

Using	views	in	queries

• Example:	find	the	average	popularity	of	members	in	
Jessica’s	Circle

– SELECT AVG(pop) FROM JessicaCircle;

– To	process	the	query,	replace	the	reference	to	the	view	by	its	
definition

– SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))

AS JessicaCircle;

71

Why	use	views?

72

11/12/17

13

Modifying	views

• Does	it	even	make	sense,	since	views	are	
virtual?

• It	does	make	sense	if	we	want	users	to	really	
see	views	as	tables

• Goal:	modify	the	base	tables	such	that	the	
modification	would	appear	to	have	been	
accomplished	on	the	view

73

A	simple	case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates	to:

DELETE FROM User WHERE uid = 123;

74

An	impossible	case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser
VALUES(987, 0.3);

• No	matter	what	we	do	on	User,	the	inserted	
row	will	not	be	in	PopularUser

75

A	case	with	too	many	possibilities

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;
– Note	that	you	can	rename	columns	in	view	definition

UPDATE AveragePop SET pop = 0.5;

• Set	everybody’s	pop to	0.5?
• Adjust	everybody’s	pop by	the	same	amount?
• Just	lower	Jessica’s	pop?

76

SQL92	updateable	views

• More	or	less	just	single-table	selection	queries	
– No	join
– No	aggregation
– No	subqueries
– Other	restrictions	like	“default/	no	NOT	NULL”	values	for	attributes	

that	are	projected	out	in	the	view
• so	that	they	can	be	extended	with	valid/NULL	values	in	the	base	table

• Arguably	somewhat	restrictive

• Still	might	get	it	wrong	in	some	cases
– See	the	slide	titled	“An	impossible	case”
– Adding	WITH CHECK OPTION to	the	end	of	the	view	definition	will	

make	DBMS	reject	such	modifications

77

INSTEAD OF triggers	for	views

CREATE TRIGGER AdjustAveragePop

INSTEAD OF UPDATE ON AveragePop

REFERENCING OLD ROW AS o,
NEW ROW AS n

FOR EACH ROW

UPDATE User

SET pop = pop + (n.pop-o.pop);

78

11/12/17

14

Incremental	View	Maintenance	(IVM)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 79

• Why	did	the	semi-naïve	algorithm	work?
• Because	of	the	generic	technique	of	Incremental	View	

Maintenance	(IVM)

• Suppose	you	have	
– a	database	D	=	(R1,	R2,	R3)
– a	query	Q	that	gives	answer	Q(D)
– D	=	(R1,	R2,	R3)	gets	updated	to	D’	=	(R1’,	R2’,	R3’)
– e.g.	R1’	=	R1	∪ ΔR1	(insertion),	R2’	=	R2	- ΔR1	(deletion)	etc.

Incremental	View	Maintenance	(IVM)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 80

• Why	did	the	semi-naïve	algorithm	work?
• Because	of	the	generic	technique	of	Incremental	View	

Maintenance	(IVM)

• Suppose	you	have	
– a	database	D	=	(R1,	R2,	R3)
– a	query	Q	that	gives	answer	Q(D)
– D	=	(R1,	R2,	R3)	gets	updated	to	D’	=	(R1’,	R2’,	R3’)
– e.g.	R1’	=	R1	∪ ΔR1	(insertion),	R2’	=	R2	- ΔR1	(deletion)	etc.

• IVM: Can	you	compute	Q(D’)	using	Q(D)	and	ΔR1,	ΔR2,	
ΔR3	without	computing	it	from	scratch	(i.e.	do	not	rerun	
the	query	Q)?	

IVM Example:	Selection

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 81

V1 V2

a c
b a
d a
c d

V1 V2

a c
b a
d a
c d
b d
d e

σV1=b	R

R

V1 V2

b a

R’	=	R	∪ ΔR

ΔR

σV1=b	R’

V1 V2

b a
b d

V1 V2

b a

V1 V2

b d

σV1=b	R σV1=b	ΔR

• σV1=b	(R	∪ ΔR)			=	σV1=b	R	∪ σV1=b	ΔR
• It	suffices	to	apply	the	selection	condition	only on	ΔR

– and	include	with	the	original	solution	

∪

IVM Example:	Projection

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 82

• πV1	(R	∪ ΔR)			=	π	V1	R	∪ π	V1	ΔR
• It	suffices	to	apply	the	projection	condition	only on	ΔR

– and	include	with	the	original	solution	

V1 V2

a c
b a
d a
d e

V1 V2

a c
b a
d a
d e
b d
c d

π	V1	R

R

V1

a
b
d

R’	=	R	∪ ΔR

ΔR

π	V1	R’

V1

b
c

π	V1	R

π	V1	ΔR

V1

a
b
d
c

V1

a
b
d

∪

IVM Example:	Join

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 83

(R	∪ ΔR)	⨝ (S	∪ ΔS)	
=	(R	⨝ S)	∪ (R	⨝ Δ	S)	∪ (ΔR	⨝ S)	∪ (Δ	R	⨝ Δ	S)	

A B

a1 b1
a2 b2
a3 b1

B C

b1 c1
b2 c2

S’	=	S	∪ ΔS	R’	=	R	∪ ΔR

ΔR
ΔS	

A B

a1 b1
B C

b1 c1
A B C

a1 b1 c1⨝

⨝

=	

A B

a1 b1
B C

b1 c1⨝

A B

a1 b1
⨝

B C

b2 c2

A B

a2 b2
a3 b1

⨝
B C

b1 c1

=	

A B

a2 b2
a3 b1

B C

b2 c2⨝

∪

∪

∪

A B C

a1 b1 c1
a3 b1 c1
a2 b2 c2

=	 =	

IVM for	Linear	Datalog Rule

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 84

(R	∪ ΔR)	⨝ (S	∪ ΔS)	
=	(R	⨝ S)	∪ (R	⨝ Δ	S)	∪ (ΔR	⨝ S)	∪ (Δ	R	⨝ Δ	S)

A B

a1 b1
a2 b2
a3 b1

B C

b1 c1

S’	=	S

R’	=	R	∪ ΔR

ΔR

A B

a1 b1
B C

b1 c1
A B C

a1 b1 c1⨝

⨝

=	

A B C

a1 b1 c1
a3 b1 c1

=	

• R(x,	y)	:- E(x,	z),	R(z,	y)
– i.e.	Rnew =	E	⨝ R

• But	E	is	EDB
– ΔE	=	Φ

• Therefore,	
E	⨝ (R	∪ ΔR)	=	(E	⨝ R)	∪ (E	⨝ ΔR)
• It	suffices	to	join	with	the	difference	

ΔR	and	include	in	the	result	in	the	
previous	round	E	⨝ R

• Advantage	of	having	“linear	rule”		

11/12/17

15

Unsafe/Safe	Datalog Rules

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 85

• What	is	the	problem	with	this	rule?
• What	should	this	rule	return?	

– names	of	all	drinkers	in	the	world?
– names	of	all	drinkers	in	the	USA?
– names	of	all	drinkers	in	Durham?

Find drinkers who like beer “BestBeer” Q(x) :- Likes(x, “BestBeer”)

Find drinkers who DO NOT like
beer “BestBeer”

Q(x) :- ¬Likes(x, “BestBeer”)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 86

Find drinkers who like beer “BestBeer” Q(x) :- Likes(x, “BestBeer”)

Find drinkers who DO NOT like
beer “BestBeer”

Q(x) :- ¬Likes(x, “BestBeer”)

Problem	with	Negation	in	
Datalog Rules

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

• What	is	the	problem	with	this	rule?
• Dependent	on	“domain”	of	drinkers

– domain-dependent
– infinite	answers	possible	too..

• keep	generating	“names”

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 87

• Solution:
• Restrict	to	“active	domain”	of	drinkers	from	the	input	
Likes (or	Frequents)	relation
– “domain-independence”	– same	finite	answer	always

• Becomes	a	“safe	rule”

Find drinkers who like beer “BestBeer” Q(x) :- Likes(x, “BestBeer”)

Find drinkers who DO NOT like
beer “BestBeer”

Q(x) :- ¬Likes(x, “BestBeer”)

Problem	with	Negation	in	
Datalog Rules

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) :- Likes(x, y), ¬Likes(x, “BestBeer”)

