
11/14/17

1

CompSci 516
Database	Systems

Lecture	21
Data	Warehousing

and
Data	Cube

Instructor:	Sudeepa Roy

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 1

Reading	Material

• [RG]
– Chapter	25

• Gray-Chaudhuri-Bosworth-Layman-Reichart-Venkatrao-Pellow-Pirahesh,	ICDE	1996	“Data	Cube:	A	
Relational	Aggregation	Operator	Generalizing	Group-By,	Cross-Tab,	and	Sub-Totals”

• Harinarayan-Rajaraman-Ullman,	SIGMOD	1996	“Implementing	data	cubes	efficiently”

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 2

Acknowledgement:	
• The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan	and		Dr.	Gehrke.
• Some	slides	have	been	prepared	by	Prof.	Shivnath Babu

Data	Warehousing

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 3 4

Warehousing

• Growing	industry:	$8	billion	way	back	in	1998
• Data	warehouse	vendor	like	Teradata

• big	“Petabyte	scale”customers
• Apple,	Walmart	(2008-2.5PB),	eBay	(2013-primary	DW	9.2	
PB,	other	big	data	40PB,	single	table	with	1	trillion	rows),	
Verizon,	AT&T,	Bank	of	America

• supports	data	into	and	out	of	Hadoop
• Lots	of	buzzwords,	hype
– slice	&	dice,	rollup,	MOLAP,	pivot,	...

Ack:	Slide	by	Prof.	Shivnath Babu

https://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-
have-some-of-the-biggest-data-warehouses-youve-ever-seen/

5

Motivating	Examples

• Forecasting
• Comparing	performance	of	units
• Monitoring,	detecting	fraud
• Visualization

Introduction
• Organizations	analyze	current	and	historical	data	

– to	identify	useful	patterns
– to	support	business	strategies

• Emphasis	is	on	complex,	interactive,	exploratory	
analysis	of	very	large	datasets

• Created	by	integrating	data	from	across	all	parts	of	an	
enterprise

• Data	is	fairly	static

• Relevant	once	again	for	the	recent	“Big	Data	analysis”
– to	figure	out	what	we	can	reuse,	what	we	cannot

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 6

11/14/17

2

Three	Complementary	Trends

• Data	Warehousing	(DW):		
– Consolidate	data	from	many	sources	in	one	large	repository
– Loading,	periodic	synchronization	of	replicas
– Semantic	integration

• OLAP:		
– Complex	SQL	queries	and	views.	
– Queries	based	on	spreadsheet-style	operations	and	
“multidimensional”	view	of	data.

– Interactive	and	“online”	queries.

• Data	Mining:		
– Exploratory	search	for	interesting	trends	and	anomalies
– Next	lecture!

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 7

Data	Warehousing
• A	collection	of	decision	support	technologies
• To	enable	people	in	industry/organizations	to	make	better	

decisions
– Supports	OLAP	(On-Line	Analytical	Processing)

• Applications	in
– Manufacturing
– Retail	
– Finance
– Transportation
– Healthcare
– …

• Typically	maintained	separately	from	“Operational	Databases”
– Operational	Databases	support	OLTP	(On-Line	Transaction	Processing)

8Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

9

Why	a	Warehouse?

• Two	Approaches:
– Query-Driven	(Lazy)
–Warehouse	(Eager)

Source Source

?

10

Advantages	of	Warehousing

• High	query	performance
• Queries	not	visible	outside	warehouse
• Local	processing	at	sources	unaffected
• Can	operate	when	sources	unavailable
• Can	query	data	not	stored	in	a	DBMS
• Extra	information	at	warehouse
– Modify,	summarize	(store	aggregates)
– Add	historical	information

11

Query-Driven	Approach

Client Client

Wrapper Wrapper Wrapper

Mediator

Source Source Source

12

Advantages	of	Query-Driven

• No	need	to	copy	data
– less	storage
– no	need	to	purchase	data

• More	up-to-date	data
• Query	needs	can	be	unknown
• Only	query	interface	needed	at	sources
• May	be	less	draining	on	sources

11/14/17

3

OLTP Data	Warehousing/OLAP
Mostly	updates Mostly	reads

Applications:	
Order	entry,	sales	update,	
banking	transactions

Applications:
Decision	support	in	industry/organization

Detailed,	up-to-date	data Summarized, historical	data
(from	multiple	operational	db,	grows	over	
time)

Structured,	repetitive,	short	tasks Query	intensive,	ad	hoc,	complex	queries

Each	transaction	reads/updates	
only	a	few	tuples	(tens	of)

Each	query	can	accesses many	records,	and	
perform	many	joins,	scans,	aggregates

MB-GB	data GB-TB data

Typically	clerical	users Decision	makers,	analysts as	users

Important:	
Consistency,	recoverability,
Maximizing	tr.	throughput		

Important:
Query	throughput
Response times

13Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Data	Marts

• smaller	datawarehouse
• subsets	of	data	on	selected	subjects
• e.g.	Marketing	data	mart	can	include	
customer,	product,	sales

• Department-focused,	no	enterprise-wide	
consensus	needed

• But	may	lead	to	complex	integration	problems	
in	the	long	run	

14Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

ROLAP	and	MOLAP

• Relational	OLAP	(ROLAP)
– On	top	of	standard	relational	DBMS
– Data	is	stored	in	relational	DBMS
– Supports	extensions	to	SQL	to	access	multi-
dimensional	data

• Multidimensional	OLAP	(MOLAP)
– Directly	stores	multidimensional	data	in	special	
data	structures	(e.g.	arrays)

15Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Data	Warehousing	
to	Mining

• Integrated	data	spanning	long	
time	periods,	often	augmented	
with	summary	information

• Several	gigabytes	to	terabytes	
common

• Interactive	response						times	
expected	for					complex	
queries;	ad-hoc	updates	
uncommon

EXTERNAL	DATA	
SOURCES

EXTRACT
TRANSFORM

LOAD
REFRESH

DATA
WAREHOUSE

Metadata
Repository

SUPPORTS

OLAPDATA
MINING

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 16

Warehousing	Issues
• Semantic	Integration: When	getting	data	from	

multiple	sources,	must	eliminate	mismatches	
– e.g.,	different	currencies,	schemas

• Heterogeneous	Sources: Must	access	data	from	a	
variety	of	source	formats	and	repositories
– Replication	capabilities	can	be	exploited	here

• Load,	Refresh,	Purge: Must	load	data,	periodically	
refresh	it,	and	purge	too-old	data

• Metadata	Management: Must	keep	track	of	source,	
loading	time,	and	other	information	for	all	data	in	the	
warehouse

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 17

DW	Architecture

18

• Extract	data	from	multiple	operational	
DB	and	external	sources

• Clean/integrate/transform/store
• Refresh	periodically

– update	base	and	derived	data
– admin	decides	when	and	how
Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

• Main	DW	and	several	data	marts	(possibly)
• Managed	by	one	or	more	servers	and	

front	end	tools
• Additional	meta	data	and	

monitoring/admin	tools

11/14/17

4

ROLAP:	Star	Schema

• To	reflect	multi-dimensional	
views	of	data

• Single	fact	table

• Single	table	for	every	dimension

• Each	tuple	in	the	fact	table	
consists	of
– pointers	(foreign	key)	to	each	

of	the	dimensions	(multi-
dimensional	coordinates)

– numeric	value	for	those	
coordinates

• Each	dimension	table	contains	
attributes	of	that	dimension 19

No	support	for	attribute	
hierarchiesDuke	CS,	Fall	2017 CompSci	516:	Database	Systems

Dimension	Hierarchies

• For	each	dimension,	the	set	of	values	can	
be	organized	in	a	hierarchy:

PRODUCT TIME LOCATION

category											week										month																		state

pname																							date																																city

year

quarter																										country

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 20

ROLAP:	Snowflake	Schema

21

• Refines	star-schema
• Dimensional	hierarchy	is	

explicitly	represented

• (+)	Dimension	tables	easier	
to	maintain
– suppose	the	“category	

description		is	being	changed

• (-)	Need	additional	joins

• Fact	Constellations
– Multiple	fact	tables	share	some	

dimensional	tables
– e.g.	Projected	and	Actual	

Expenses	may	share	many	
dimensions

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Motivation:	OLAP	Queries
• Data	analysts	are	interested	in	exploring	trends	and	
anomalies
– Possibly	by	visualization	(Excel)	- 2D	or	3D	plots
– “Dimensionality	Reduction”	by	summarizing	data	and	computing	

aggregates
– Influenced	by	SQL	and	by	spreadsheets.
– A	common	operation	is	to	aggregate a	measure	over	one	or	more	

dimensions.

• Find	total	unit	sales	for	each
1. Model
2. Model,	broken	into	years
3. Year,	broken	into	colors
4. Year
5. Model,	broken	into	color,	….

22

Sales	(Model,	Year,	Color,	Units)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

OLAP	
and	

Data	Cube

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 23

Histograms
A	tabulated	frequency	of	computed	values

SELECT Year, COUNT(Units) as total

FROM Sales

GROUP BY Year

ORDER BY Year

May	require	a	nested	SELECT	to	compute

Sales	(Model,	Year,	Color,	Units)

Year	->

to
ta
l	-
>

11/14/17

5

Roll-Ups
• Analysis	reports	start	at	a	coarse	level,	

go	to	finer	levels
• Order	of	attribute	matters
• Not	relational	data	(empty	cells	no	

keys)

Model Year Color Model,	Year,	Color Model,	Year Model

Chevy 1994 Black 50

Chevy 1994 White 40

90

Chevy 1995 Black 115

Chevy 1995 White 85

200

290

GROUP	BY

Sales	(Model,	Year,	Color,	Units)

Roll-ups

Drill-downs

Roll-Ups
• Another	representation	(Chris	Date’96)
• Relational,	but	

– long	attribute	names
– hard	to	express	in	SQL	and	repetition

Model Year Color Model,	Year,	Color Model,	
Year Model

Chevy 1994 Black 50 90 290

Chevy 1994 White 40 90 290

Chevy 1995 Black 85 200 290

Chevy 1995 Black 115 200 290

GROUP	BY

Sales	(Model,	Year,	Color,	Units)

‘ALL’ Construct
Easier	to	visualize	roll-up	if	allow	ALL	to	fill	in	the	super-aggregates

SELECT Model, Year, Color, SUM(Units)

FROM Sales

WHERE Model = ‘Chevy’

GROUP BY Model, Year, Color

UNION

SELECT Model, Year, ‘ALL’, SUM(Units)

FROM Sales

WHERE Model = ‘Chevy’

GROUP BY Model, Year

UNION

…

UNION

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Units)

FROM Sales

WHERE Model = ‘Chevy’;

Model Year Color Units

Chevy 1994 Black 50

Chevy 1994 White 40

Chevy 1994 ‘ALL’ 90

Chevy 1995 Black 85

Chevy 1995 White 115

Chevy 1995 ‘ALL’ 200

Chevy ‘ALL’ ‘ALL’ 290

Sales	(Model,	Year,	Color,	Units)

Model Year Color Units

Chevy 1994 Black 50

Chevy 1994 White 40

Chevy 1994 ‘ALL’ 90

Chevy 1995 Black 85

Chevy 1995 White 115

Chevy 1995 ‘ALL’ 200

Chevy ‘ALL’ ‘ALL’ 290

Model Year Color Model,	Year,	Color Model,	Year Model

Chevy 1994 Black 50

Chevy 1994 White 40

90

Chevy 1995 Black 115

Chevy 1995 White 85

200

290

Traditional	Roll-Up ‘ALL’	Roll-Up

• Roll-ups	are	asymmetric

Sales	(Model,	Year,	Color,	Units)

Cross	Tabulation
• If	we	made	the	roll-up	symmetric,	we	would	get	a	cross-tabulation
• Generalizes	to	higher	dimensions

SELECT Model, ‘ALL’, Color, SUM(Units)

FROM Sales

WHERE Model = ‘Chevy’

GROUP BY Model, Color

Chevy 1994 1995 Total	(ALL)

Black 50 85 135

White 40 115 155

Total	(ALL) 90 200 290

Is	the	problem	solved	with	Cross-Tab	and	GROUP-BYs	with	‘ALL’?
• Requires	a	lot	of	GROUP	BYs	(64	for	6-dimension)
• Too	complex	to	optimize (64	scans,	64	sort/hash,	slow)

Sales	(Model,	Year,	Color,	Units)

Naïve	Approach

Run	a	number	of	queries

SELECT sum(units)
FROM Sales

SELECT Color, sum(units)
FROM Sales
GROUP BY Color

SELECT Year, sum(units)
FROM Sales
GROUP BY Year

SELECT Model, Year, sum(units)
FROM Sales
GROUP BY Model, Year
….

• Data	cube	generalizes	Histogram,	Roll-Ups,	
Cross-Tabs	

• More	complex	to	do	these	with	GROUP-BY

30

• How	many	sub-queries?
• How	many	sub-queries	for	

8	attributes?

Sales	(Model,	Year,	Color,	Units)

Year
Color

M
od

el

Total	Unit	sales

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

11/14/17

6

Data	Cube:	Intuition

SELECT ‘ALL’, ‘ALL’, ‘ALL’, sum(units)

FROM Sales

UNION
SELECT ‘ALL’, ‘ALL’, Color, sum(units)

FROM Sales

GROUP BY Color

UNION

SELECT ‘ALL’, Year, ‘ALL’, sum(units)

FROM Sales

GROUP BY Year

UNION
SELECT Model, Year, ‘ALL’, sum(units)

FROM Sales

GROUP BY Model, Year

UNION
….

31

Sales	(Model,	Year,	Color,	Units)

Year
Color

M
od

el

Total	Unit	sales

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Data	Cube

Ack:	from	slides	by	Laurel	Orr	and	Jeremy	Hyrkas,	UW	

Data	Cube
• Computes	the	aggregate	on	all	possible	combinations	of	

group	by	columns.

• If	there	are	N	attributes,	there	are	2N-1	super-aggregates.

• If	the	cardinality	of	the	N	attributes	are	C1,...,	CN,	then	there	
are	a	total	of	(C1+1)...(CN+1)	values	in	the	cube.

• ROLL-UP	is	similar	but	just	looks	at	N	aggregates

Data	Cube Syntax
• SQL	Server

SELECT Model, Year, Color, sum(units)

FROM Sales

GROUP BY Model, Year, Color

WITH CUBE

Sales	(Model,	Year,	Color,	Units)

Types	of	Aggregates
• Distributive:	input	can	be	partitioned	into	disjoint	sets	

and	aggregated	separately
o COUNT,	SUM,	MIN

• Algebraic:	can	be	composed	of	distributive	aggregates
o AVG

• Holistic:	aggregate	must	be	computed	over	the	entire	
input	set
o MEDIAN

• Efficient	computation	of	the	CUBE	operator	depends	on	
the	type	of	aggregate

– Distributive	and	Algebraic	aggregates	motivate	optimizations

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 36

View	Materialization	and	Maintenance
[RG]	Chapters	25.8-25.10

11/14/17

7

Views	(revisiting)

• Motivation	(example)
– Different	groups	of	analysts	within	an	organization	
are	typically	concerned	with	different	aspects	of	a	
business

– It	is	convenient	to	define	“views”	that	give	each	
group	insight	into	the	relevant	business	details

– Other	views	can	be	defined	or	queries	can	be	
written	using	these	views

– Convenient	and	Efficient

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 37

View	Example

CREATE	VIEW RegionalSales(category,	sales,	state)
AS	SELECT P.category,	S.sales,	L.state

FROM	Products	P,	Sales	S,	Locations	L
WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category,	R.state,	SUM(R.sales)
FROM RegionalSales AS R	
GROUP	BY R.category,	R.state

SELECT R.category,	R.state,	SUM(R.sales)
FROM (SELECT P.category,	S.sales,	L.state

FROM	Products	P,	Sales	S,	Locations	L
WHERE P.pid=S.pid	AND S.locid=L.locid)	AS R

GROUP	BY R.category,	R.state

View
(sales	of	products	by	
category	and	state)

Query
(total	sales	for	each
category	by	state)

Query	Modification
(SQL	does	not	specify	how	
to	evaluate	queries	on	views,
but	can	consider	it	as	a	replacement)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 38

Views	and	OLAP/Warehousing
• OLAP	queries	are	typically	aggregate	queries

– Precomputation	is	essential	for	interactive	response	times
– The	CUBE	is	in	fact	a	collection	of	aggregate	queries,	and	

precomputation	is	especially	important
– lots	of	work	on	what	is	best	to	precompute	given	a	limited	amount	of	

space	to	store	precomputed	results.

• Warehouses	can	be	thought	of	as	a	collection	of	asynchronously	
replicated	tables	and	periodically	maintained	views
– Factors:	size,	number	of	tables	involved,	many	are	from	external	

independent	databases
– Has	renewed	interest	in	(asynchronous)	view	maintenance	(more	later)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 39

View	Materialization
• Query	Modification	may	not	be	efficient

– when	the	underlying	view	is	complex
– even	with	sophisticated	optimization	and	evaluation
– esp.	when	the	underlying	tables	are	in	a	remote	database	(connectivity	

and	availability)

• Alternative:	View	Materialization
– Precompute	the	view	definition	and	store	the	result	
– Materialized	views	can	be	used	as	regular	relations
– Provides	fast	access,	like	a	(very	high-level)	cache
– Can	create	index	on	views	too	for	further	speedup
– Drawback:	to	maintain	the	consistency	of	the	materialized	view	when	the	

underlying	table(s)	are	updated	(View	Maintenance)
– Ideally,	we	want	Incremental	View	Maintenance	algorithms	(Lecture	20)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 40

Index	on	Materialized	Views:	Examples

• Suppose	we	precompute	RegionalSales and	store	it	with	a	
clustered	B+	tree	index	on	[category,	state,	sales].
– Then,	the	query	can	be	answered	by	an	index-only	scan.

SELECT R.state,	SUM(R.sales)
FROM RegionalSales	R
WHERE R.category=“Laptop”
GROUP	BY R.state

SELECT R.state,	SUM(R.sales)
FROM RegionalSales	R
WHERE R.	state=“Wisconsin”
GROUP	BY R.category

Index	on	precomputed	view	
is	great!

Index	is	less	useful	(must	
scan	entire	leaf	level)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 41

CREATE	VIEW RegionalSales(category,	sales,	state)
AS	SELECT P.category,	S.sales,	L.state
FROM	Products	P,	Sales	S,	Locations	L
WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category,	R.state,	SUM(R.sales)
FROM RegionalSales AS R	
GROUP	BY R.category,	R.state

(Research)	Issues	in	View	Materialization

1. What	views	should	we	materialize,	and	what	indexes	should	
we	build	on	the	precomputed	results?

2. Given	a	query	and	a	set	of	materialized	views,	can	we	use	
the	materialized	views	to	answer	the	query?
– related	to	the	first	question	(workload	dependent)
– Try	to	materialize	a	small,	carefully	chosen	set	of	views	that	can	be	

utilized	to	quickly	answer	most	of	the	important	queries

3. How	frequently	should	we	refresh	materialized	views	to	
make	them	consistent	with	the	underlying	tables?
– And	how	can	we	do	this	incrementally?

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 42

11/14/17

8

View	Maintenance
• Two	steps:
– Propagate: Compute	changes	to	view	when	data	changes
– Refresh: Apply	changes	to	the	materialized	view	table

• Maintenance	policy:	 Controls	when	we	do	refresh
– Immediate: As	part	of	the	transaction	that	modifies	the	
underlying	data	tables
• +Materialized	view	is	always	consistent
• - updates	are	slowed

– Deferred: Some	time	later,	in	a	separate	transaction
• - View	becomes	inconsistent
• + can	scale	to	maintain	many	views	without	slowing	updates

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 43

Types	of	Deferred	Maintenance
Three	flavors:
• Lazy:

– Delay	refresh	until	next	query	on	view;	then	refresh	before	answering	
the	query	(slows	down	queries	than	updates)

• Periodic	(Snapshot):
– Refresh	periodically	(e.g.	once	in	a	day).		Queries	possibly	answered	

using	outdated	version	of	view	tuples.	Widely	used,	especially	for	
asynchronous	replication	in	distributed	databases,	and	for	warehouse	
applications

• Event-based	or	Forced:
– E.g.,	Refresh	after	a	fixed	number	of	updates	to	underlying	data	tables

• e.g.	Snapshot	in	Oracle	7
– periodically	refreshed	by	entirely	recomputing the	view
– Incremental	”fast	refresh”	or	“simple	snapshots”	for	simpler	views	(no	

aggregate,	group	by,	join,	distinct	etc.)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 44

Implementing	Data	Cube

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 45

Basic	Ideas

• Need	to	compute	all	group-by-s:
– ABCD,	ABC,	ABD,	BCD,	AB,	AC,	AD,	BC,	BD,	CD,	A,	B,	C,	D

• Compute	GROUP-BYs	from	previously	computed	GROUP-BYs
– e.g.	first	ABCD
– then	ABC	or	ACD
– then	AB	or	AC	…

• Which	order	ABCD	is	sorted,	matters	for	subsequent	
computations

– if	(ABCD)	is	the	sorted	order,	ABC	is	cheap,	ACD	or	BCD	is	expensive

Notations

• ABCD
– group-by	on	attributes	A,	B,	C,	D
– no	guarantee	on	the	order	of	tuples

• (ABCD)
– sorted	according	to	A	->	B	->	C	->	D

• ABCD	and	(ABCD)	and	(BCDA)
– all	contain	the	same	results
– but	in	different	sorted	order	

Optimization	1:	Smallest	Parent

• Compute	GROUP-BY	from	
the	smallest	(size)	
previously	computed	
GROUP-BY	as	a	parent

– AB	can	be	computed	from	
ABC,	ABD,	or	ABCD

– ABC	or	ABD	better	than	ABCD
– Even	ABC	or	ABD	may	have	

different	sizes,	try	to	choose	
the	smaller	parent

48

ABCD

ABC ABD ACD BCD

AC AD BC BD CDAB

A B C D

all

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

LATTICE	STRUCTURE	of	data	cube

11/14/17

9

Optimization	2:	Cache	Results

• Cache	result	of	one	GROUP-
BY	in	memory	to	reduce	
disk	I/O
– Compute	AB	from	ABC	while	

ABC	is	still	in	memory

49

ABCD

ABC ABD ACD BCD

AC AD BC BD CDAB

A B C D

all

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Optimization	3:	Amortize	Disk	Scans

• Amortize	disk	reads	for	
multiple	GROUP-BYs
– Suppose	the	result	for	ABCD	

is	stored	on	disk
– Compute	all	of	ABC,	ABD,	

ACD,	BCD	simultaneously	in	
one	scan	of	ABCD

50

ABCD

ABC ABD ACD BCD

AC AD BC BD CDAB

A B C D

all

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Optimization	4,	5	(next)

• 4.	Share-sort
– for	sort-based	algorithms
– pipe-sort	algorithm
– covered	in	class

• 5.	Shared-partition
– for	hash-based	algorithms
– pipe-hash	algorithm

• Uses	hash	tables	to	compute	
smaller	GROUP-Bys

• If	the	hash	tables	for	AB	and	AC	
fit	in	memory,	compute	both	in	
one	scan	of	ABC

• Otherwise	can	partition	on	A,	
and	can	compute	HTs	of	AB	and	
AC	in	different	partitions

– not	covered	(see	paper)

51

ABCD

ABC ABD ACD BCD

AC AD BC BD CDAB

A B C D

all

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

PipeSort:	Idea

• Combines	two	optimizations:	“shared-
sorts”	and	“smallest-parent”

• Also	includes	“cache-results”	and	
“amortized-scans”

PipeSort:	Share-sort	optimization
• Data	sorted	in	one	order
• Compute	all	GROUP-BYs	prefixed	in	that	order
• Compute	one	tuple	of	ABCD,	propagate	upward	in	the	

pipeline	by	a	single	scan
• Example:	

– GROUP-BY over	attributes	ABCD
– Sort	raw	data	by	(ABCD)
– Compute	(ABCD)	->	(ABC)	->	(AB)	->	(A) in	pipelined	fashion
– No	additional	sort	needed

• BUT,	may	have	a	conflict	with	“smallest-parent”	optimization
– (ABD)	->	(AB)	could	be	a	better	choice
– Figure	out	the	best	parent	choice	by	running	a	weighted-matching	

algorithm	layer	by	layer

(ABCD)

(ABC)

(AB)

(A)

Search	Lattice
• Directed	edge	=>	one	attribute	less	

and	possible	computation
• Level	k	contains	k	attributes

– all	=	0	attribute

• Two	possible	costs	for	each	edge	eij
=	i --->	j

• A(eij):	i is	sorted	for	j
– (BCA)	->	(BC)

• S(eij):	i is	NOT	sorted	for	j
– e.g.	ABC	->	(BCA)	->	(BC)	or	hash

ABCD

ABC ABD ACD BCD

AC AD BC BD CDAB

A B C D

all Level	0

Level	1

Level	2

Level	3

Level	4

A B C sum
a1 b1 c1 5
a1 b1 c2 10
a1 b2 c3 8
a2 b2 c1 2
a2 b2 c3 11

Not	Sorted
A B C sum
a2 b2 c3 11
a1 b1 c2 10
a2 b2 c1 2
a1 b1 c1 5
a1 b2 c3 8

Sorted

A B sum
a1 b1 15
a1 b2 8
a2 b2 13

• No	parenthesis:	order	of	
tuples	can	be	arbitrary

11/14/17

10

PipeSort Output

• Outputs	a	subgraph	O	
– each	node	has	a	single	
parent
– each	node	has	a	sorted	
order	of	attributes

• if	parent’s	sorted	order	is	a	
prefix,	cost	=	A(eij),	else	S(eij)

– Mark	by	A	or	S
– At	most	one	A-out-edge
– Note:	for	some	nodes,	
there	may	be	no	green	A-out-
edge

ACBD

ACB ABD ACD BDC

AC AD BC BD CDAB

A B C D

all Level	0

Level	1

Level	2

Level	3

Level	4

Sorted	(A)
Not-Sorted	(S)

Goal:	Find	O	with	min	total	cost

Outline:	PipeSort Algorithm	(1)
• Go	from	level	0	to	N-1

– here	N	=	4

• For	each	level	k,	find	the	best	
way	to	construct	it	from	level	
k+1

• uses	“min-cost	weighted	
bipartite	matching”

• creates	k	new	copies	of	nodes	
at	level	k+1

• edges	from	original	copy
– cost	A(eij)

• edges	from	new	copies
– cost	S(eij)

ABCD

ABC ABD ACD BCD

AC AD BC BD CDAB

A B C D

all Level	0

Level	1

Level	2

Level	3

Level	4

Outline:	PipeSort Algorithm	(2)
• Illustration	with	a	smaller	example	
• Level	k	=	1	from	level	k+1	=	2

– one	new	copy	(dotted	edges)
– one	existing	copy	(solid	edge)

• Assumption	for	simplicity
– same	cost	for	all	outgoing	edges
– A(eij)	=	A(eij’)	for	all	j,	j’
– S(eij)	=	S(eij’)	for	all	i,	i’

ABC

AC BCAB

A B C

all Level	0

Level	1

Level	2

Level	3

2,	10 5,	12 13,	20

After	computing	the plan,	execute	all	pipelines

Outline:	PipeSort Algorithm	(3)

1.	First	pipeline	is	executed	by	one	scan	of	the	data

2.	Sort	(CBAD)	->	(BADC),	
compute	the	second	pipeline

3.	…..

A,	S costs

See	paper	for	another
PipeHash algorithm

ACBD

ACB ABD ACD BDC

AC AD BC BD CD

A B C D

all

AB

