11/14/17

Reading Material

CompSci 516 RG]
— Chapter 25
Database Systems
Gray-Chaudhuri-Bosworth-Layman-Reichart-Venkatrao-Pellow-Pirahesh, ICDE 1996 “Data Cube: A
i ggregation Operator izing Group-By, Cross-Tab, and Sub-Totals”
Lecture 2 1 « Harinarayan-Rajaraman-Ullman, SIGMOD 1996 “Implementing data cubes efficiently”

Data Warehousing

and
Acknowledgement:
Data CU be * The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Instructor: Sudeepa Roy * Some slides have been prepared by Prof. Shivnath Babu

Warehousing

* Growing industry: $8 billion way back in 1998

» Data warehouse vendor like Teradata

* big “Petabyte scale”customers

 Apple, Walmart (2008-2.5PB), eBay (2013-primary DW 9.2
. PB, other big data 40PB, single table with 1 trillion rows),
Data Wa rehOUSIng Verizon, AT&T, Bank of America

* supports data into and out of Hadoop
* Lots of buzzwords, hype

— slice & dice, rollup, MOLAP, pivot, ...

https://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-
have-some-of-the-biggest-data-warehouses-youve-ever-seen/

Ack: Slide by Prof. Shivnath Babul|

ompsSci 516: Database Systems 3 4

Motivating Examples Introduction

¢ Organizations analyze current and historical data
— to identify useful patterns

* Forecasting i)
— to support business strategies

* Comparing performance of units
. . . * Emphasis is on complex, interactive, exploratory
* Monitoring, detecting fraud analysis of very large datasets

* Visualization
« Created by integrating data from across all parts of an

enterprise

* Data is fairly static

”

* Relevant once again for the recent “Big Data analysis
— to figure out what we can reuse, what we cannot

11/14/17

Three Complementary Trends

* Data Warehousing (DW):
— Consolidate data from many sources in one large repository
— Loading, periodic synchronization of replicas
— Semantic integration

* OLAP:
— Complex SQL queries and views.

— Queries based on spreadsheet-style operations and
“multidimensional” view of data.

— Interactive and “online” queries.
* Data Mining:

— Exploratory search for interesting trends and anomalies
— Next lecture!

Duke CS, Fall 201 CompSci 516: Database Systems

Data Warehousing

A collection of decision support technologies
To enable people in industry/organizations to make better
decisions
— Supports OLAP (On-Line Analytical Processing)
Applications in
— Manufacturing
— Retail
— Finance
— Transportation
— Healthcare
Typically maintained separately from “Operational Databases”
— Operational Databases support OLTP (On-Line Transaction Processing)

Cs, Fall 2017 Compsci 516: Database Systems

Why a Warehouse?

* Two Approaches: YY)

— Query-Driven (Lazy)

— Warehouse (Eager)

10

Advantages of Warehousing

High query performance

Queries not visible outside warehouse
Local processing at sources unaffected
Can operate when sources unavailable
Can query data not stored in a DBMS
Extra information at warehouse

— Modify, summarize (store aggregates)

— Add historical information

Query-Driven Approach

Client

Wrapper

Source

Advantages of Query-Driven

No need to copy data
— less storage
— no need to purchase data

More up-to-date data

Query needs can be unknown

Only query interface needed at sources
May be less draining on sources

11/14/17

oLTP Data Warehousing/OLAP
Mostly updates Mostly reads
Applications: Applications:
Order entry, sales update, Decision support in industry/organization
banking transactions
Detailed, up-to-date data Summarized, historical data
(from multiple operational db, grows over
time)

Structured, repetitive, short tasks | Query intensive, ad hoc, complex queries

Each transaction reads/updates Each query can accesses many records, and

only a few tuples (tens of) perform many joins, scans, aggregates
MB-GB data GB-TB data

Typically clerical users Decision makers, analysts as users
Important: Important:

Consistency, recoverability, Query throughput

Maximizing tr. throughput Response times

Duke CS, Fall 201 CompSci 516: Database Systems

Data Marts

* smaller datawarehouse

* subsets of data on selected subjects

* e.g. Marketing data mart can include
customer, product, sales

* Department-focused, no enterprise-wide
consensus needed

* But may lead to complex integration problems
in the long run

ROLAP and MOLAP

* Relational OLAP (ROLAP)
— On top of standard relational DBMS
— Data is stored in relational DBMS

— Supports extensions to SQL to access multi-
dimensional data

* Multidimensional OLAP (MOLAP)

— Directly stores multidimensional data in special
data structures (e.g. arrays)

uke CS, Fall 201 CompSci 516: Database Systems

Data Wa rehOUSing EXTERNAL DATA

SOURCES

to Mining D D

Integrated data spanning long

EXTRACT

time periods, often augmented TRAL';FSRM
with summary information REFRESH

Several gigabytes to terabytes

common
Metadata

Interactive response times Repository

DATA
WAREHOUSE
expected for complex
queries; ad-hoc updates SUPPORTS
uncommon

Warehousing Issues

* Semantic Integration: When getting data from
multiple sources, must eliminate mismatches
— e.g., different currencies, schemas

* Heterogeneous Sources: Must access data from a
variety of source formats and repositories
— Replication capabilities can be exploited here

* Load, Refresh, Purge: Must load data, periodically
refresh it, and purge too-old data

* Metadata Management: Must keep track of source,
loading time, and other information for all data in the
warehouse

uke CS, Fall 201 CompSci 516: Database Systems

DW Architecture

Monitoring & Admnistration

Metadata
Repositor
pository oLAP
S

Data Warehouse

External

xtract o
sources Transform P

Load | Sz |
Operational a
dbs =
m% ees

Data Marts Tools

Figure 1. Data Warehousing Architecture

Extract data from multiple operational + Main DW and several data marts (possibly)
DB and external sources * Managed by one or more servers and
Clean/integrate/transform/store front end tools

Refresh periodically * Additional meta data and

— update base and derived data monitoring/admin tools

— admin decides when and how
uke CS, Fall 20 Compsci 516: Database Systems

ROLAP: Star Schema

* To reflect multi-dimensional
views of data

* Single fact table

Fact table
. . . Customer OrderNo
* Single table for every dimensior [gomens D

CustomerName CustomerNo
CustomerAddress| > ‘;’:ﬁ:
* Each tuple in the fact table Gy CityName
i Quantity
cons@ts of ‘ Salessx?:sc"sonm Quny
— pointers (foreign key) to each SelernesonName A
of the dimensions (multi- G CityName
dimensional coordinates) Quota State

Country
— numeric value for those
coordinates

Figure 3. A Star Schema.

« Each dimension table contains ~ No support for attribute
o Attributes of that dimension, ..., hierarchies

11/14/17

Dimension Hierarchies

* For each dimension, the set of values can
be organized in a hierarchy:

PRODUCT TIME LOCATION
year
quarte\r country
category wee< month state
pname date / city

Duke C, Fall 20 CompSci 516: Database Systems

ROLAP: Snowflake Schema

Refines star-schema

Dimensional hierarchy is
explicitly represented

Order
(+) Dimension tables easier |2 |
to maintain

OrderDate
7\ Fact table
Customer)

— suppose the “category CustomerNo Salesperson

CustomerName

description is being changed | Gomeraddress

Category

CategoryName
CategoryDescr

Month ~ Year

Date
city Datekes] _[on| <]
(-) Need additional joins SalespersonlD .
SalespesonName / Gty _ State
City
Quota

Fact Constellations
— Multiple fact tables share some
dimensional tables
— e.g. Projected and Actual
Expenses may share many
(dimeqsions

Figure 4. A Snowflake Schema.

Sales (Model, Year, Color, Units)

Motivation: OLAP Queries

» Data analysts are interested in exploring trends and
anomalies
— Possibly by visualization (Excel) - 2D or 3D plots
— “Dimensionality Reduction” by summarizing data and computing
aggregates
— Influenced by SQL and by spreadsheets.
— A common operation is to aggregate a measure over one or more
dimensions.
* Find total unit sales for each
1. Model
Model, broken into years
Year, broken into colors
Year

LAl o

Model, broken into color, ...

uke CS, Fall 2 ompSci 516: Database Systems

OLAP
and
Data Cube

uke CS, Fall 201 CompSci 516: Database Systems

Sales (Model, Year, Color, Units)

Histograms

A tabulated frequency of computed values

SELECT Year, COUNT(Units) as total
FROM Sales

GROUP BY Year

ORDER BY Year

total ->

Year ->

May require a nested SELECT to compute

Sales (Model, Year, Color, Units)

Roll-Ups

* Analysis reports start at a coarse level,

3 Roll-ups
go to finer levels
* Order of attribute matters .
. Drill-downs
* Not relational data (empty cells no
GROUP BY
keys) T
Model Year Color Model, Year, Color Model, Year Model
Chevy 1994 Black 50
Chevy 1994 White 40
90
Chevy 1995 Black 115
Chewy 1995 White 85
200

290

11/14/17

Roll-Ups

* Another representation (Chris Date’96)
* Relational, but

- long attribute names
- hard to express in SQL and repetition

Sales (Model, Year, Color, Units)

GROUP BY
— T
Model Year Color Model, Year, Color MZ::I' Model
Chevy 1994 Black 50 90 290
Chevy 1994 White 40 el 290
Chevy 1995 Black 85 200 290
Chevy 1995 Black 115 200 290

Sales (Model, Year, Color, Units)

‘ALL’ Construct

Easier to visualize roll-up if allow ALL to fill in the super-aggregates

SELECT Model, Year, or, SUM(Units)
: . Model Year Color Units
WHERE Model = ‘Chevy’

GROUP BY Model, Year, Color Chevy 1994 Black 50
unION

SELE del, Year, ‘ALL’, SUM(Units) Chevy 1994 White 40

= \Cheuy’ Chevy 1994 AL 90

GROUP BY Model, Year
oNTON Chevy 1995 Black 85
onTON Chevy 1995 White 115

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Units)
sales Chevy 1995 ‘ALl 200

WHERE Model = ‘Chevy’;

Chevy AL AL 290

Sales (Model, Year, Color, Units)
Traditional Roll-Up ‘ALL Roll-Up
Model Year Color Model, Year, Color Model, Year ~Model Model Year Color Units
Chewy 1994 Black 50 Chevy 1994 Black 50
Chewy 1994 White 40
Chewy 1994 White 40
Chewy 1994 AL EY
EY
Chewy 1995 Black 85
Chewy 1995 Black 115
Chewy 1995 White 115
Chewy 1995 White 85
Chewy 1995 AL 200
200
Chevy ALY ALL 290
290
¢ Roll-ups are asymmetric

Sales (Model, Year, Color, Units)

Cross Tabulation

* If we made the roll-up symmetric, we would get a cross-tabulation
* Generalizes to higher dimensions

SELECT Model, ‘ALL’, Color, SUM(Units) Chevy 1994 1995 Total (ALL)
M Sales
WHERE Model = ‘Chevy’ Black 50 85 135
GROUP BY Model, Color
White 40 115 155
Total (ALL) %0 200 290

Is the problem solved with Cross-Tab and GROUP-BYs with ‘ALL'?
* Requires a lot of GROUP BYs (64 for 6-dimension)
* Too complex to optimize (64 scans, 64 sort/hash, slow)

Naive Approach

Run a number of queries

SELECT sum(units)
FROM Sales

Model, Year, sum(units)

+ Data cube generalizes Histogram, Roll-Ups,
Cross-Tabs

* More complex to do these with GROUP-BY

Sales (Model, Year, Color, Units)

Total Unit sales

&

Model

— 5 “Color
Year

¢ How many sub-queries?

¢ How many sub-queries for
8 attributes?

Sales (Model, Year, Color, Units)

Data Cube: Intuition

. Total Unit sales
SELECT ‘ALL’, ‘ALL’, ‘ALL’, sum(units)

FROM Sales

UNION

SELECT ‘ALL’, ‘ALL’, Color, sum(units) ‘
FROM Sales .

GROUP BY Color

UNION

SELECT ‘ALL’, Year, ‘ALL’, sum(units
FROM Sales

GROUP BY Year I
UNION ——» “Color

Model
-—

SELECT Model, Year, ‘ALL’, sum(units) Year
FROM Sales

GROUP BY Model, Year

UNION

Duke CS, Fall 2017 CompSci 516: Database Systems 31

11/14/17

Data Cube

Product Mgr. View

Avedy;

™

Financial Mgr. View Ad Hoc View

Time

Ack: from slides by Laurel Orr and Jeremy Hyrkas, UW

Data Cube

* Computes the aggregate on all possible combinations of
group by columns.

* |If there are N attributes, there are 2N-1 super-aggregates.

* If the cardinality of the N attributes are C,,..., Cy, then there
are a total of (C;+1)...(Cy+1) values in the cube.

e ROLL-UP is similar but just looks at N aggregates

Sales (Model, Year, Color, Units)

Data Cube Syntax

e SQL Server

SELECT Model, Year, Color, sum(units)
FROM Sales

GROUP BY Model, Year, Color

WITH CUBE

Types of Aggregates

Distributive: input can be partitioned into disjoint sets
and aggregated separately

o COUNT, SUM, MIN

Algebraic: can be composed of distributive aggregates
o AVG

Holistic: aggregate must be computed over the entire
input set

o MEDIAN

* Efficient computation of the CUBE operator depends on
the type of aggregate
— Distributive and Algebraic aggregates motivate optimizations

View Materialization and Maintenance

[RG] Chapters 25.8-25.10

Views (revisiting)

* Motivation (example)

— Different groups of analysts within an organization
are typically concerned with different aspects of a
business

— It is convenient to define “views” that give each
group insight into the relevant business details

— Other views can be defined or queries can be
written using these views

— Convenient and Efficient

Duke CS, Fall 201 CompSci 516: Database Systems

11/14/17

View Example

View
(sales of products by
category and state)

CREATE VIEW RegionalSales(category, sales, state)
AS SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid

Query SELECT R.category, R.state, SUM(R.sales)
(total sales for each FROM RegionalSales AS R
category by state) GROUP BY R.category, R.state

SELECT R.category, R.state, SUM(R.sales)
FROM (SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid) AS R
GROUP BY R.category, R.state

Query Modification

(SQL does not specify how

to evaluate queries on views,

but can consider it as a replacement)

Views and OLAP/Warehousing

* OLAP queries are typically aggregate queries
— Precomputation is essential for interactive response times

— The CUBE is in fact a collection of aggregate queries, and
precomputation is especially important

— lots of work on what is best to precompute given a limited amount of
space to store precomputed results.

* Warehouses can be thought of as a collection of asynchronously
replicated tables and periodically maintained views

— Factors: size, number of tables involved, many are from external
independent databases

— Has renewed interest in (asynchronous) view maintenance (more later)

uke CS, Fall 201 ompsSci 516: Database Systems

View Materialization

* Query Modification may not be efficient
— when the underlying view is complex
— even with sophisticated optimization and evaluation

— esp. when the underlying tables are in a remote database (connectivity
and availability)

* Alternative: View Materialization

— Precompute the view definition and store the result

— Materialized views can be used as regular relations

— Provides fast access, like a (very high-level) cache

— Can create index on views too for further speedup

— Drawback: to maintain the consistency of the materialized view when the
underlying table(s) are updated (View Maintenance)

— Ideally, we want Incremental View Maintenance algorithms (Lecture 20)

Index on Materialized Views: Examples

CREATE VIEW RegionalSales(category, sales, state)
AS SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category, R.state, SUM(R.sales)
FROM RegionalSales AS R
GROUP BY R.category, R.state

* Suppose we precompute RegionalSales and store it with a
clustered B+ tree index on [category, state, sales].
— Then, the query can be answered by an index-only scan.

SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R.category="Laptop”
GROUP BY R.state

SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R. state="Wisconsin”
GROUP BY R.category

Index on precomputed view Index is IleSSI “Sfelfl” ({"USt
is great! scan entire leaf level)

uke CS, Fall 201 ompsSci 516: Database Systems

(Research) Issues in View Materialization

1. What views should we materialize, and what indexes should
we build on the precomputed results?

2. Given a query and a set of materialized views, can we use
the materialized views to answer the query?
— related to the first question (workload dependent)

— Try to materialize a small, carefully chosen set of views that can be
utilized to quickly answer most of the important queries

3. How frequently should we refresh materialized views to
make them consistent with the underlying tables?
— And how can we do this incrementally?

View Maintenance

¢ Two steps:
— Propagate: Compute changes to view when data changes
— Refresh: Apply changes to the materialized view table

* Maintenance policy: Controls when we do refresh
— Immediate: As part of the transaction that modifies the
underlying data tables

* + Materialized view is always consistent
* - updates are slowed

— Deferred: Some time later, in a separate transaction
* - View becomes inconsistent
* + can scale to maintain many views without slowing updates

Duke CS, Fall 201 ompsSci 516: Database Systems

11/14/17

Types of Deferred Maintenance

Three flavors:
e Llazy:
— Delay refresh until next query on view; then refresh before answering
the query (slows down queries than updates)
* Periodic (Snapshot):
— Refresh periodically (e.g. once in a day). Queries possibly answered
using outdated version of view tuples. Widely used, especially for

asynchronous replication in distributed databases, and for warehouse
applications

* Event-based or Forced:
— E.g., Refresh after a fixed number of updates to underlying data tables

* e.g. Snapshot in Oracle 7
— periodically refreshed by entirely recomputing the view

— Incremental "fast refresh” or “simple snapshots” for simpler views (no
aggregate, group by, join, distinct etc.)

Implementing Data Cube

Basic Ideas

Need to compute all group-by-s:
— ABCD, ABC, ABD, BCD, AB, AC, AD, BC, BD, CD, A, B, C, D

Compute GROUP-BYs from previously computed GROUP-BYs
— e.g. first ABCD
— then ABCor ACD
— thenABorAC...

Which order ABCD is sorted, matters for subsequent
computations
— if (ABCD) is the sorted order, ABC is cheap, ACD or BCD is expensive

Notations

* ABCD
— group-by on attributes A, B, C, D
— no guarantee on the order of tuples

* (ABCD)

— sorted accordingto A->B->C->D

« ABCD and (ABCD) and (BCDA)

— all contain the same results
— butin different sorted order

Optimization 1: Smallest Parent

¢ Compute GROUP-BY from
the smallest (size)
previously computed
GROUP-BY as a parent

— AB can be computed from
ABC, ABD, or ABCD

— ABC or ABD better than ABCD

— Even ABC or ABD may have
different sizes, try to choose
the smaller parent

11/14/17

Optimization 2: Cache Results

* Cache result of one GROUP-
BY in memory to reduce
disk 1/0

— Compute AB from ABC while
ABC is still in memory

Duke CS, Fall 201 CompSci 516: Database Systems a9

Duke CS, Fall 2017 Compsci 516: Database Systems

Optimization 3: Amortize Disk Scans

Amortize disk reads for
multiple GROUP-BYs
— Suppose the result for ABCD
is stored on disk
— Compute all of ABC, ABD,
ACD, BCD simultaneously in
one scan of ABCD

Optimization 4, 5 (next)

¢ 4. Share-sort
— for sort-based algorithms
— pipe-sort algorithm
— covered in class

* 5. Shared-partition
— for hash-based algorithms
— pipe-hash algorithm
* Uses hash tables to compute
smaller GROUP-Bys
* If the hash tables for AB and AC

fit in memory, compute both in
one scan of ABC

Otherwise can partition on A,
and can compute HTs of AB and
AC in different partitions

— not covered (see paper)

uke CS, Fall 201 CompSci 516: Database Systems

PipeSort: Idea

* Combines two optimizations: “shared-
sorts” and “smallest-parent”

e Also includes “cache-results” and
“amortized-scans”

PipeSort: Share-sort optimization

Data sorted in one order

Compute all GROUP-BYs prefixed in that order (l)
AB
Compute one tuple of ABCD, propagate upward in the N

pipeline by a single scan i

(ABC)
Example: ¢
— GROUP-BY over attributes ABCD (ABCD)

— Sort raw data by (ABCD)

— Compute (ABCD) -> (ABC) -> (AB) -> (A) in pipelined fashion

— No additional sort needed

BUT, may have a conflict with “smallest-parent” optimization
— (ABD) -> (AB) could be a better choice

— Figure out the best parent choice by running a weighted-matching
algorithm layer by layer

* No parenthesis: order of
tuples can be arbitrary

Search Lattice

Directed edge => one attribute less
and possible computation

Level 0

Level k contains k attributes
- all = 0 attribute

Level 1

Two possible costs for each edge e;; ‘,_{:/\1 >
=] AB
Aley): iis sorted for j A

— (BCA)-> (BC) R

S(e;): iis NOT sorted for j Level 3
— e.g. ABC-> (BCA) -> (BC) or hash
Sorted Not Sorted Level 4
[A]e e sum|
al |bl |c1 |5 a2 |b2 |c3 |11
al bl |2 |10 al [b1 |2 |10 [a 8 [sum]
a1l b2 [c3 |8 a2 |b2 |a |2 l:> a1l |b1 |15
a2 |b2 |c1 |2 al |bl |cl1 |5 al |b2 |8
a2 |b2 |c3 |11 al |b2 |c3 |8 a2 |b2 |13

11/14/17

Sorted (A) ----;
Not-Sorted (S) ==~ H
PipeSort Output
all Level 0
"—7';1 LA
Outputs a subgraph O P N T
. A B C D Level 1
— each node has a single 9
parent Rt
pres
— eachnode hasasorted aAp CD Level 2

order of attributes ARE
N - »

if parent’s sorted order is a ACB ABD ACD BDC Level 3
prefix, cost = A(e;), else S(e;) RSN N A
— MarkbyAorS ACBD Level 4

— At most one A-out-edge
— Note: for some nodes,
there may be no green A-out-
edge

Goal: Find O with min total cost

Outline: PipeSort Algorithm (1)

all Level 0

Go from level 0 to N-1 ="
— hereN=4 A B
For each level k, find the best
way to construct it from level A‘;"
k+1 .

D Level 1

uses “min-cost weighted
bipartite matching”

Level 3

creates k new copies of nodes Level 4
at level k+1
edges from original copy
— costAley)
edges from new copies
— cost S(ey)

Outline: PipeSort Algorithm (2)

Illustration with a smaller example Level 0

Level k = 1 from level k+1 =2
— one new copy (dotted edges)
— one existing copy (solid edge)

Level 1

Assumption for simplicity AB AC BC | ovel2
) 2,108, 512, 13,29 ‘€v®
— same cost for all outgoing edges . ')
~ y
— Aley) =Aley) forallj, b Level 3
— S(ey) = S(ey) forall i, i’ \\L/
ABC
5 =S “he An\in A AC BC BC
SRS RS 2 "0 05 113w

(a) Transformed search Jattice. (b) Minimum cost matching

Outline: PipeSort Algorithm (3)
After computing the plan, execute all pipelines

1. First pipeline is executed by one scan of the data

ACB ABD ACD BDC
(—-___5_\/_5_,_--7

ACBD compute the second pipeline

2. Sort (CBAD) -> (BADC),

== > piclinechtes ER

- > enedpu
)
o

®

D

a o .

A
nomoR bt !
T AScosts ” ’f ‘f ’A” X" o
|
h i T W we © @ @
- A A
' 0 v
cm; See paper for another
o g PipeHash algorithm

Gy

(a) The minimum cost sort plan (b) The pipelines that are executed

10

