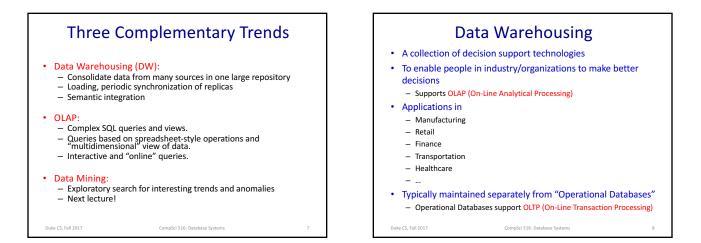
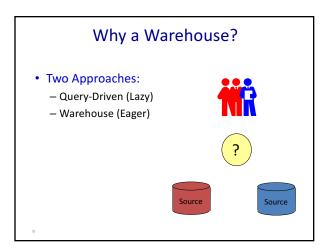


Motivating Examples

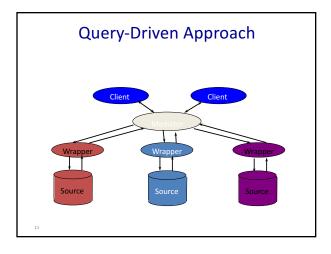
- Forecasting
- Comparing performance of units
- Monitoring, detecting fraud
- Visualization


Introduction

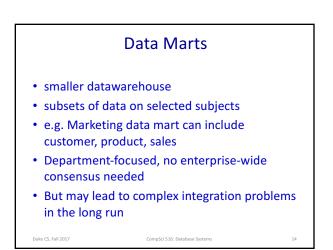

- Organizations analyze current and historical data
 to identify useful patterns
 - to support business strategies
- Emphasis is on complex, interactive, exploratory analysis of very large datasets
- Created by integrating data from across all parts of an enterprise
- Data is fairly static
- Relevant once again for the recent "Big Data analysis"

 to figure out what we can reuse, what we cannot

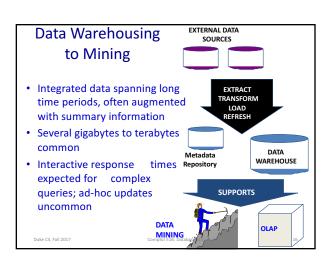
CompSci 516: Datab


Duke CS, Fall 2017

Advantages of Warehousing

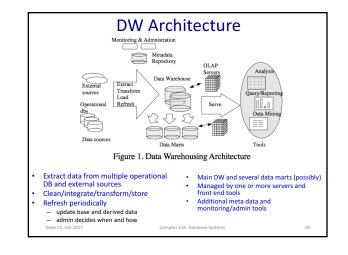

- High query performance
- Queries not visible outside warehouse
- Local processing at sources unaffected
- Can operate when sources unavailable
- Can query data not stored in a DBMS
- Extra information at warehouse
 - Modify, summarize (store aggregates)
 - Add historical information

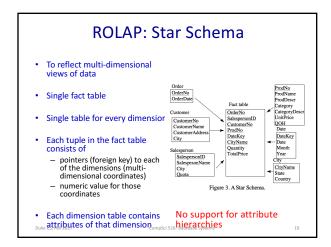
Advantages of Query-Driven No need to copy data – less storage – no need to purchase data More up-to-date data Query needs can be unknown Only query interface needed at sources

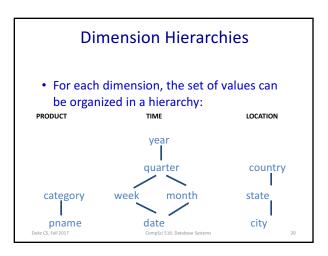

• May be less draining on sources

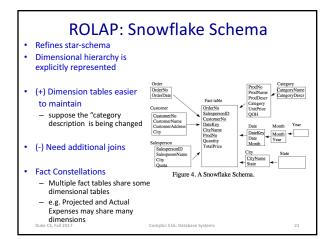
OLTP	Data Warehousing/OLAP
Mostly updates	Mostly reads
Applications: Order entry, sales update, banking transactions	Applications: Decision support in industry/organization
Detailed, up-to-date data	Summarized, historical data (from multiple operational db, grows over time)
Structured, repetitive, short tasks	Query intensive, ad hoc, complex queries
Each transaction reads/updates only a few tuples (tens of)	Each query can accesses many records, and perform many joins, scans, aggregates
MB-GB data	GB-TB data
Typically clerical users	Decision makers, analysts as users
Important: Consistency, recoverability, Maximizing tr. throughput	Important: Query throughput Response times
Duke CS, Fall 2017	CompSci 516: Database Systems 13

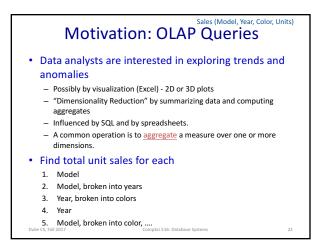
ROLAP and MOLAP Relational OLAP (ROLAP) On top of standard relational DBMS Data is stored in relational DBMS Supports extensions to SQL to access multidimensional data Multidimensional OLAP (MOLAP) Directly stores multidimensional data in special data structures (e.g. arrays)

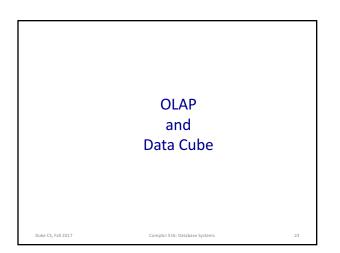

Duke CS, Fall 2017

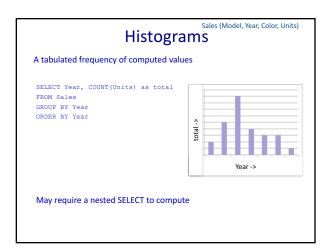


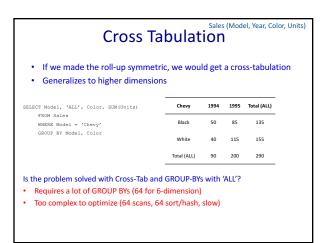


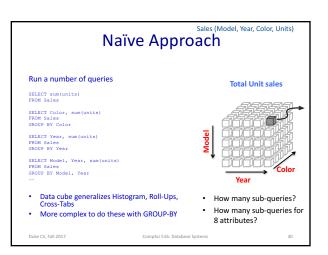

CompSci 516: D

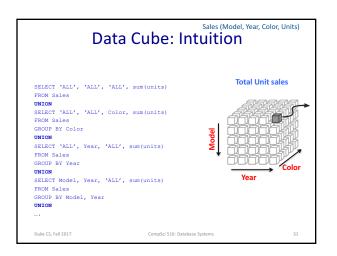

 Metadata Management: Must keep track of source, loading time, and other information for all data in the warehouse
 Galazza CompSci 316 Database Systems 217

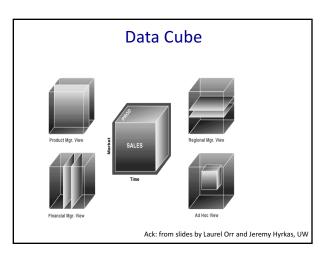







		F	Roll-Ups	Sales (Mode	l, Year, Co
lysis repor o finer lev		at a coars	e level,	Roll-ups	>
er of attrib relational s)			s no	Drill-downs	
Model	Year	Color	Model, Year, Color	Model, Year	Model
Chevy	1994	Black	50		
Chevy	1994	White	40		
				90	
Chevy	1995	Black	115		
Chevy	1995	White	85		
				200	
					290


tional, l	out ttribute	tation (Roll-Ups Chris Date'96) Ind repetition	Sales (Mo	del, Year, C	olor, Unit
GROUP BY						
Model	Year	Color	Model, Year, Color	Model, Year	Model	
Chevy	1994	Black	50	90	290	
Chevy	1994	White	40	90	290	1.1
Chevy	1995	Black	85	200	290	


Easier to visualize roll-up if allow ALL to fill	in the super	-aggreg	ates	
SELECT Model, Year, Color, SUM(Units)				
FROM Sales	Model	Year	Color	Units
WHERE Model = 'Chevy' GROUP BY Model, Year, Color	Chevy	1994	Black	50
UNION	Chevv	1994	White	40
SELECT Model, Year, 'ALL', SUM(Units) FROM Sales	Chevy	1354	WINCE	40
WHERE Model = 'Chevy'	Chevy	1994	'ALL'	90
GROUP BY Model, Year	-			
UNION	Chevy	1995	Black	85
	Chevy	1995	White	115
SELECT 'ALL', 'ALL', 'ALL', SUM(Units)				
FROM Sales	Chevy	1995	'ALL'	200
WHERE Model = 'Chevy';	Chevv	'ALL'	'ALL'	290

Traditional Roll-Up						Sales (Model, Year, Color, Un 'ALL' Roll-Up			
Model	Year	Color	Model, Year, Color	Model, Year	Model	Model	Year	Color	Units
Chevy	1994	Black	50			Chevy	1994	Black	50
Chevy	1994	White	40			Chevy	1994	White	40
				90		Chevy	1994	'ALL'	90
						Chevy	1995	Black	85
Chevy	1995	Black	115			Chevy	1995	White	115
Chevy	1995	White	85			Chevy	1995	'ALL'	200
				200		Chevy	'ALL'	'ALL'	290
					290				
						• Ro	ll-ups a	are asyn	nmetric

Data Cube

- Computes the aggregate on all possible combinations of group by columns.
- If there are N attributes, there are $2^{N}-1$ super-aggregates.
- If the cardinality of the N attributes are C₁,..., C_N, then there are a total of (C₁+1)...(C_N+1) values in the cube.
- ROLL-UP is similar but just looks at N aggregates

Sales (Model, Year, Color, Units)

SQL Server

SELECT Model, Year, Color, sum(units) FROM Sales GROUP BY Model, Year, Color WITH CUBE

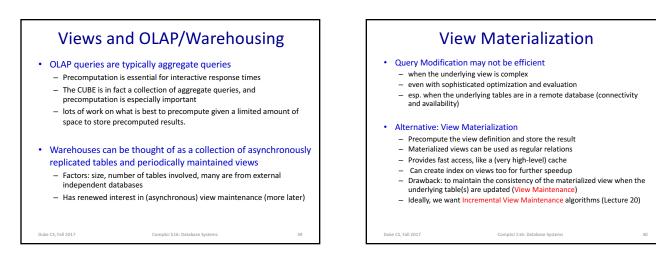
Types of Aggregates

- Distributive: input can be partitioned into disjoint sets and aggregated separately
 - ° COUNT, SUM, MIN
- Algebraic: can be composed of distributive aggregates
 AVG
- Holistic: aggregate must be computed over the entire input set
 - MEDIAN
- Efficient computation of the CUBE operator depends on the type of aggregate
 - Distributive and Algebraic aggregates motivate optimizations

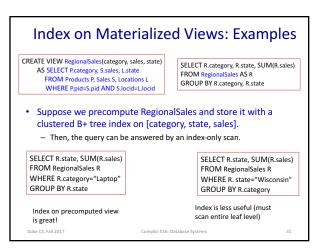
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

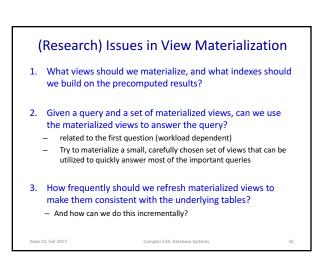
Views (revisiting)

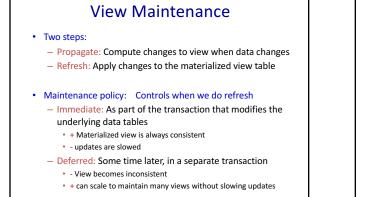
• Motivation (example)


- Different groups of analysts within an organization are typically concerned with different aspects of a business
- It is convenient to define "views" that give each group insight into the relevant business details
- Other views can be defined or queries can be written using these views

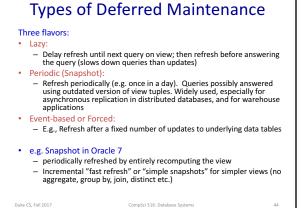
CompSci 516: Database Systems

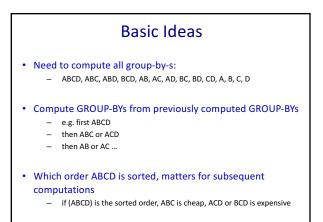

– Convenient and Efficient

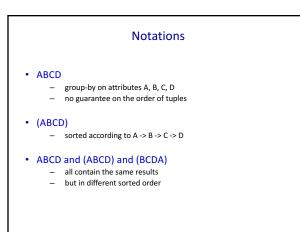

Duke CS, Fall 2017

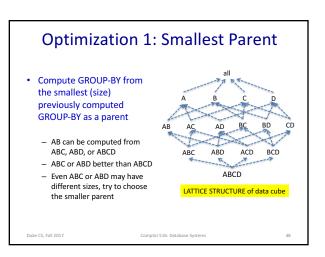

View Example							
View (sales of products by category and state)		CREATE VIEW RegionalSales(category, sales, state) AS SELECT P.category, S.sales, Lstate FROM Products P, Sales S, Locations L WHERE P.pid=S.pid AND S.locid=L.locid					
Query (total sales for each category by state)	FROM Reg	category, R.state, SUM(R.sales) jonalSales AS R Y R.category, R.state					
Query Modification (SQL does not specify ho to evaluate queries on vi but can consider it as a re	ews,	SELECT R.category, R.state, SUM(R.sales) FROM (SELECT P.category, S.sales, L.state FROM Products P, Sales S, Locations L WHERE P.pid=S.pid AND S.locid=L.locid) AS R GROUP BY R.category, R.state					
Duke CS, Fall 2017		CompSci 516: Database Systems 38					

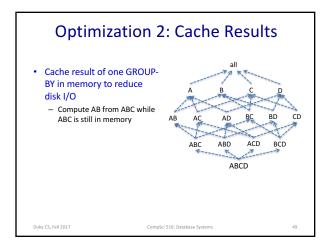
37

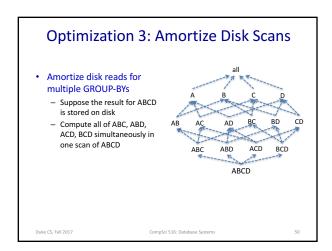



CompSci 516: Database Systems


43






Duke CS, Fall 2017

