CompSci 516
Data Intensive Computing Systems

Lecture 5
Design Theory and
Normalization

Instructor: Sudeepa Roy

ompsSci 516: Database Systems

Today

* Finish RC from Lecture 4
— DRC
— More example

* Normalization

9/10/17

Announcements
* HW1 deadline:
— Due on 09/21 (Thurs), 11:55 pm, no late days
* Project proposal deadline:

— Preliminary idea and team members due by 09/18
(Mon) by email to the instructor

— Proposal due on sakai by 09/25 (Mon), 11:55 pm

DRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)
* Find the name and age of all sailors with a rating above 7

TRC:
{P | 3 SeSailors (S.rating > 7 A P.name = S.name A P.age = S.age)}

DRC:
{<N, A>| 9 <I,N, T, A> € Sailors A\ T > 7}

* Variables are now domain variables
* We will use use TRC
— both are equivalent

More Examples: RC

* The famous “Drinker-Beer-Bar” example!

UNDERSTAND THE DIFFERENCE IN ANSWERS
FOR ALL FOUR DRINKERS

Acknowledgement: examples and slides by Profs. Balazinska
and Suciu, and the [GUW] book

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Drinker Category 1

Find drinkers that frequent some bar that serves some beer they like.

CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar’
Serves(bar, beer)

)
Drinker Category 1

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y) /A Serves(y,z) /\ Likes(x,z)

a shortcut for

{x|3Y € Frequents Z € Serves W ¢ Likes (T.drinker = x.drinker A\ T.bar =
Z.bar A\ W.beer=...... }

The difference is that in the first one, one variable = one attribute
in the second one, one variable = one tuple (Tuple RC)
Both are equivalent and feel free to use the one that is convenient to you

CompSci 516: Database Systems

Why should we care about RC

RC is declarative, like SQL, and unlike RA (which is
operational)

Gives foundation of database queries in first-order

logic

— you cannot express all aggregates in RC, e.g. cardinality of
a relation or sum (possible in extended RA and SQL)

— still can express conditions like “at least two tuples” (or any
constant)

RC expression may be much simpler than SQL queries
— and easier to check for correctness than SQL
— power to use V and =

— then you can systematically go to a “correct” SQL
query

9/10/17

Likes(drinker, beer)
Frequents(drinker, bar)

st Drinker Category 2/3/4

Find drinkers that frequent some bar that serves some beer they like.

‘ Q(x) = 3y. 3z. Frequents(x, y)/\ Serves(y,z)/\ Likes(x,z) |

Find drinkers that frequent only bars that serves some beer they like.
[Q) = |

Find drinkers that frequent some bar that serves only beers they like.

[aw = |

Find drinkers that frequent only bars that serves only beer they like.
[aw= |

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

‘ Q(x) = 3y. Likes(x, y)/\ Vz.(Serves(z,y) = Frequents(x,z)) |

CompSci 516: Database Systems.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

‘ Q(x) = 3y. Likes(x, y)/\ Vz.(Serves(z,y) = Frequents(x,z)) |

Q(x) = 3y. Likes(x, y)/\Vz.(~ Serves(z,y) V Frequents(x,z)) |

Vx P(x) same as

Step 1: Replace V with 3 using de Morgan’s Laws ~3x “P(X)

[Q(x) = 3y. Likes(x, y)/\ ~3z.(Serves(zy) A\ “Frequents(x,z)) |

-(-PV/ Q) same as
PA-Q

11

CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

‘ Q(x) = Jy. Likes(x, y) A~ 3z.(Serves(z,y) A “Frequents(x,z)) |

Step 2: Translate into SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists
(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer translation trough
AND not exists (SELECT * “safe queries”
FROM Frequents F in Datalog
WHERE F.drinker=L.drinker
AND F.bar=S.bar))

We will see a
“methodical and correct”

CompSci 516: Database Systems

Summary
* You learnt three query languages for the Relational DB model
- saL
— RA
- RC

* All have their own purposes

* You should be able to write a query in all three languages and
convert from one to another

— However, you have to be careful, not all “valid” expressions in one may
be expressed in another

— {S | = (S € Sailors)} — infinitely many tuples — an “unsafe” query
— More when we do “Datalog”, also see Ch. 4.4 in [RG]

Duke CS, Fall 201 CompSci 516: Database Systems 13

9/10/17

Where are we now?

We learnt Next
. ¢ Database Normalization
v'Relational Model .
— (for good schema design)
and Query
Languages

v'sQlL, RA, RC
v'Postgres (DBMS)
v’ XML (overview)
= HW1

Duke CS, Fall 2017 Compsci 516: Database Systems

Design Theory and Normalization

uke CS, Fall 201 CompSci 516: Database Systems

Reading Material

¢ Database normalization
— [RG] Chapter 19.1 to 19.5, 19.6.1, 19.8 (overview)
— [GUW] Chapter 3

Acknowledgement:

* The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

* Some slides have been adapted from slides by Prof. Jun Yang

Duke CS, Fall 2017 Compsci 516: Database Systems

What will we learn?

* What goes wrong if we have redundant info in
a database?

* Why and how should you refine a schema?

* Functional Dependencies — a new kind of
integrity constraints (IC)

* Normal Forms
* How to obtain those normal forms

uke CS, Fall 201 CompSci 516: Database Systems

Example

The list of hourly employees in an organization

ssn (S) lot |rating |hourly- hours-
(L) [(R) wage (W) | worked (H)
48 8 10 40

111-11-1111 Attishoo

222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

* key =SSN

Duke CS, Fall 2017 Compsci 516: Database Systems

Example

The list of hourly employees in an organization

ssn (S) rating | hourly- hours-
R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 2 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

* key =SSN
« Suppose for a given rating, there is only one hourly_wage value
* Redundancy in the table

* Why is redundancy bad?

Duke Cs, Fall 2017 CompSci 516: Database Systems 19

9/10/17

Nulls may or may not help

ssn (S) lot | ratin hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 2 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

* Does not help redundant storage or update anomalies
* May help insertion and deletion anomalies
— can insert a tuple with null value in the hourly_wage field

— but cannot record hourly_wage for a rating unless there is such an
employee (SSN cannot be null) — same for deletion

Duke CS, Fall 2017 CompSci 516: Datab:

Systems 20

Summary: Redundancy

Therefore,

* Redundancy arises when the schema forces an association
between attributes that is “not natural”

* We want schemas that do not permit redundancy

— at least identify schemas that allow redundancy to make an informed
decision (e.g. for performance reasons)

* Null value may or may not help

* Solution?

— decomposition of schema

Duke Cs, Fall 2017 Compsci 516: Database Systems 2

Decomposition

ssn (S) lot ing | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 22 8 10 30

333-33-3333 Smethurst 35 5 7 30

444-44-4444 Guldu 35 5 7 32

555-55-5555 Madayan 35 8 10 40

111-11-1111 Attishoo 48 8 40

222-22-2222 Smiley 22 8 30 8 10
333-33-3333 Smethurst 35 5 30 5 7
444-44-4444 Guldu 35 5 32
555-55-5555 Madayan 35 % 40

UKe U, rall UL/ ompsCl 510: Database systems 2

Decompositions should be used judiciously

1. Do we need to decompose a relation?
— Several normal forms

— If arelation is not in one of them, may need to
decompose further

2. What are the problems with decomposition?

Duke CS, Fall 2017 Compsci 516: Database Systems

Functional Dependencies (FDs)

* A functional dependency (FD) X = Y holds over relation R
if, for every allowable instance r of R:

- i.e., given two tuples in r, if the X values agree, then the Y values
must also agree

- XandY are sets of attributes
- tlern t2er, MNy(t1) =1y (t2) implies I, (t1) =, (t2)

___ What is a possible FD here?
al bl cl di

al bl cl d2
al b2 c2 di
a2 bl c3 d1

Ouke CS, Fall 2017 Compsci 516: Database Systems 2

Functional Dependencies (FDs)

* An FD is a statement about all allowable
relations
- Must be identified based on semantics of application

— Given some allowable instance r1 of R, we can check
if it violates some FD f, but we cannot tell if f holds
over R
* Kis a candidate key for R means that K >R
- denoting R = all attributes of R too
- However, S R does not require S to be minimal
— e.g. S can be a superkey

Duke CS, Fall 201 CompSci 516: Database Systems

9/10/17

Example

¢ Consider relation obtained from Hourly_Emps:
- Hourly_Emps (ssn, name, lot, rating, hourly_wage, hours_worked)

Notation: We will denote a relation schema by listing the
attributes: SNLRWH

- Basically the set of attributes {S,N,L,R,W,H}
- here first letter of each attribute

e FDson Hourly_Emps:
— ssnisthe key: S -> SNLRWH
- rating determines hourly_wages: R->W

Armstrong’s Axioms

¢ X, Y, Z are sets of attributes

Reflexivity: If X 2, then XY
Augmentation: If X = Y, then XZ->YZ foranyZ
« Transitivity: If X Y and Y->Z, then X Z

A8 __[c__lo |
al bl cl d1
al bl cl d2

al b2 c2 d1
a2 bl c3 d1

Apply these rules on
AB - C and check

Armstrong’s Axioms

* X, Y, Z are sets of attributes

Reflexivity: If X 2, then X=>Y
Augmentation: If X Y, then XZ->YZ foranyZ
« Transitivity: If X Y and Y->Z, then X-> Z

¢ These are sound and complete inference rules for FDs
— sound: then only generate FDs in F* for F

— complete: by repeated application of these rules, all FDs in F*
will be generated

Additional Rules

* Follow from Armstrong’s Axioms

Union: IfX=>Y and X—=>Z, then X->YZ
Decomposition: If X > YZ, then XY and X>2Z

A |8 Jc o |

al bl o di A->BA->C

al bl c1 d2 A->BC

a2 b2 2 di

a2 b2 2 2 A->BC
A->BA->C

Closure of a set of FDs

* Given some FDs, we can usually infer additional FDs:
— SSN > DEPT, and DEPT - LOT implies SSN - LOT

* An FD fisimplied by a set of FDs F if f holds whenever
all FDs in F hold.

F+
= closure of F is the set of all FDs that are implied by F

To check if an FD belongs to a closure

* Computing the closure of a set of FDs can be expensive
— Size of closure can be exponential in #attributes

* Typically, we just want to check if a given FD X - Yis in
the closure of a set of FDs F

* No need to compute F*

1. Compute attribute closure of X (denoted X*) wrt F:
— Set of all attributes A such that X - Ais in F*
2. Checkif Yisin X*

Duke CS, Fall 201 ompsSci 516: Database Systems

9/10/17

Computing Attribute Closure

Algorithm:
+ closure =X
+ Repeat until no change

— ifthereisan FD U = Vin F such that U &
closure, then closure = closure U V

* DoesF={A->B,B>C,CD>E} imply A>
E?
- i.e, is A= E in the closure F*? Equivalently, is E in
A*?

Normal Forms

* Question: given a schema, how to decide whether any schema
refinement is needed at all?

e If arelation is in a certain normal forms, it is known that
certain kinds of problems are avoided/minimized

* Helps us decide whether decomposing the relation is
something we want to do

FDs play a role in detecting redundancy

Example
« Consider a relation R with 3 attributes, ABC

— No FDs hold: There is no redundancy here — no decomposition
needed

— Given A - B: Several tuples could have the same A value, and
if so, they’ll all have the same B value — redundancy —
decomposition may be needed if A is not a key

* Intuitive idea:

— if there is any non-key dependency, e.g. A > B,
decompose!

Normal Forms

Riis in BCNF INF
= Ris in 3NF 2NF
3NF

= Risin 2NF (a historical one, not

= Risin 1NF (every field has atomic
values)

Definitions next

Boyce-Codd Normal Form (BCNF)

* Relation R with FDs F is in BCNF if, for all X -
A inF
- A € X (called atrivial FD), or

— X contains a key for R
« i.e. Xis a superkey

9/10/17

Third Normal Form (3NF)

Relation R with FDs Fis in 3NF if, for all X > A in F*
— A€ X (called a trivial FD), or
- X contains a key for R, or »
_ Ais part of some @ for R. two conditions for BCNF
Minimality of a key is crucial in third condition in 3NF

— every attribute is part of some superkey (= set of all attributes)

If R is in BCNF, obviously in 3NF

If Riis in 3NF, some redundancy is possible
— when X - A and A'is part of a key (not allowed in BCNF)

Duke CS, Fall 201 CompSci 516: Database Systems

Decomposition of a Relation Schema

* Consider relation R contains attributes Al ... An

* A decomposition of R consists of replacing R by two or more
relations such that “no attribute is lost” and “no new attribute
appears”, i.e.

- Each new relation schema contains a subset of the attributes of R
— Every attribute of R appears as an attribute of one of the new relations
- E.g., Can decompose SNLRWH into SNLRH and RW

* What are the potential problems with an arbitrary
decomposition?

Lossless Join Decompositions

* Decomposition of R into X and Y is lossless-join w.r.t. a set of
FDs F if, for every instance r that satisfies F: rt,(r) DXty (r) =r

* Decompose into SP and PD -- is the
decomposition lossless?

sl pl di
. ?
@ 02 @ How about SP and SD?
s3 pl d3 Lossless decomposition of R into R1, R2 happens

if
* eitherR1 N R2 > R1
uke Cs, Fall 201 e orR1N0R2->R2

Algorithm: Decomposition into BCNF

¢ Input: relation R with FDs F
If X = Y violates BCNF, decompose Rinto R -Y and XY.
Repeat until all new relations are in BCNF w.r.t. the given F

NOTE: Need to consider all possible FDs that can be inferred
from the current set of FDs (closure), not only the given
ones!

Gives a collection of relations that are
- in BCNF

- lossless join decomposition

- and guaranteed to terminate

Decomposition into BCNF
(example)

- CSJDPQV, keyC, F={JP>C, SD> P, J> S}
— To deal with SD - P, decompose into SDP, CSJDQV.
— To deal withJ - S, decompose CSIDQV into JS and CIDQV

* Note:
— several dependencies may cause violation of BCNF
— The order in which we pick them may lead to very different
sets of relations
— there may be multiple correct decompositions

uke CS, Fall 201 CompSci 516: Database Systems

BCNF decomposition example

uid = uname, twitterid
twitterid — uid
uid, gid —» fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Ack: Slide from Prof. Jun Yang

Another example

uid — uname, twitterid
twitterid — uid
uid, gid = fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Ack: Slide from Prof. Jun Yang

9/10/17

Recap

* Functional dependencies: a generalization of the
key concept

* Non-key functional dependencies: a source of
redundancy

* BCNF decomposition: a method for removing
redundancies
— BNCF decomposition is a lossless join decomposition

* BCNF: schema in this normal form has no
redundancy due to FD’s

BCNF = no redundancy?

» User (uid, gid, place)
— A user can belong to multiple groups
— A user can register places she’s visited

— Groups and places have nothing to do with other

—FD’s? uid_lgid_lplace]
142 dps Springfield
- ?
BCNF 142 dps Australia
— Redundancies? 456 abe Springfield

456 abc Morocco
456 gov Springfield
456 gov Morocco

Multivalued dependencies

e A multivalued dependency (MVD) has the
form
X - Y, where X and Y are sets of attributes

in a relation R

* X - Y means that whenever a b o
two rows in R agree on all the a by, o
attributes of X, then we car{ ---
swap their Y components a

¢ abe

get two rows that are also in R

MVD examples

User (uid, gid, place)
e uid - gid
* uid - place

— Intuition: given uid, attributes gid and place are
“independent”

* uid, gid - place

— Trivial: LHS U RHS = all attributes of R
* uid, gid - uid

— Trivial: LHS 2 RHS

* FD reflexivity, augmentation, and transitivity
* MVD complementation:

* MVD augmentation:
* MVD transitivity:
* Replication (FD is MVD):

« Coalescence: Try proving things using these!?

Verify these yourself!|

Complete MVD + FD rules

IfX »Y,thenX » attrs(R) — X —-Y
IfX»YandV € W, thenXW —» YV
IfX »YandY » Z,thenX » Z —-Y
IfX->Y,thenX »Y

If X > Y and Z C Y and there is some W disjoint from
Y suchthat W — Z,thenX - Z

An elegant solution: “chase”

* Given a set of FD’s and MVD’s D, does another
dependency d (FD or MVD) follow from D?
* Procedure
— Start with the premise of d, and treat them as “seed”
tuples in a relation
— Apply the given dependencies in D repeatedly
« If we apply an FD, we infer equality of two symbols
« If we apply an MVD, we infer more tuples
— If we infer the conclusion of d, we have a proof

— Otherwise, if nothing more can be inferred, we have a
counterexample

9/10/17

Proof by chase

* InR(A,B,C,D),doesA » Band B » C
imply that A - C?
o (AEAE - DOEA

a by ¢ dy a byc, di ¥
b, ¢, d, a byc, dy ¥
by ¢1 dy
by ¢c; d;
a by c; dy
a by c; dy

S

Q 9

a by c; dy
a by ¢ dy

B—>C

Another proof by chase

* InR(A,B,C,D),does A —» B and B — C imply
that A - C?

Have: En Need:

G =c
a by ¢ dy 1 2 ¥

a by c; dy

A-B by = b,

B-C L =c

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities

Counterexample by chase
* InR(A,B,C,D),does A » BC and CD - B
imply that A - B?

Have: Em Need:

a by ¢ dy by =by
a by c; dy

b. d

A BC a by ¢
a by ¢ dy

Counterexample!

ANF

e Arelation R is in Fourth Normal Form (4NF) if

— For every non-trivial MVD X = Y inR, X isa
superkey

— That is, all FD’s and MVD’s follow from “key —
other attributes” (i.e., no MVD’s and no FD’s
besides key functional dependencies)

* ANF is stronger than BCNF
— Because every FD is also a MVD

4ANF decomposition algorithm

* Find a 4NF violation

— Anon-trivial MVD X - Y in R where X is not a superkey
* Decompose R into Ry and R,, where

— Ry has attributes X U Y

— R, has attributes X U Z (where Z contains R attributes not
inXorY)

* Repeat until all relations are in 4NF

* Almost identical to BCNF decomposition algorithm
* Any decomposition on a 4NF violation is lossless

ANF decomposition example
[wie_Loia | piace |

142 dps Springfield

142 dps Australia

456 abc Springfield
User (de, gld, place) 456 abc Morocco

. P . 456 gov Springfield
ANF violation: uid » gid v e

Member (uid, gid) Visited (uid, place)
ANF EZEETE 4NF T
142 dps 142 Springfield
456 abc 142 Australia
456 gov. 456 Springfield

456 Morocco

9/10/17

Duke CS, Fall 2017 Com

Other kinds of dependencies and
normal forms

Dependency preserving decompositions
Join dependencies

Inclusion dependencies

5NF

See book if interested (not covered in class)

16: Database Systems

Summary

* Philosophy behind BCNF, 4NF:
Data should depend on the key, the whole key,
and nothing but the key!
— You could have multiple keys though

* Redundancy is not desired typically
— not always, mainly due to performance reasons
* Functional/multivalued dependencies — capture redundancy
* Decompositions — eliminate dependencies
* Normal forms
— Guarantees certain non-redundancy
— 3NF, BCNF, and 4NF
* Lossless join
* How to decompose into BCNF, 4NF
¢ Chase

10

