
9/10/17

1

CompSci 516
Data	Intensive	Computing	Systems

Lecture	5
Design	Theory	and
Normalization

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Announcements
• HW1	deadline:

– Due	on	09/21	(Thurs),	11:55	pm,	no	late	days

• Project	proposal	deadline:
– Preliminary	idea	and	team	members	due	by	09/18	
(Mon)	by	email	to	the	instructor

– Proposal	due	on	sakai by	09/25	(Mon),	11:55	pm

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 2

Today

• Finish	RC	from	Lecture	4
– DRC
– More	example

• Normalization

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 3

DRC:	example

• Find	the	name	and	age	of	all	sailors	with	a	rating	above	7

TRC:
{P	|	∃ S	ϵ	Sailors	(S.rating >	7	⋀ P.name =	S.name ⋀ P.age =	S.age)}	

DRC:
{<N,	A>	|	∃ <I,	N,	T,	A>	ϵ	Sailors	⋀ T	>	7}

• Variables	are	now	domain	variables
• We	will	use	use	TRC

– both	are	equivalent

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 4

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

More	Examples:	RC

• The	famous	“Drinker-Beer-Bar”	example!

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 5

Acknowledgement:	examples	and	slides	by	Profs.	Balazinska
and	Suciu,	and	the	[GUW]	book

UNDERSTAND	THE	DIFFERENCE	IN	ANSWERS	
FOR	ALL	FOUR	DRINKERS

Drinker	Category	1

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

6CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

9/10/17

2

Drinker	Category	1

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

a shortcut for
{x | $Y ϵ Frequents Z ϵ Serves W ϵ Likes (T.drinker = x.drinker∧ T.bar =
Z.bar∧ W.beer = ……}

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

7CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

The	difference	is	that	in	the	first	one,	one	variable	=	one	attribute
in	the	second	one,	one	variable	=	one	tuple	(Tuple	RC)
Both	are	equivalent	and	feel	free	to	use	the	one	that	is	convenient	to	you

Drinker	Category	2/3/4

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) =

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

8Duke	CS,	Fall	2017 CompSci 516:	Database	Systems

Q(x) =

Q(x) =

Why	should	we	care	about	RC
• RC	is	declarative,	like	SQL,	and	unlike	RA	(which	is	

operational)
• Gives	foundation	of	database	queries	in	first-order	

logic
– you	cannot	express	all	aggregates	in	RC,	e.g.	cardinality	of	
a	relation	or	sum	(possible	in	extended	RA	and	SQL)

– still	can	express	conditions	like	“at	least	two	tuples”	(or	any	
constant)

• RC	expression	may	be	much	simpler	than	SQL	queries
– and	easier	to	check	for	correctness	than	SQL
– power	to	use	" and Þ
– then you can systematically go to a “correct” SQL

query

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 9

From	RC	to	SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

CompSci	516:	Database	Systems 10

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2017

From	RC	to	SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ ¬$z.(Serves(z,y) ∧ ¬Frequents(x,z))

CompSci	516:	Database	Systems 11

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º Q(x) = $y. Likes(x, y)∧"z.(¬ Serves(z,y) ∨ Frequents(x,z))

Duke	CS,	Fall	2017

From	RC	to	SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT *
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))

CompSci	516:	Database	Systems 12

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2017

Q(x) = $y. Likes(x, y) ∧¬ $z.(Serves(z,y)∧¬Frequents(x,z))

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

We	will	see	a	
“methodical	and	correct”
translation	trough	
“safe	queries”
in	Datalog

9/10/17

3

Summary

• You	learnt	three	query	languages	for	the	Relational	DB	model
– SQL
– RA
– RC

• All	have	their	own	purposes

• You	should	be	able	to	write	a	query	in	all	three	languages	and	
convert	from	one	to	another
– However,	you	have	to	be	careful,	not	all	“valid”	expressions	in	one	may	

be	expressed	in	another
– {S	|	¬	(S	ϵ	Sailors)}	– infinitely	many	tuples	– an	“unsafe”	query
– More	when	we	do	“Datalog”,	also	see	Ch.	4.4	in	[RG]

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 13

Where	are	we	now?

We	learnt
üRelational	Model	
and	Query	
Languages
üSQL,	RA,	RC
üPostgres	(DBMS)
üXML	(overview)
§ HW1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 14

Next

• Database	Normalization
– (for	good	schema	design)

Design	Theory	and	Normalization

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 15

Reading	Material

• Database	normalization
– [RG]	Chapter	19.1	to	19.5,	19.6.1,	19.8	(overview)
– [GUW]	Chapter	3

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 16

Acknowledgement:	
• The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.
• Some	slides	have	been	adapted	from	slides	by	Prof.	Jun	Yang

What	will	we	learn?

• What	goes	wrong	if	we	have	redundant	info	in	
a	database?

• Why	and	how	should	you	refine	a	schema?
• Functional	Dependencies	– a	new	kind	of	
integrity	constraints	(IC)

• Normal	Forms
• How	to	obtain	those	normal	forms

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 17

Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 18

The	list	of	hourly	employees	in	an	organization

• key	=	SSN

9/10/17

4

Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 19

The	list	of	hourly	employees	in	an	organization

• key	=	SSN
• Suppose	for	a	given	rating,	there	is	only	one	hourly_wage value
• Redundancy	in	the	table	
• Why	is	redundancy	bad?

Nulls	may	or	may	not	help

• Does	not	help	redundant	storage	or	update	anomalies
• May	help	insertion	and	deletion	anomalies

– can	insert	a	tuple	with	null	value	in	the	hourly_wage field
– but	cannot	record	hourly_wage for	a	rating	unless	there	is	such	an	

employee	(SSN	cannot	be	null)	– same	for	deletion
Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 20

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Summary:	Redundancy

Therefore,
• Redundancy	arises	when	the	schema	forces	an	association	

between	attributes	that	is	“not	natural”
• We	want	schemas	that	do	not	permit	redundancy

– at	least	identify	schemas	that	allow	redundancy	to	make	an	informed	
decision	(e.g.	for	performance	reasons)

• Null	value	may	or	may	not	help

• Solution?
– decomposition	of	schema

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 21

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 22

Decomposition

ssn (S) name	(N) lot	
(L)

rating	
(R)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 40
222-22-2222 Smiley 22 8 30
333-33-3333 Smethurst 35 5 30
444-44-4444 Guldu 35 5 32
555-55-5555 Madayan 35 8 40

rating hourly
_wage

8 10

5 7

Decompositions	should	be	used	judiciously

1. Do	we	need	to	decompose	a	relation?
– Several	normal	forms
– If	a	relation	is	not	in	one	of	them,	may	need	to	

decompose	further

2. What	are	the	problems	with	decomposition?

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 23

Functional	Dependencies	(FDs)
• A	functional	dependency (FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 24

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	a	possible	FD	here?

9/10/17

5

Functional	Dependencies	(FDs)

• An	FD	is	a	statement	about	all allowable	
relations
– Must	be	identified	based	on	semantics	of	application
– Given	some	allowable	instance	r1 of	R,	we	can	check	
if	it	violates some	FD	f,	but	we	cannot	tell	if	f holds	
over	R

• K	is	a	candidate	key	for	R	means	that	K	→R
– denoting	R	=	all	attributes	of	R	too
– However,	S →R	does	not	require	S to	be	minimal
– e.g.	S	can	be	a	superkey

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 25

Example

• Consider	relation	obtained	from	Hourly_Emps:
– Hourly_Emps (ssn,	name,	lot,	rating,	hourly_wage,	hours_worked)

• Notation:		We	will	denote	a relation	schema	by	listing	the	
attributes:			SNLRWH

– Basically	the	set of	attributes	{S,N,L,R,W,H}
– here	first	letter	of	each	attribute

• FDs	on	Hourly_Emps:
– ssn is	the	key:				S →	SNLRWH	
– rating	determines	hourly_wages:				R	→W

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 26

Armstrong’s	Axioms

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 27

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

Apply	these	rules	on
AB	→	C	and	check

Armstrong’s	Axioms

• These	are	sound and	complete inference	rules	for	FDs
– sound:	then	only	generate	FDs	in	F+ for	F
– complete:	by	repeated	application	of	these	rules,	all	FDs	in	F+
will	be	generated

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 28

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y	
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z

Additional	Rules

• Follow	from	Armstrong’s	Axioms

• Union:			If	X	→	Y		and		X	→ Z,			then		X	→ YZ
• Decomposition:			If	X	→ YZ,			then		X	→ Y		and		X	→ Z

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 29

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

A	→	B,	A	→	C
A	→	BC

A	→	BC
A	→	B,	A	→	C

Closure	of	a	set	of	FDs

• Given	some	FDs,	we	can	usually	infer	additional	FDs:
– SSN	→	DEPT,	and	DEPT	→ LOT	implies	SSN	→	LOT

• An	FD	f is	implied	by	a	set	of	FDs	F if	f holds	whenever	
all	FDs	in	F hold.

• F+

=	closure	of	F	is	the	set	of	all	FDs	that	are	implied	by	F

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 30

9/10/17

6

To	check	if	an	FD	belongs	to	a	closure

• Computing	the	closure	of	a	set	of	FDs	can	be	expensive
– Size	of	closure	can	be	exponential	in	#attributes

• Typically,	we	just	want	to	check	if	a	given	FD	X	→ Y	is	in	
the	closure	of	a	set	of	FDs	F

• No	need	to	compute	F+

1. Compute	attribute	closure	of	X	(denoted	X+)	wrt F:
– Set	of	all	attributes	A	such	that	X	→	A	is	in	F+

2. Check	if	Y	is	in	X+

Duke	CS,	Fall	2017 CompSci 516:	Database	Systems 31

Computing	Attribute	Closure

Algorithm:
• closure	=	X
• Repeat	until	no	change

– if	there	is	an	FD	U	→	V	in	F	such	that	U	⊆
closure,	then	closure	=	closure	∪ V	

• Does	F	=	{A	→	B,		B	→	C,		C	D	→ E	}		imply		A	→
E?
– i.e,		is		A	→	E		in	the	closure	F+?		Equivalently,	is	E	in	
A+?	

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 32

Normal	Forms	

• Question:	given	a	schema,	how	to	decide	whether	any	schema	
refinement	is	needed	at	all?

• If	a	relation	is	in	a	certain	normal	forms,	it	is	known	that	
certain	kinds	of	problems	are	avoided/minimized

• Helps	us	decide	whether	decomposing	the	relation	is	
something	we	want	to	do

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 33

FDs	play	a	role	in	detecting	redundancy

Example
• Consider	a	relation	R	with	3	attributes,	ABC	

– No	FDs	hold:			There	is	no	redundancy	here	– no	decomposition	
needed

– Given	A	→ B:			Several	tuples	could	have	the	same	A	value,	and	
if	so,	they’ll	all	have	the	same	B	value	– redundancy	–
decomposition	may	be	needed	if	A	is	not	a	key

• Intuitive	idea:
– if	there	is	any	non-key	dependency,	e.g.	A	→	B,	
decompose!

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 34

Normal	Forms

R	is	in	BCNF
⇒ R	is	in	3NF
⇒ R	is	in	2NF		(a	historical	one,	not	
covered)
⇒ R	is	in	1NF	(every	field	has	atomic	
values)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 35

BCNF

3NF

2NF

1NF

Definitions	next

Boyce-Codd	Normal	Form		(BCNF)

• Relation	R	with	FDs	F is	in	BCNF if,	for	all	X	→
A		in	F
– A			ϵ			X			(called	a	trivial FD),	or
– X	contains	a	key	for	R

• i.e.	X	is	a	superkey

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 36

9/10/17

7

Third	Normal	Form		(3NF)

• Relation	R	with	FDs	F is	in	3NF if,	for	all	X	→ A		in	F+
– A	ϵ		X			(called	a	trivial	FD),	or
– X	contains a	key	for	R,	or
– A	is	part	of some	key for	R.	

• Minimality of	a	key	is	crucial	in	third	condition	in	3NF	
– every	attribute	is	part	of	some	superkey (=	set	of	all	attributes)

• If	R	is	in	BCNF,	obviously	in	3NF
• If	R	is	in	3NF,	some	redundancy	is	possible

– when	X	→ A	and	A	is	part	of	a	key	(not	allowed	in	BCNF)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 37

two	conditions	for	BCNF

Decomposition	of	a	Relation	Schema
• Consider	relation	R	contains	attributes	A1	...	An

• A	decomposition of	R	consists	of	replacing	R	by	two	or	more	
relations	such	that	“no	attribute	is	lost”	and	“no	new	attribute	
appears”,	i.e.	

– Each	new	relation	schema	contains	a	subset	of	the	attributes	of	R
– Every	attribute	of	R	appears	as	an	attribute	of	one	of	the	new	relations
– E.g.,		Can	decompose	SNLRWH into	SNLRH and	RW

• What	are	the	potential	problems	with	an	arbitrary	
decomposition?

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 38

Lossless	Join	Decompositions
• Decomposition	of	R	into	X	and	Y	is	lossless-join w.r.t.	a	set	of	

FDs	F	if,	for	every	instance	r that	satisfies	F:	πX(r)	⨝ π	Y(r)		=	r

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 39

S P D
s1 p1 d1

s2 p2 d2

s3 p1 d3

• Decompose	into	SP	and	PD	-- is	the	
decomposition	lossless?

• How	about	SP	and	SD?

Lossless	decomposition	of	R	into	R1,	R2	happens
if
• either	R1	∩	R2	→	R1
• or	R1	∩ R2	→	R2

Algorithm:	Decomposition	into	BCNF

• Input:	relation	R	with	FDs	F
If	X	→ Y	violates	BCNF,	decompose	R	into		R	- Y and	XY.
Repeat	until	all	new	relations	are	in	BCNF	w.r.t.	the	given	F

• NOTE:	Need	to	consider	all	possible	FDs	that	can	be	inferred	
from	the	current	set	of	FDs	(closure),	not	only	the	given	
ones!

• Gives	a	collection	of	relations	that	are
– in	BCNF
– lossless	join	decomposition
– and	guaranteed	to	terminate

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 40

Decomposition	into	BCNF	
(example)

• CSJDPQV,		key	C,		F	=	{JP	→ C,		SD	→ P,			J	→ S}
– To	deal	with	SD	→	P,	decompose	into		SDP,	CSJDQV.
– To	deal	with	J	→ S,	decompose	CSJDQV	into	JS	and	CJDQV

• Note:
– several	dependencies	may	cause	violation	of	BCNF		
– The	order	in	which	we	pick	them	may	lead	to	very	different	
sets	of	relations

– there	may	be	multiple	correct	decompositions
Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 41

BCNF	decomposition	example

42

UserJoinsGroup (uid,	uname,	twitterid,	gid,	fromDate)

uid→ uname,	twitterid
twitterid→ uid
uid,	gid→ fromDate

Ack:	Slide	from	Prof.	Jun	Yang

9/10/17

8

Another	example

43

UserJoinsGroup (uid,	uname,	twitterid,	gid,	fromDate)

uid→ uname,	twitterid
twitterid→ uid
uid,	gid→ fromDate

Ack:	Slide	from	Prof.	Jun	Yang

Recap

• Functional	dependencies:	a	generalization	of	the	
key	concept

• Non-key	functional	dependencies:	a	source	of	
redundancy

• BCNF	decomposition:	a	method	for	removing	
redundancies
– BNCF	decomposition	is	a	lossless	join	decomposition	

• BCNF:	schema	in	this	normal	form	has	no	
redundancy	due	to	FD’s

44

BCNF	=	no	redundancy?

• User (uid,	gid,	place)
– A	user	can	belong	to	multiple	groups
– A	user	can	register	places	she’s	visited
– Groups	and	places	have	nothing	to	do	with	other
– FD’s?
– BCNF?
– Redundancies?

45

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

Multivalued	dependencies

• A	multivalued	dependency	(MVD)	has	the	
form
𝑋 ↠ 𝑌,	where	𝑋 and	𝑌 are	sets	of	attributes	
in	a	relation	𝑅

• 𝑋 ↠ 𝑌 means	that	whenever	
two	rows	in	𝑅 agree	on	all	the	
attributes	of	𝑋,	then	we	can	
swap	their	𝑌 components	and	
get	two	rows	that	are	also	in	𝑅

46

𝑿 𝒀 𝒁
𝑎 𝑏+ 𝑐+
𝑎 𝑏- 𝑐-
… … …

𝑿 𝒀 𝒁
𝑎 𝑏+ 𝑐+
𝑎 𝑏- 𝑐-
𝑎 𝑏- 𝑐+
𝑎 𝑏+ 𝑐-
… … …

MVD	examples

User	(uid,	gid,	place)
• uid↠ gid
• uid↠ place

– Intuition:	given	uid,	attributes	gid and	place	are	
“independent”

• uid,	gid↠ place
– Trivial:	LHS	∪ RHS	=	all	attributes	of	𝑅

• uid,	gid↠ uid
– Trivial:	LHS	⊇ RHS

47

Complete	MVD	+	FD	rules

• FD	reflexivity,	augmentation,	and	transitivity
• MVD	complementation:

If	𝑋 ↠ 𝑌,	then	𝑋 ↠ 𝑎𝑡𝑡𝑟𝑠 𝑅 − 𝑋 − 𝑌
• MVD	augmentation:

If	𝑋 ↠ 𝑌 and	𝑉 ⊆ 𝑊,	then	𝑋𝑊 ↠ 𝑌𝑉
• MVD	transitivity:

If	𝑋 ↠ 𝑌 and	𝑌 ↠ 𝑍,	then	𝑋 ↠ 𝑍 − 𝑌
• Replication	(FD	is	MVD):

If	𝑋 → 𝑌,	then	𝑋 ↠ 𝑌
• Coalescence:

If	𝑋 ↠ 𝑌 and	𝑍 ⊆ 𝑌 and	there	is	some	𝑊 disjoint	from	
𝑌 such	that	𝑊 → 𝑍,	then	𝑋 → 𝑍

48

Try	proving	things	using	these!?

Verify	these	yourself!

9/10/17

9

An	elegant	solution:	“chase”

• Given	a	set	of	FD’s	and	MVD’s	𝒟,	does	another	
dependency	𝑑 (FD	or	MVD)	follow	from	𝒟?

• Procedure
– Start	with	the	premise	of	𝑑,	and	treat	them	as	“seed”	
tuples	in	a	relation

– Apply	the	given	dependencies	in	𝒟 repeatedly
• If	we	apply	an	FD,	we	infer	equality	of	two	symbols
• If	we	apply	an	MVD,	we	infer	more	tuples

– If	we	infer	the	conclusion	of	𝑑,	we	have	a	proof
– Otherwise,	if	nothing	more	can	be	inferred,	we	have	a	
counterexample

49

Proof	by	chase
• In	𝑅 𝐴, 𝐵, 𝐶, 𝐷 ,	does	𝐴 ↠ 𝐵 and	𝐵 ↠ 𝐶
imply	that	𝐴 ↠ 𝐶?

50

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏+ 𝑐+ 𝑑+
𝑎 𝑏- 𝑐- 𝑑-

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏+ 𝑐- 𝑑+
𝑎 𝑏- 𝑐+ 𝑑-

Have: Need:

𝑎 𝑏- 𝑐+ 𝑑+
𝑎 𝑏+ 𝑐- 𝑑-

𝐴 ↠ 𝐵

𝑎 𝑏- 𝑐+ 𝑑-
𝑎 𝑏- 𝑐- 𝑑+

𝐵 ↠ 𝐶

𝑎 𝑏+ 𝑐- 𝑑+
𝑎 𝑏+ 𝑐+ 𝑑-

𝐵 ↠ 𝐶

A
A

Another	proof	by	chase
• In	𝑅 𝐴, 𝐵, 𝐶, 𝐷 ,	does	𝐴 → 𝐵 and	𝐵 → 𝐶 imply	
that	𝐴 → 𝐶?

51

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏+ 𝑐+ 𝑑+
𝑎 𝑏- 𝑐- 𝑑-

Have: Need:
𝑐+ = 𝑐-

𝐴 → 𝐵 𝑏+ = 𝑏-
𝐵 → 𝐶 𝑐+ = 𝑐-

A

In	general,	with	both	MVD’s	and	FD’s,
chase	can	generate	both	new	tuples	and	new	equalities

Counterexample	by	chase
• In	𝑅 𝐴, 𝐵, 𝐶, 𝐷 ,	does	𝐴 ↠ 𝐵𝐶 and	𝐶𝐷 → 𝐵
imply	that	𝐴 → 𝐵?

52

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏+ 𝑐+ 𝑑+
𝑎 𝑏- 𝑐- 𝑑-

Have: Need:
𝑏+ = 𝑏-

𝑎 𝑏- 𝑐- 𝑑+
𝑎 𝑏+ 𝑐+ 𝑑-

𝐴 ↠ 𝐵𝐶

D

Counterexample!

4NF

• A	relation	𝑅 is	in	Fourth	Normal	Form	(4NF)	if
– For	every	non-trivial	MVD	𝑋 ↠ 𝑌 in	𝑅,	𝑋 is	a	
superkey

– That	is,	all	FD’s	and	MVD’s	follow	from	“key	→
other	attributes”	(i.e.,	no	MVD’s	and	no	FD’s	
besides	key	functional	dependencies)

• 4NF	is	stronger	than	BCNF
– Because	every	FD	is	also	a	MVD

53

4NF	decomposition	algorithm

• Find	a	4NF	violation
– A	non-trivial	MVD	𝑋 ↠ 𝑌 in	𝑅 where	𝑋 is	not a	superkey

• Decompose	𝑅 into	𝑅+ and	𝑅-,	where
– 𝑅+ has	attributes	𝑋 ∪ 𝑌
– 𝑅- has	attributes	𝑋 ∪ 𝑍 (where	𝑍 contains	𝑅 attributes	not	
in	𝑋 or	𝑌)

• Repeat	until	all	relations	are	in	4NF

• Almost	identical	to	BCNF	decomposition	algorithm
• Any	decomposition	on	a	4NF	violation	is	lossless

54

9/10/17

10

4NF	decomposition	example

55

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

User (uid,	gid,	place)
4NF	violation:	uid↠	gid

Member	(uid,	gid) Visited	(uid,	place)
4NF 4NFuid gid

142 dps

456 abc

456 gov

… …

uid place

142 Springfield

142 Australia

456 Springfield

456 Morocco

… …

Other	kinds	of	dependencies	and	
normal	forms

• Dependency	preserving	decompositions
• Join	dependencies
• Inclusion	dependencies
• 5NF
• See	book	if	interested	(not	covered	in	class)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 56

Summary

• Philosophy	behind	BCNF,	4NF:
Data	should	depend	on	the	key,	 the	whole	key,	
and	nothing	but	the	key!
– You	could	have	multiple	keys	though

• Redundancy	is	not	desired	typically
– not	always,	mainly	due	to	performance	reasons

• Functional/multivalued	dependencies	– capture	redundancy
• Decompositions	– eliminate	dependencies
• Normal	forms

– Guarantees	certain	non-redundancy
– 3NF,	BCNF,	and	4NF

• Lossless	join
• How	to	decompose	into	BCNF,	4NF
• Chase

57

