
CompSci 516
Data	Intensive	Computing	Systems

Lecture	5
Design	Theory	and
Normalization

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Announcements
• HW1	deadline:

– Due	on	09/21	(Thurs),	11:55	pm,	no	late	days
• Project	proposal	deadline:

– Preliminary	idea	and	team	members	due	by	09/18	
(Mon)	by	email	to	the	instructor

– Proposal	due	on	sakai by	09/25	(Mon),	11:55	pm

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 2

Today

• Finish	RC	from	Lecture	4
– DRC
– More	example

• Normalization

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 3

DRC:	example

• Find	the	name	and	age	of	all	sailors	with	a	rating	above	7

TRC:
{P	|	∃ S	ϵ	Sailors	(S.rating >	7	⋀ P.name =	S.name ⋀ P.age =	S.age)}	

DRC:
{<N,	A>	|	∃ <I,	N,	T,	A>	ϵ	Sailors	⋀ T	>	7}

• Variables	are	now	domain	variables
• We	will	use	use	TRC

– both	are	equivalent

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 4

Sailors(sid,	sname,	rating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	day)

More	Examples:	RC

• The	famous	“Drinker-Beer-Bar”	example!

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 5

Acknowledgement:	examples	and	slides	by	Profs.	Balazinska
and	Suciu,	and	the	[GUW]	book

UNDERSTAND	THE	DIFFERENCE	IN	ANSWERS	
FOR	ALL	FOUR	DRINKERS

Drinker	Category	1

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

6CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Drinker	Category	1

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

a shortcut for
{x | $F ϵ Frequents $ S ϵ Serves $ L ϵ Likes ((L.drinker = F.drinker) ∧ (F.bar
= S.bar) ∧ (S.beer = L.beer)) ∧ (x.drinker = F.drinker) }

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

7CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

The	difference	is	that	in	the	first	one,	one	variable	=	one	attribute
in	the	second	one,	one	variable	=	one	tuple	(Tuple	RC)
Both	are	equivalent	and	feel	free	to	use	the	one	that	is	convenient	to	you

Drinker	Category	2

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

8CompSci	516:	Database	Systems

Q(x) = …

Duke	CS,	Fall	2017

Drinker	Category	2

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = "y. Frequents(x, y)Þ ($z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

9CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Drinker	Category	3

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = "y. Frequents(x, y)Þ ($z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

10CompSci	516:	Database	Systems

Q(x) = …

Duke	CS,	Fall	2017

Drinker	Category	3

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = "y. Frequents(x, y)Þ ($z. Serves(y,z)∧Likes(x,z))

Q(x) = $y. Frequents(x, y)∧"z.(Serves(y,z) Þ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

11CompSci	516:	Database	SystemsDuke	CS,	Fall	2017

Drinker	Category	4

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = "y. Frequents(x, y)Þ ($z. Serves(y,z)∧Likes(x,z))

Q(x) = $y. Frequents(x, y)∧"z.(Serves(y,z) Þ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

12CompSci	516:	Database	Systems

Q(x) = …

Duke	CS,	Fall	2017

Drinker	Category	4

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = $y. $z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = "y. Frequents(x, y)Þ ($z. Serves(y,z)∧Likes(x,z))

Q(x) = "y. Frequents(x, y)Þ "z.(Serves(y,z) Þ Likes(x,z))

Q(x) = $y. Frequents(x, y)∧"z.(Serves(y,z) Þ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

13Duke	CS,	Fall	2017 CompSci	516:	Database	Systems

Why	should	we	care	about	RC
• RC	is	declarative,	like	SQL,	and	unlike	RA	(which	is	
operational)

• Gives	foundation	of	database	queries	in	first-order	
logic
– you	cannot	express	all	aggregates	in	RC,	e.g.	cardinality	of	
a	relation	or	sum	(possible	in	extended	RA	and	SQL)

– still	can	express	conditions	like	“at	least	two	tuples”	(or	any	
constant)

• RC	expression	may	be	much	simpler	than	SQL	queries
– and	easier	to	check	for	correctness	than	SQL
– power	to	use	" and Þ
– then you can systematically go to a “correct” SQL

query

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 14

From	RC	to	SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

CompSci	516:	Database	Systems 15

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2017

From	RC	to	SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ ¬$z.(Serves(z,y) ∧ ¬Frequents(x,z))

CompSci	516:	Database	Systems 16

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º Q(x) = $y. Likes(x, y)∧"z.(¬ Serves(z,y) ∨ Frequents(x,z))

Duke	CS,	Fall	2017

From	RC	to	SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT *
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))

CompSci	516:	Database	Systems 17

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke	CS,	Fall	2017

Q(x) = $y. Likes(x, y) ∧¬ $z.(Serves(z,y)∧¬Frequents(x,z))

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

We	will	see	a	
“methodical	and	correct”
translation	trough	
“safe	queries”
in	Datalog

Summary

• You	learnt	three	query	languages	for	the	Relational	DB	model
– SQL
– RA
– RC

• All	have	their	own	purposes

• You	should	be	able	to	write	a	query	in	all	three	languages	and	
convert	from	one	to	another
– However,	you	have	to	be	careful,	not	all	“valid”	expressions	in	one	may	

be	expressed	in	another
– {S	|	¬	(S	ϵ	Sailors)}	– infinitely	many	tuples	– an	“unsafe”	query
– More	when	we	do	“Datalog”,	also	see	Ch.	4.4	in	[RG]

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 18

Where	are	we	now?

We	learnt
üRelational	Model	
and	Query	
Languages
üSQL,	RA,	RC
üPostgres	(DBMS)
üXML	(overview)
§ HW1

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 19

Next

• Database	Normalization
– (for	good	schema	design)

Design	Theory	and	Normalization

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 20

Reading	Material

• Database	normalization
– [RG]	Chapter	19.1	to	19.5,	19.6.1,	19.8	(overview)
– [GUW]	Chapter	3

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 21

Acknowledgement:	
• The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.
• Some	slides	have	been	adapted	from	slides	by	
Profs.	Magda	Balazinska,	Dan	Suciu,	and	Jun	Yang

What	will	we	learn?

• What	goes	wrong	if	we	have	redundant	info	in	
a	database?

• Why	and	how	should	you	refine	a	schema?
• Functional	Dependencies	– a	new	kind	of	
integrity	constraints	(IC)

• Normal	Forms
• How	to	obtain	those	normal	forms

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 22

Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 23

The	list	of	hourly	employees	in	an	organization

• key	=	SSN

Example

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 24

The	list	of	hourly	employees	in	an	organization

• key	=	SSN
• Suppose	for	a	given	rating,	there	is	only	one	hourly_wage value
• Redundancy	in	the	table	
• Why	is	redundancy	bad?

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 25

The	list	of	hourly	employees	in	an	organization

1. Redundant	storage:
– Some	information	is	stored	repeatedly
– The	rating	value	8	corresponds	to	hourly_wage 10,	which	is	stored	three	times

Why	is	redundancy	bad?

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10	→	9 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 26

The	list	of	hourly	employees	in	an	organization

2. Update	anomalies
– If	one	copy	of	data	is	updated,	an	inconsistency	is	created	unless	all	copies	are	similarly	

updated
– Suppose	you	update	the	hourly_wage value	in	the	first	tuple	using	UPDATE	statement	in	

SQL	-- inconsistency

Why	is	redundancy	bad?

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 27

The	list	of	hourly	employees	in	an	organization

3. Insertion	anomalies:
– It	may	not	be	possible	to	store	certain	information	unless	some	other,	unrelated	info	is	

stored	as	well
– We	cannot	insert	a	tuple	for	an	employee	unless	we	know	the	hourly	wage	for	the	

employee’s	rating	value

Why	is	redundancy	bad?

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 28

The	list	of	hourly	employees	in	an	organization

4. Deletion	anomalies:
– It	may	not	be	possible	delete	certain	information	without	losing	some	other	information	

as	well
– If	we	delete	all	tuples	with	a	given	rating	value	(Attishoo,	Smiley,	Madayan),	we	lose	the	

association	between	that	rating	value	and	its	hourly_wage value

Why	is	redundancy	bad?

Nulls	may	or	may	not	help

• Does	not	help	redundant	storage	or	update	anomalies
• May	help	insertion	and	deletion	anomalies

– can	insert	a	tuple	with	null	value	in	the	hourly_wage field
– but	cannot	record	hourly_wage for	a	rating	unless	there	is	such	an	

employee	(SSN	cannot	be	null)	– same	for	deletion
Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 29

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Summary:	Redundancy

Therefore,
• Redundancy	arises	when	the	schema	forces	an	association	

between	attributes	that	is	“not	natural”
• We	want	schemas	that	do	not	permit	redundancy

– at	least	identify	schemas	that	allow	redundancy	to	make	an	informed	
decision	(e.g.	for	performance	reasons)

• Null	value	may	or	may	not	help

• Solution?
– decomposition	of	schema

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 30

ssn (S) name	(N) lot	
(L)

rating	
(R)

hourly-
wage	(W)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 31

Decomposition

ssn (S) name	(N) lot	
(L)

rating	
(R)

hours-
worked	(H)

111-11-1111 Attishoo 48 8 40
222-22-2222 Smiley 22 8 30
333-33-3333 Smethurst 35 5 30
444-44-4444 Guldu 35 5 32
555-55-5555 Madayan 35 8 40

rating hourly
_wage

8 10

5 7

Decompositions	should	be	used	judiciously

1. Do	we	need	to	decompose	a	relation?
– Several	normal	forms
– If	a	relation	is	not	in	one	of	them,	may	need	to	

decompose	further

2. What	are	the	problems	with	decomposition?
– Lossless	joins	(soon)
– Performance	issues	-- decomposition	may	both

• help	performance	(for	updates,	some	queries	accessing	
part	of	data),	or

• hurt	performance	(new	joins	may	be	needed	for	some	
queries)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 32

Functional	Dependencies	(FDs)
• A	functional	dependency (FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 33

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	an	FD	here?

Functional	Dependencies	(FDs)
• A	functional	dependency	(FD)	X	→ Y	holds	over	relation	R	
if,	for	every	allowable	instance	r of	R:
– i.e.,	given	two	tuples	in	r,	if	the	X	values	agree,	then	the	Y	values	
must	also	agree

– X	and	Y	are	sets of	attributes
– t1	ϵ	r,		t2 ϵ	r,			ΠX (t1)	=	ΠX (t2)		implies	ΠY (t1)	=	ΠY (t2)	

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 34

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

What	is	an	FD	here?

AB	→	C

Note	that,	AB	is	not	a	key

not	a	correct	question	though..	see	next	slide!

Functional	Dependencies	(FDs)

• An	FD	is	a	statement	about	all allowable	
relations
– Must	be	identified	based	on	semantics	of	application
– Given	some	allowable	instance	r1 of	R,	we	can	check	
if	it	violates some	FD	f,	but	we	cannot	tell	if	f holds	
over	R

• K	is	a	candidate	key	for	R	means	that	K	→R
– denoting	R	=	all	attributes	of	R	too
– However,	S →R	does	not	require	S to	be	minimal
– e.g.	S	can	be	a	superkey

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 35

Example

• Consider	relation	obtained	from	Hourly_Emps:
– Hourly_Emps (ssn,	name,	lot,	rating,	hourly_wage,	hours_worked)

• Notation:		We	will	denote	a relation	schema	by	listing	the	
attributes:			SNLRWH
– Basically	the	set of	attributes	{S,N,L,R,W,H}
– here	first	letter	of	each	attribute

• FDs	on	Hourly_Emps:
– ssn is	the	key:				S →	SNLRWH	
– rating	determines	hourly_wages:				R	→ W

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 36

Armstrong’s	Axioms

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 37

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

Apply	these	rules	on
AB	→	C	and	check

Armstrong’s	Axioms

• These	are	sound and	complete inference	rules	for	FDs
– sound:	then	only	generate	FDs	in	F+ for	F
– complete:	by	repeated	application	of	these	rules,	all	FDs	in	F+
will	be	generated

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 38

• X,	Y,	Z	are	sets	of	attributes

• Reflexivity:		If		X	⊇ Y,		then			X	→ Y	
• Augmentation:		If		X	→ Y,		then			XZ	→ YZ			for	any	Z
• Transitivity:		If		X	→ Y		and		Y	→ Z,		then			X	→ Z

Additional	Rules

• Follow	from	Armstrong’s	Axioms

• Union:			If	X	→	Y		and		X	→ Z,			then		X	→ YZ
• Decomposition:			If	X	→ YZ,			then		X	→ Y		and		X	→ Z

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 39

A B C D
a1 b1 c1 d1

a1 b1 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

A	→	B,	A	→	C
A	→	BC

A	→	BC
A	→	B,	A	→	C

Closure	of	a	set	of	FDs

• Given	some	FDs,	we	can	usually	infer	additional	FDs:
– SSN	→	DEPT,	and	DEPT	→ LOT	implies	SSN	→	LOT

• An	FD	f is	implied	by	a	set	of	FDs	F if	f holds	whenever	
all	FDs	in	F hold.

• F+

=	closure	of	F	is	the	set	of	all	FDs	that	are	implied	by	F

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 40

To	check	if	an	FD	belongs	to	a	closure

• Computing	the	closure	of	a	set	of	FDs	can	be	expensive
– Size	of	closure	can	be	exponential	in	#attributes

• Typically,	we	just	want	to	check	if	a	given	FD	X	→ Y	is	in	
the	closure	of	a	set	of	FDs	F

• No	need	to	compute	F+

1. Compute	attribute	closure	of	X	(denoted	X+)	wrt F:
– Set	of	all	attributes	A	such	that	X	→	A	is	in	F+

2. Check	if	Y	is	in	X+

Duke	CS,	Fall	2017 CompSci 516:	Database	Systems 41

Computing	Attribute	Closure

Algorithm:
• closure	=	X
• Repeat	until	no	change

– if	there	is	an	FD	U	→	V	in	F	such	that	U	⊆
closure,	then	closure	=	closure	∪ V	

• Does	F	=	{A	→	B,		B	→	C,		C	D	→ E	}		imply		A	→
E?
– i.e,		is		A	→	E		in	the	closure	F+?		Equivalently,	is	E	in	
A+?	

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 42

Normal	Forms	

• Question:	given	a	schema,	how	to	decide	whether	any	schema	
refinement	is	needed	at	all?

• If	a	relation	is	in	a	certain	normal	forms,	it	is	known	that	
certain	kinds	of	problems	are	avoided/minimized

• Helps	us	decide	whether	decomposing	the	relation	is	
something	we	want	to	do

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 43

FDs	play	a	role	in	detecting	redundancy

Example
• Consider	a	relation	R	with	3	attributes,	ABC	

– No	FDs	hold:			There	is	no	redundancy	here	– no	decomposition	
needed

– Given	A	→ B:			Several	tuples	could	have	the	same	A	value,	and	
if	so,	they’ll	all	have	the	same	B	value	– redundancy	–
decomposition	may	be	needed	if	A	is	not	a	key

• Intuitive	idea:
– if	there	is	any	non-key	dependency,	e.g.	A	→	B,	
decompose!

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 44

Normal	Forms

R	is	in	4NF
⇒ R	is	in	BCNF
⇒ R	is	in	3NF
⇒ R	is	in	2NF		(a	historical	one,	not	
covered)
⇒ R	is	in	1NF	(every	field	has	atomic	
values)

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 45

BCNF

3NF

2NF

1NF

Definitions	next

4NF

Boyce-Codd	Normal	Form		(BCNF)

• Relation	R	with	FDs	F is	in	BCNF if,	for	all	X	→
A		in	F
– A			ϵ			X			(called	a	trivial FD),	or
– X	contains	a	key	for	R

• i.e.	X	is	a	superkey

Duke	CS,	Fall	2017 CompSci	516:	Database	Systems 46

Next	lecture:		BCNF	decomposition	algorithm

