CompSci 516
Data Intensive Computing Systems

Lecture 5
Design Theory and
Normalization

Instructor: Sudeepa Roy

Duke CS, Fall 2017 CompSci 516: Database Systems

Announcements

e HW1 deadline:
— Due on 09/21 (Thurs), 11:55 pm, no late days

* Project proposal deadline:

— Preliminary idea and team members due by 09/18
(Mon) by email to the instructor

— Proposal due on sakai by 09/25 (Mon), 11:55 pm

Today

 Finish RC from Lecture 4
— DRC
— More example

e Normalization

Duke CS, Fall 2017 CompSci 516: Database Systems

DRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)
* Find the name and age of all sailors with a rating above 7

TRC:
{P | 3 SeSailors (S.rating > 7 A P.name = S.name A P.age = S.age)}

DRC:
{<N, A>| d <I,N, T, A>€eSailors \T > 7}

* Variables are now domain variables

 We will use use TRC
— both are equivalent

Duke CS, Fall 2017 CompSci 516: Database Systems

More Examples: RC

 The famous “Drinker-Beer-Bar” example!

UNDERSTAND THE DIFFERENCE IN ANSWERS
FOR ALL FOUR DRINKERS

Acknowledgement: examples and slides by Profs. Balazinska
and Suciu, and the [GUW] book

Duke CS, Fall 2017 CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rl N ke r CategO ry 1

Find drinkers that frequent some bar that serves some beer they like.

Duke CS, Fall 2017 CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar
Serves(bar, beer)

)
Drinker Category 1

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

a shortcut for

{x | 3F € Frequents 3 S € Serves 3 L € Likes ((L.drinker = F.drinker) /\ (F.bar
= S.bar) /\ (S.beer = L.beer)) /\ (x.drinker = F.drinker) }

The difference is that in the first one, one variable = one attribute
in the second one, one variable = one tuple (Tuple RC)
Both are equivalent and feel free to use the one that is convenient to you

Duke CS, Fall 2017 CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rl N ke r CategO ry 2

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ...

CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rl N ke r CategO ry 2

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) /\ Likes(x,z))

CompSci 516: Database Systems

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rl N ke r CategO ry 3

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) /\ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

Qx) = ...

CompSci 516: Database Systems

10

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rl N ke r CategO ry 3

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) /\ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = 3y. Frequents(x, y)/\Vz.(Serves(y,z) = Likes(x,z))

CompSci 516: Database Systems

11

Likes(drinker, beer)
Frequents(drinker, bar

)
servesarnbeet Drinker Category 4

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) /\ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = 3y. Frequents(x, y)/\Vz.(Serves(y,z) = Likes(x,z))

Find drinkers that frequent only bars that serves only beer they like.
Q(x) = ...

CompSci 516: Database Systems

12

Likes(drinker, beer)
Frequents(drinker, bar

)
servesarnbeet Drinker Category 4

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. 3z. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) /\ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = 3y. Frequents(x, y)/\Vz.(Serves(y,z) = Likes(x,z))

Find drinkers that frequent only bars that serves only beer they like.

Q(x) = Vy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

4
15

Why should we care about RC

RC is declarative, like SQL, and unlike RA (which is
operational)

Gives foundation of database queries in first-order
logic

— you cannot express all aggregates in RC, e.g. cardinality of
a relation or sum (possible in extended RA and SQL)

— still can express conditions like “at least two tuples” (or any
constant)

RC expression may be much simpler than SQL queries
— and easier to check for correctness than SQL
— power to use V and =

— then you can systematically go to a “correct” SQL
query

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

Q(x) = Jy. Likes(x, y)/\Vz.(Serves(z,y) = Frequents(x,z))

CompSci 516: Database Systems

15

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Q(x) = Jy. Likes(x, y)/\Vz.(Serves(z,y) = Frequents(x,z))

Q(x) = Jy. Likes(x, y) A\ Vz.(~ Serves(z,y) V Frequents(x,z))

vx P
Step 1: Replace V with 3 using de Morgan’s Laws -;I(x _(I)F())(;)ame -

Q(x) = Jy. Likes(x, y)/\ 73z.(Serves(z,y) /\ “Frequents(x,z))

(7P V Q) same as
PA-Q

CompSci 516: Database Systems 16

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Q(x) = Jy. Likes(x, y) A~ Jz.(Serves(z,y) A Frequents(x,z))

Step 2: Translate into SQL
SELECT DISTINCT L.drinker

FROM Likes L
WHERE not exists
(SELECT S.bar We will see a
FROM Serves S “methodical and correct”
WHERE L.beer=S.beer translation trough
AND not exists (SELECT * “safe queries”

FROM Frequents F in Datalog
WHERE F.drinker=L.drinker
AND F.bar=S.bar))

Duke CS, Fall 2017 CompSci 516: Database Systems 17

Summary

* You learnt three query languages for the Relational DB model
— SQL
— RA
— RC

e All have their own purposes

* You should be able to write a query in all three languages and
convert from one to another

— However, you have to be careful, not all “valid” expressions in one may
be expressed in another

— {S | - (S € Sailors)} — infinitely many tuples — an “unsafe” query
— More when we do “Datalog”, also see Ch. 4.4 in [RG]

Duke CS, Fall 2017 CompSci 516: Database Systems 18

Where are we now?

We learnt Next

v : Database Normalization
Relatlonal MOdE| — (for good schema design)
and Query
Languages

v'SQL, RA, RC
v'Postgres (DBMS)
v’ XML (overview)
= HW1

Duke CS, Fall 2017 CompSci 516: Database Systems

19

Design Theory and Normalization

Duke CS, Fall 2017 CompSci 516: Database Systems

20

Reading Material

e Database normalization

— [RG] Chapter 19.1 to 19.5, 19.6.1, 19.8 (overview)
— [GUW] Chapter 3

Acknowledgement:

* The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

* Some slides have been adapted from slides by

Profs. Magda Balazinska, Dan Suciu, and Jun Yang

What will we learn?

 What goes wrong if we have redundant info in
a database?

 Why and how should you refine a schema?

* Functional Dependencies —a new kind of
integrity constraints (IC)

* Normal Forms
e How to obtain those normal forms

Duke CS, Fall 2017 CompSci 516: Database Systems 22

Example

The list of hourly employees in an organization

ssn (S) lot |rating | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111
222-22-2222
333-33-3333
444-44-4444
555-55-5555

 key =SSN

Duke CS, Fall 2017

Attishoo
Smiley
Smethurst
Guldu
Madayan

22 3 10
35 5 7
35 5 7
35 8 10

CompSci 516: Database Systems

30
30
32
40

23

Example

The list of hourly employees in an organization

ssn (S) lot |rating | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

 key =SSN

e Suppose for a given rating, there is only one hourly_wage value
 Redundancy in the table

* Why is redundancy bad?

Duke CS, Fall 2017 CompSci 516: Database Systems

Why is redundancy bad?

The list of hourly employees in an organization

ssh (S) lot |rating | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 22 3 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 3 10 40

1. Redundant storage:
— Some information is stored repeatedly
— The rating value 8 corresponds to hourly _wage 10, which is stored three times

Duke CS, Fall 2017 CompSci 516: Database Systems

Why is redundancy bad?

The list of hourly employees in an organization

R
L) R) wage (W) | worked (H)
111-11-1111 Attishoo
222-22-2222 Smiley
333-33-3333 Smethurst

444-44-4444 Guldu
555-55-5555 Madayan

2. Update anomalies

— If one copy of data is updated, an inconsistency is created unless all copies are similarly

updated

102> 9
22 3 10
35 5 7
35 5 7
35 3 10

30
30
32
40

— Suppose you update the hourly _wage value in the first tuple using UPDATE statement in

SQL -- inconsistency

Duke CS, Fall 2017

CompSci 516: Database Systems

26

Why is redundancy bad?

The list of hourly employees in an organization

ssh (S) lot |rating | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

3. Insertion anomalies:

— It may not be possible to store certain information unless some other, unrelated info is
stored as well

— We cannot insert a tuple for an employee unless we know the hourly wage for the
employee’s rating value

Duke CS, Fall 2017 CompSci 516: Database Systems

Why is redundancy bad?

The list of hourly employees in an organization

e R
L) R) wage (W) | worked (H)
111-11-1111 Attishoo
222-22-2222 Smiley
333-33-3333 Smethurst

444-44-4444 Guldu
555-55-5555 Madayan

4. Deletion anomalies:

22 3 10
35 5 7
35 5 7
35 3 10

30
30
32
40

— It may not be possible delete certain information without losing some other information

as well

— If we delete all tuples with a given rating value (Attishoo, Smiley, Madayan), we lose the
association between that rating value and its hourly _wage value

Duke CS, Fall 2017

CompSci 516: Database Systems

28

Nulls may or may not help

ssh (S) lot |rating | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

* Does not help redundant storage or update anomalies

* May help insertion and deletion anomalies
— caninsert a tuple with null value in the hourly_wage field

— but cannot record hourly _wage for a rating unless there is such an
employee (SSN cannot be null) — same for deletion

Duke CS, Fall 2017 CompSci 516: Database Systems 29

Summary: Redundancy

Therefore,

Redundancy arises when the schema forces an association
between attributes that is “not natural”

We want schemas that do not permit redundancy

— at least identify schemas that allow redundancy to make an informed
decision (e.g. for performance reasons)

Null value may or may not help

Solution?

— decomposition of schema

Duke CS, Fall 2017 CompSci 516: Database Systems 30

Decomposition

ssn (S) lot |rating | hourly- hours-
L) R) wage (W) | worked (H)

111-11-1111 Attishoo

222-22-2222 Smiley 22 3 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 3 40

ssn (S) lot |rating | hours-
L) R) worked (H)

rating | hourly
_wage

111-11-1111 Attishoo

222-22-2222 Smiley 22 8 30 8 10
333-33-3333 Smethurst 35 5 30 5 7
444-44-4444 Guldu 35 5 32

555-55-5555 Madayan 35 8 40

DUKE LS, rdil £Ul/ COITIPOCI D10, UdLddSE JYSLEITIS 31

Decompositions should be used judiciously

1. Do we need to decompose a relation?
— Several normal forms

— If arelation is not in one of them, may need to
decompose further

2. What are the problems with decomposition?
— Lossless joins (soon)

— Performance issues -- decomposition may both

* help performance (for updates, some queries accessing
part of data), or

hurt performance (new joins may be needed for some
queries)

Functional Dependencies (FDs)

e A functional dependency (FD) X = Y holds over relation R
if, for every allowable instance r of R:

— i.e., given two tuples in r, if the X values agree, then the Y values
must also agree

— Xand are sets of attributes
~tlern, t2€r, I, (t1)="1,(t2) implies I, (t1) =11, (t2)

A B |c_|D What is an FD here?
al bl cl dl

al bl cl d2
al b2 c2 dl
a2 bl c3 dl

Duke CS, Fall 2017 CompSci 516: Database Systems 33

Functional Dependencies (FDs)

* A functional dependency (FD) X = Y holds over relation R
if, for every allowable instance r of R:

— i.e., given two tuples in r, if the X values agree, then the Y values

must also agree

— Xand are sets of attributes
~tlern, t2€r, I, (t1)="1,(t2) implies I, (t1) =11, (t2)

A B |c_|D What is an FD here?
al bl cl dl

al
al
a2

Duke CS, Fall 2017

bl
b2
bl

cl
c2
c3

4 AB - C
dl Note that, AB is not a key
dl

not a correct question though.. see next slide!

CompSci 516: Database Systems 34

Functional Dependencies (FDs)

e An FD is a statement about all allowable
relations

— Must be identified based on semantics of application

— Given some allowable instance r1 of R, we can check
if it violates some FD f, but we cannot tell if f holds
over R

* Kis a candidate key for R means that K >R
— denoting R = all attributes of R too
— However, S R does not require S to be minimal
— e.g. S can be a superkey

Duke CS, Fall 2017 CompSci 516: Database Systems 35

Example

* Consider relation obtained from Hourly Emps:
— Hourly_Emps (ssn, name, lot, rating, hourly wage, hours_worked)

* Notation: We will denote a relation schema by listing the
attributes: SNLRWH

— Basically the set of attributes {S,N,L,R,W,H}
— here first letter of each attribute

* FDs on Hourly Emps:

— ssnisthe key: S - SNLRWH
— rating determines hourly_wages: R—> W

Duke CS, Fall 2017 CompSci 516: Database Systems 36

Armstrong’s Axioms

X, Y, Z are sets of attributes

Reflexivity: If X 2 Y, then XY
Augmentation: If X—> Y, then XZ—> YZ foranyZ
Transitivity: If X Y and Y—>Z, then X5 Z

A [B |c D
al bl cl dl

al bl ol d2 Apply these rules on

1 b2 2 dil
° ¢ AB = C and check
a2 bl c3 dil

Duke CS, Fall 2017 CompSci 516: Database Systems

Armstrong’s Axioms

e X, Y, Zare sets of attributes

Reflexivity: If X 2 Y, then XY
Augmentation: If X—> Y, then XZ—> YZ foranyZ
Transitivity: If X Y and Y—>7Z, then X5 Z

 These are sound and complete inference rules for FDs
— sound: then only generate FDs in F* for F

— complete: by repeated application of these rules, all FDs in F*
will be generated

Duke CS, Fall 2017 CompSci 516: Database Systems 38

Additional Rules

* Follow from Armstrong’s Axioms

e Union: fX—=>Y and X—> 7, then X—> YZ
- Decomposition: IfX—->YZ, then X=>Y and X—>7Z

A B [c_ D

al bl ¢l dl A—->B A->C
al bl ¢l d2 A - BC
a2 b2 c2 dl

a2 b2 @ @ d2 A - BC

A->BA->C

Duke CS, Fall 2017 CompSci 516: Database Systems 39

Closure of a set of FDs

* Given some FDs, we can usually infer additional FDs:
— SSN - DEPT, and DEPT = LOT implies SSN - LOT

* An FD fisimplied by a set of FDs F if f holds whenever
all FDs in F hold.

F+
= closure of F is the set of all FDs that are implied by F

Duke CS, Fall 2017 CompSci 516: Database Systems 40

To check if an FD belongs to a closure

 Computing the closure of a set of FDs can be expensive

— Size of closure can be exponential in #attributes

* Typically, we just want to check if a given FD X = Yis in
the closure of a set of FDs F

* No need to compute F*

1. Compute attribute closure of X (denoted X*) wrt F:
— Set of all attributes A such that X - Aisin F*
2. CheckifYisinX*

Duke CS, Fall 2017 CompSci 516: Database Systems 41

Computing Attribute Closure

Algorithm:
« closure =X

- Repeat until no change

— ifthereisan FD U - Vin F such that U &
closure, then closure = closure U V

* DoesF={A—>B,B—>C,CD>E} imply A
E?

— i.e, is A - E inthe closure F*? Equivalently, is E in
A*?

Duke CS, Fall 2017 CompSci 516: Database Systems

42

Normal Forms

* Question: given a schema, how to decide whether any schema
refinement is needed at all?

* |farelationisin a certain normal forms, it is known that
certain kinds of problems are avoided/minimized

* Helps us decide whether decomposing the relation is
something we want to do

Duke CS, Fall 2017 CompSci 516: Database Systems 43

FDs play a role in detecting redundancy

Example

- Consider a relation R with 3 attributes, ABC

— No FDs hold: There is no redundancy here — no decomposition
needed

— Given A - B: Several tuples could have the same A value, and
if so, they’ll all have the same B value — redundancy —
decomposition may be needed if A is not a key

* |ntuitive idea:

— if there is any non-key dependency, e.g. A - B,
decompose!

Duke CS, Fall 2017 CompSci 516: Database Systems 44

Normal Forms

INF
2NF
3NF

Risin 4NF

= Ris in BCNF -mBCNF

— Risin 3NF

= Risin 2NF (a historical one, not

covered)

— Ris in 1NF (every field has atomic

values)

Definitions next

Duke CS, Fall 2017 CompSci 516: Database Systems

Boyce-Codd Normal Form (BCNF)

 Relation R with FDs Fis in BCNF if, for all X =
A inF
- A € X (calledatrivial FD), or

— X contains a key for R
- i.e. X is a superkey

Next lecture: BCNF decomposition algorithm

Duke CS, Fall 2017 CompSci 516: Database Systems

46

