CPS 570: Artificial Intelligence

Decision theory

Instructor: Vincent Conitzer

Risk attitudes

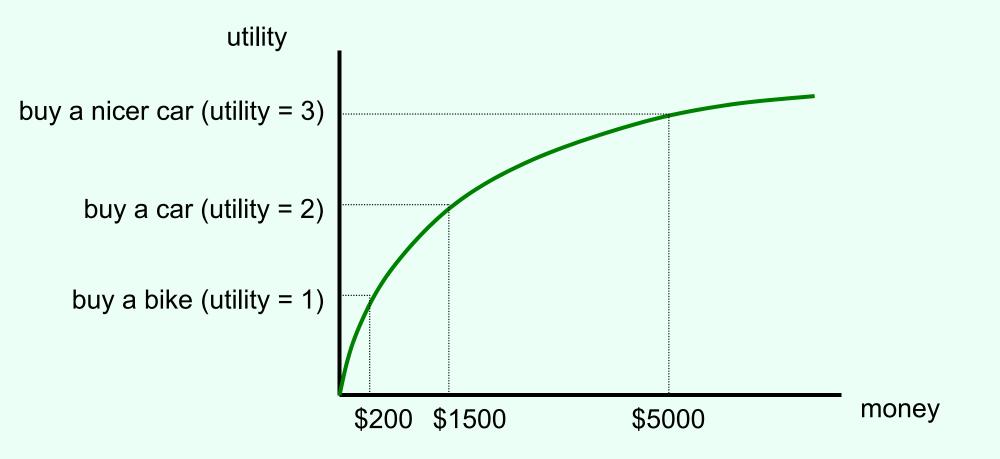
- Which would you prefer?
 - A lottery ticket that pays out \$10 with probability .5 and \$0 otherwise, or
 - A lottery ticket that pays out \$3 with probability 1
- How about:
 - A lottery ticket that pays out \$100,000,000 with probability .5 and \$0 otherwise, or
 - A lottery ticket that pays out \$30,000,000 with probability 1
- Usually, people do not simply go by expected value
- An agent is risk-neutral if she only cares about the expected value of the lottery ticket
- An agent is risk-averse if she always prefers the expected value of the lottery ticket to the lottery ticket

Most people are like this

 An agent is risk-seeking if she always prefers the lottery ticket to the expected value of the lottery ticket

Decreasing marginal utility

 Typically, at some point, having an extra dollar does not make people much happier (decreasing marginal utility)



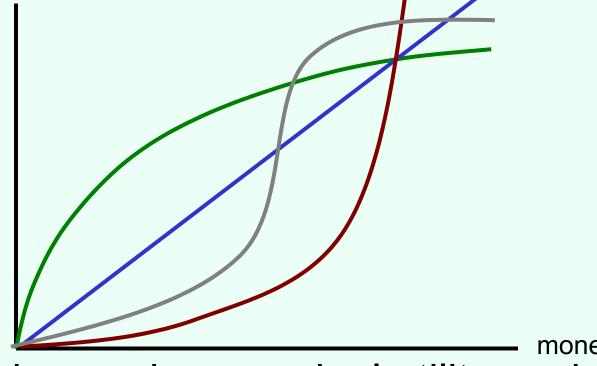
Maximizing expected utility utility buy a nicer car (utility = 3) buy a car (utility = 2) buy a bike (utility = 1) money \$1500 \$5000 \$200

- Lottery 1: get \$1500 with probability 1
 - gives expected utility 2
- Lottery 2: get \$5000 with probability .4, \$200 otherwise
 - gives expected utility .4*3 + .6*1 = 1.8
 - (expected amount of money = .4*\$5000 + .6*\$200 = \$2120 > \$1500)
- So: maximizing expected utility is consistent with risk aversion

Different possible risk attitudes

under expected utility maximization

utility



- Green has decreasing marginal utility \rightarrow risk-averse
- Blue has constant marginal utility \rightarrow risk-neutral
- Red has increasing marginal utility \rightarrow risk-seeking
- Grey's marginal utility is sometimes increasing, sometimes decreasing → neither risk-averse (everywhere) nor risk-seeking (everywhere)

What is utility, anyway?

- Function u: O → ℜ (O is the set of "outcomes" that lotteries randomize over)
- What are its units?
 - It doesn't really matter
 - If you replace your utility function by u'(o) = a + bu(o), your behavior will be unchanged
- Why would you want to maximize expected utility?
 - This is a question about preferences over lotteries

Compound lotteries

 For two lottery tickets L and L', let pL + (1-p)L' be the "compound" lottery ticket where you get lottery ticket L with probability p, and L' with probability 1-p pL+(1-p)L' pL+(1-p)L' p=50% 1-p=50% L Ľ 25% 25% 75% 50% 25% 0_{\varDelta}

 O_4

 0_2

 $\mathbf{0}_1$

Sufficient conditions for expected utility

- $L \ge L'$ means that L is (weakly) preferred to L'
 - (≥ should be complete, transitive)
- Expected utility theorem. Suppose
 - (continuity axiom) for all L, L', L'', {p: pL + $(1-p)L' \ge L''$ } and {p: pL + $(1-p)L' \le L''$ } are closed sets, and
 - (independence axiom more controversial) for all L, L', L'', p > 0, we have $L \ge L'$ if and only if $pL + (1-p)L'' \ge pL' + (1-p)L''$

Then, there exists a function u: $O \rightarrow \Re$ so that $L \ge L'$ if and only if L gives a higher expected value of u than L'

Acting optimally over time

- Finite number of periods:
- Overall utility = sum of rewards in individual periods
- Infinite number of periods:
- ... are we just going to add up the rewards over infinitely many periods?
 - Always get infinity!
- (Limit of) average payoff: $\lim_{n\to\infty} \Sigma_{1 \le t \le n} r(t)/n$ – Limit may not exist...
- Discounted payoff: $\Sigma_t \delta^t r(t)$ for some $\delta < 1$
- Interpretations of discounting:
 - Interest rate r: $\delta = 1/(1+r)$
 - World ends with some probability 1 - δ
- Discounting is mathematically convenient