
‘

COMPSCI 632: Approximation Algorithms August 30, 2017

Lecture 2
Lecturer: Debmalya Panigrahi Scribe: Nat Kell

1 Introduction

In this lecture, we examine a variety of problems for which we give greedy approximation algorithms.
We first examine the classic set cover problem and show that the greedy algorithm achieves a O(logn)
approximation. We then examine the maximum coverage and submodular maximization problems, and give
(1−1/e)-approximate algorithms for both these problems. Finally, we examine two scheduling problems,
precedence constraint scheduling and list scheduling, and give 2-approximate algorithms for both problems.

2 The Set Cover Problem

The first problem we’ll examine is the set cover problem, which is a generalization of the vertex cover
problem we saw in the previous lecture. Set cover is defined as follows.

Definition 1. SET COVER: As input, we are given a universe of n elements U and m subsets s1, . . . ,sm where
each si ⊆U has cost ci. The objective is to find a collection of subsets X of minimum cost that cover all
elements in the universe, i.e., ∪si∈X si =U.

Since our goal is to cover all the elements with as a little cost as possible, a natural approach is to try
the following greedy algorithm: On each step of the algorithm, let ui be the number of currently uncovered
elements in set i. The algorithm selects the set that minimizes the ratio ci/ui. We keep selecting sets until
all elements in the universe are covered.

We now show that this algorithm is a O(logn) approximation, which turns out to be the best approxima-
tion one can achieve (unless P = NP).

Theorem 1. The greedy algorithm for set cover is an O(logn) approximation.

Proof. Consider a step of the algorithm. Let k be the number of uncovered elements before choosing a set
on this step. Among the sets that have not yet been picked by the algorithm, the optimal solution uses some
collection of these sets to cover the remaining elements. Let Topt be the set of indices of this collection.

Let OPT be the cost of the optimal solution. Clearly, we have that ∑i∈Topt ci ≤ OPT since these sets are
a subset of the total collection used by the optimal solution. Also observe that we have ∑i∈Topt ui ≥ k since
by definition these sets cover the remaining k elements. (Note that this sum is at least k because it could be
double counting elements that belong to multiple sets in Topt.)

Therefore, we have:

min
i∈Topt

ci/ui ≤
∑i∈Topt ci

∑i∈Topt ui
≤ OPT

k
, (1)

2-1

where the first inequality follows from an averaging argument, and the second inequality follows from our
above observations. Thus, on a step where there are k elements still uncovered, there must be a subset si

where its benefit ratio ci/ui is at most OPT/k.
If on given step if the algorithm selects set si, we will think of dividing up the cost of the set and charging

it to each newly covered element, i.e., each newly covered element gets a charge ci/ui. We now claim that
the jth element to be covered can receive a charge of at most OPT/(n− j+1). This follows from Eqn. (1)
and the fact that when the jth element is covered, there must have been at least n− j+1 uncovered elements
on this step (also note that an element is only ever charged once—when it is first covered by the algorithm).

Clearly, the total cost of the the algorithm is the sum of the charges over all elements. Thus the total cost
of the algorithm is:

n

∑
j=1

OPT
n− j+1

= OPT ·
n

∑
j=1

1
j
= OPT ·O(logn),

where the last equality follows from the fact that the nth harmonic number is O(logn) .

3 Maximum Coverage and Submodular Maximization

In this section, we first examine the maximum coverage problem. Maximum coverage is similar to set
cover, except now instead of trying to cover all the elements with the smallest cost possible, we are given
a parameter k and are asked to cover as many elements as possible with only k sets. Formally, maximum
coverage is defined as follows.

Definition 2. As input, we are given a universe of n elements U and m subsets s1, . . . ,sm where each si ⊆U.
The objective is to find a collection of subsets X such that |X |= k and the number of elements we cover, i.e.,
|∪si∈X si|, is maximized.

The algorithm we’ll use for maximum coverage will also be similar to our greedy set cover algorithm.
Namely, our algorithm will be to on each step, pick the set that covers the most uncovered elements (note
that there is no notion of cost for this problem). We will show that this algorithm is (1−1/e)-approximate.

Theorem 2. The greedy algorithm for maximum coverage is (1−1/e)-approximate.

Proof. Let OPT be the number of elements covered in the optimal solution. Define `i to be the difference
between OPT and the number of elements covered by the first i steps of the algorithm. Note that `0, this
difference before the start of the algorithm, is exactly OPT.

Our first claim is that on the ith step of the algorithm, there exists at least one set that covers `i/k new
elements. This follows from an argument similar to one used in Theorem 1: Let T be the set of currently
uncovered elements in the algorithm’s solution that are covered in the optimal solution. By definition, |T | is
at least `i. Thus, since the optimal solution covers the elements in T with at most k sets, there must be set
that covers at least |T |/k ≤ `i/k new elements.

Hence, we have that for any i, `i− `i+1 ≥ `i/k. Solving this recurrence we obtain

`k ≤ (1−1/k)k · `0 = (1−1/k)k ·OPT≤ (1/e) ·OPT.

Therefore, the algorithm covers at least (1−1/e)·OPT elements after selecting k sets.

Maximum coverage is actually a special case of what is known as submodular maximization. To define
this problem, we first give the definition of a submodular function.

2-2

Definition 3. Suppose we are given a finite universe U. A function f : 2U → R is said to be submodular if
for all elements x ∈U and all sets A,B ∈ 2U such A⊆ B, we have:

f (A∪{x})− f (A)≥ f (B∪{x})− f (B). (2)

Intuitively, a submodular function is one with diminishing returns, i.e., if we have a collection of ele-
ments and we add a new element to this collection, the gain in f is smaller than if we were to add the new
element to a subset of this collection. For example, note that the coverage function, which was the objective
we used for set cover and maximum coverage, is submodular. Here, our universe is the collection of sets
s1, . . . ,sm and our function f maps to the size of the union of the collection of sets. Clearly, this function is
submodular since when we add a set to the union of a collection of sets, the number of additional elements
that we cover will be smaller than if we were to add the new set to a subset of the collection.

The problem of finding a set A such that a submodular function f (A) is maximized is NP-hard, and the
best known algorithm is a 1/2 approximation. However, if we also assume f is monotone, i.e., f (A∪{x})≥
f (A) for all sets A and all elements x, then we can achieve a (1− 1/e) approximation like we did for the
maximum coverage problem. In fact this algorithm is a natural generalization of our greedy maximum
coverage algorithm: on each step, we add the element that maximizes the current value of our set.

Theorem 3. The greedy algorithm for monotone submodular maximization is a (1−1/e)-approximation.

Proof. We will use an argument similar to that used in Theorem 2. Let Si denote the set of elements
chosen by algorithm after i steps of the algorithm, and let S∗ be the set that maximizes f . Let `i be the
difference between the value of these two sets, i.e., `i = f (S∗)− f (Si). Our goal will be again to show that
`i/k ≤ `i− `i+1. Once we establish this, the proof becomes identical to that of Theorem 2.

To show this, let K∗i be the set of elements included in S∗ but not in S after i steps. Observe that since f
is submodular we have the following inequality:

|K∗i |

∑
j=1

f (Si∪{y1, . . . ,y j})− f (Si∪{y1, . . . ,y j−1})≤
|K∗i |

∑
j=1

f (Si∪{y j})− f (Si), (3)

where {y1, . . . ,y0} is defined as the empty set. Observe that the LHS of Eqn. (3) telescopes and therefore
equals f (S∗∪Si)− f (Si). Since f is also monotone, we have that f (Si∪S∗)≥ f (S∗). Thus, Eqn. (3) implies
that:

`i = f (S∗)− f (Si)≤
|K∗i |

∑
j=1

f (Si∪{y j})− f (Si)

≤ |K∗i |max
j∈K∗i

{
f (Si∪{y j})− f (Si)

}
≤ k(`i− `i+1), (4)

where (4) follows from the fact that the algorithm chooses the element that increases the value of f by the
most and K∗i ≤ k (the optimal solution can pick at most k elements). Thus, we have that `i/k ≤ `i− `i+1, as
desired. As we mentioned above, the rest of the proof is identical to that of Theorem 2.

2-3

4 Scheduling Problems

To end the lecture, we will examine two classic scheduling problems, the first of which is known precedence
constraint scheduling. We define this problem as follows:

Definition 4. PRECEDENCE CONSTRAINT SCHEDULING: As input, we are given n jobs and k machines,
where each job is of unit length. We are also given a DAG G on the set of jobs, which dictates the order in
which jobs can be schedule, i.e., all ancestors of a job j must be processed before j can be processed. The
objective is to minimize the makespan of the schedule, i.e., the completion of the job that finishes last.

Our greedy algorithm for this problem is straightforward: On the ith step of the algorithm, let Ri be the
set of jobs that are ready to be scheduled (i.e., all jobs whose ancestors have already been processed). If
the |Ri| ≤ k , the algorithm simply schedules these jobs in parallel on an arbitrary set of |Ri| machines. If
|Ri| > k, then we arbitrarily pick a subset of k jobs from Ri and schedule them in parallel. We repeat this
procedure until all jobs have been scheduled.

We now show that this algorithm is a 2 approximation.

Theorem 4. The greedy algorithm for precedence constraint scheduling is a 2 approximation.

Proof. We will use the following two lower bounds on the optimal solution. The first lower bound is that
the optimal schedule must be at least the length of the longest path p∗ in G (which is immediate from the
definition of the problem). The second lower bound is that the optimal solution must take time at least n/k
to finish, since at any time step it can schedule at most k jobs.

Consider a run of the algorithm. We call a time step full if the algorithm assigns jobs to all k machines;
otherwise, we call it a non-full time step. First observe that by definition we can have at most n/k full time
steps. Next, we claim that we can have at most |p∗| non-full time steps. To see this second claim, note that
on ith step of the algorithm, we can think of the algorithm as having some remaining graph Gi to process
(i.e., the graph after removing all jobs that have been previously scheduled), where the jobs in Ri correspond
to the source nodes of this remaining graph. Since the longest path in Gi must start at one of these source
nodes, the longest path in Gi+1 must be one less than that of Gi after a non-full step (since on non-full steps
we schedule all available jobs). Clearly, the value of the longest path in the remaining graph cannot increase
on full time steps; thus, there can be at most |p∗| non-full time steps.

Since the total steps taken by the algorithm is the sum of full and non-full steps, and the number of each
respective step types lower bounds the makespan of the optimal schedule (discussed above), it follows that
the algorithm’s solution is 2-approximate.

For our last problem, we consider the list scheduling problem. We define this problem as follows.

Definition 5. LIST SCHEDULING: As input, we are given n jobs and k machines, where each job j has a
specified processing time p j. The objective is to assign each job to a unique machine such that the total
processing time of the machine that finishes last (i.e., the makespan of the schedule) is minimized.

Again, our greedy algorithm for this problem is straightforward. We will simply scan the set of jobs in
an arbitrary order, and then for each job we schedule it on the machine that currently has the smallest total
processing time. Again, we show that this algorithm is 2-approximate.

Theorem 5. The greedy algorithm for list scheduling is a 2 approximation.

2-4

Proof. We again use two lower bounds on the optimal makespan, which are similar to the two lower bounds
used in Theorem 4. First, it must be the case that the optimal makespan is at least ∑ j p j/k since the sum of
machine completion times must add up to the total processing time. Second, we have that for any job j, the
optimal makespan must be at least p j.

Consider the machine i that finishes last in the algorithm’s schedule. Let j be the last job assigned to
this machine. Observe that since we schedule each job on the machine that currently has the smallest load,
all machines other than i must be busy when job j starts. This implies that the start time of j is no more
than ∑ j p j/k. Therefore, since i is the machine that finishes last, the makespan of the schedule is at most
∑ j p j/k +p j. As we argued above, both of these terms are lower bounds on the optimal makespan. Thus,
the algorithm is a 2 approximation.

2-5

	Introduction
	The Set Cover Problem
	Maximum Coverage and Submodular Maximization
	Scheduling Problems

