
COMPSCI 632: Approximation Algorithms September 25, 2017

Lecture 9
Lecturer: Debmalya Panigrahi Scribe: Brandon Fain

1 Overview

For the last two lectures, we have been looking at primal dual algorithms with increasing sophistication. In
the primal dual framework, we use the linear program of an optimization problem to guide the choices of the
algorithm, even though we never explicitly solve the linear program. In the simplest case (e.g., vertex cover)
we simply increase dual variables until a constraint becomes tight, and choose the variable in the primal
program corresponding to that constraint. Last lecture, we saw how to design more sophisticated primal
dual algorithms by being more careful about which dual variable we choose to increase, and about how we
choose primal outcomes, culminating in a Lagrangian preserving 3-approximate primal dual algorithm for
the facility location problem.

We noted that we could use our algorithm for facility location to solve a relaxed version of the k-median
problem. In this lecture, we complete this argument to give a 2(3+ ε)-approximate primal dual algorithm
for the k-median problem. Subsequently, we introduce a new topic: dual fitting. In this technique, the linear
program for an optimization problem is used only in the analysis, unlike the primal-dual framework where
it guides the algorithm itself. We demonstrate the approach with some simple examples.

2 Primal Dual Algorithms - The k-median Problem

In the k-median problem, we have a set of points P in some metric space and we wish to open k “centers”
and map all points in P to some open center so as to minimize the total distance from points in P to
their mapped centers. More formally, we can write the optimization problem as an integer program. For all
i ∈P, j ∈P , let di j be the distance between i and j on the metric space, and let xi j be an indicator variable
equal to 1 if j is mapped to i and 0 otherwise (we will maintain the convention of indexing centers by i and
all points by j). Let yi be an indicator variable equal to 1 if i is opened as a center and 0 otherwise. Then the
k-median problem can be written as

Minimize ∑
i, j

di jxi j

subject to ∑
i

yi ≤ k

∑
i

xi j ≥ 1 ∀ j

xi j ≤ yi j ∀i, j

xi j,yi ∈ {0,1} ∀i, j

As in general with primal dual algorithms, we will take the linear program relaxation. However, we will
also take the Lagrangian relaxation, particularly with regard to the first constraint. Let λ be a Lagrangian

9-1

multiplier (intuitively, a penalty the program pays for violating the constraint). Then we can write the
relaxation of the k-median problem as

Minimize ∑
i, j

di jxi j +λ

(
∑

i
yi− k

)
subject to ∑

i
xi j ≥ 1 ∀ j

xi j ≤ yi j ∀i, j

xi j,yi ≥ 0 ∀i, j

(1)

We can also take the dual of program 1. Let α j be the variables corresponding to the first constraints.
We can simplify the form of the dual to avoid writing dual variables for the second constraints by noting
that given a set of centers, it is always optimal to simply map each point to its closest center. We get

Maximize α j−λk

subject to max
{

α j−di j, 0
}
≤ λ ∀i, j

α j ≥ 0 ∀ j

(2)

In the last lecture, we noted that the primal program is just an additive constant away from the facility
location problem where each facility has cost λ . We were able to show that if we somehow chose λ such that
∑i yi = k, then that solution would be a 3-approximate solution to the k-median problem. The algorithmic
challenge of this lecture then, is twofold: (i) how do we choose λ , and (ii) what do we do if we never find a
solution with exactly k centers?

The first question is simpler to answer. Note that the number of centers our algorithm returns will be non
increasing with the value of λ . In particular, when λ = 0 the algorithm can just take every point as a center,
and when λ = ∑i, j di j, the algorithm will just take a single center. Combining these properties suggests
that we can run a bisection search. Let δ > 0 be a parameter we will choose later. Initialize λ1 = 0 and
λ2 = ∑i, j di j and run a bisection search on the number of centers returned by running our facility location
approximation algorithm on program 1 until λ2−λ1 ≤ δ .

These final two values of λ give us two integer solutions, S1,S2 corresponding to λ1,λ2 respectively,
where a solution is just a set of centers, and |S1| ≥ k, |S2| ≤ k. If either inequality is tight, we can just output
that solution. If not, we must address our second question. We do so by creating a new fractional solution
by mixing S1 and S2 in the correct proportions. In particular, we create a new solution of the form:

S = γ1S1 + γ2S2 where γ1 =
k−|S2|
|S1|− |S2|

and γ2 =
|S1|− k
|S1|− |S2|

where we have slightly abused notation (by γ1S1 we mean to include a γ1 proportion of the items in S1).
We also mix the dual solutions in the same proportions to get

α = γ1α
1 + γ2α

2

where α1,α2 denote the duals corresponding to λ1 and λ2 respectively. The following remark is easy to see
from the fact that λ2 ≥ λ1, and so the dual constraints for λ2 are looser than for λ1.

Remark 1. α is a feasible dual solution for the dual program corresponding to λ2.

9-2

Lemma 1. Choose δ <
ε mini, j di j

k . Then the resulting fractional S generated by the bisection search is a
3(1+ ε)-approximation.

Proof. Let c(S) denote the primal cost of a solution S. Then using weak duality we can bound

c(S1)≤ 3

(
∑

j
α

1
j −λ1k

)

= 3

(
∑

j
α

1
j −λ2k

)
+3(λ2−λ1)k

≤ 3

(
∑

j
α

1
j −λ2k

)
+3δk

Also,

c(S2)≤ 3

(
∑

j
α

2
j −λ2k

)
But note that the cost of S is just a mixture of the cost of S1 and S2, so

c(S)≤ 3

(
∑

j
α j−λ2k

)
+3δk

≤ 3OPTk +3δk

< 3OPTk +3ε min
i, j

di j

where OPTk is the optimal primal value for k centers, the second line follows from remark 1 and weak
duality, and the third line follows from our choice of δ . Noting that OPTk ≥ mini, j di j completes the argu-
ment.

Theorem 2. We can round S to give a 2(3+ ε)-approximate integral solution to the k-median problem.

Proof. There are two cases.

Case 1: γ2 ≥ 1/2. This is the easy case. Recall that S2 is a feasible (|S2| ≤ k) integer solution. If the mixture
puts high weight on S2, i.e., when γ2 ≥ 1/2, just round S by choosing S2, we no more than double the primal
cost for any point (since γ2 ≥ 1/2), so the theorem follows from Lemma 1 in this case.

Case 2: γ2 < 1/2. This is the harder case, S1 need not be feasible, so we will need a more clever rounding
algorithm. We will use the following three step scheme:

1. For every center i ∈ S2 (note that there are no more than k) include the center in S1 that is closest to i.

2. If we chose fewer than |S2| centers in step 1, then arbitrarily choose centers in S1 until we have chosen
|S2| total centers.

3. We have |S1|− |S2| centers left in S1 that we have not picked. Choose k−|S2| from this set uniformly
at random.

9-3

We will analyze the cost of our rounding by focusing on an arbitrary client j. Denote by c j the “cost”
incurred by the algorithm because of client j. Let 1 and 2 be j’s closest center in S1 and S2 respectively.
Then with probability at least k−|S2|

|S1|−|S2| = γ1, we actually included center 1 during step 3, and so c j = d1 j. If
1 is not picked, we must have chosen the closest center to 2 in S1; call this center i∗. Combining these facts,
we can bound c j using the triangle inequality as

cost(j)≤ γ1d1 j + γ2di∗ j

≤ γ1d1 j + γ2 (d2i∗+d2 j) [triangle ineq.]

≤ γ1d1 j + γ2 (d12 +d2 j) [definition of i∗]

≤ γ1d1 j + γ2 (d1 j +d2 j +d2 j) [triangle ineq.]

≤ 2γ1d1 j +2γ2d2 j [case assumption]

Thus, if we sum over j, we find that the cost of our rounded solution is no more than 2γ1c(S1) +
2γ2c(S2) = 2c(S). Noting lemma 1 completes the argument for this case.

Note that in this second case we have a randomized rounding algorithm and have been considering
expected cost. This is not necessary, as this rounding procedure can be derandomized.

3 Dual Fitting

When designing primal dual algorithms, we use use the linear programming relaxation of an optimization
problem to guide the decisions of an algorithm. Instead, under the dual fitting paradigm, the algorithm is
defined independent of any linear program, but we will use that program in our analysis of the approximation
factor. In this lecture, we simply introduce the topic with two simple and familiar examples.

3.1 Vertex Cover

In the vertex cover problem, we are given an unweighted and undirected graph G = (V,E) and want to find
a minimum size set of vertices S ⊆ V such that every edge e ∈ E is adjacent to some vertex u ∈ S. Our
algorithm is simple: iteratively choose an arbitrary edge, add both of its endpoints to S, and then remove all
vertices adjacent to either endpoint.

Theorem 3. The above greedy algorithm has an approximation factor of 2 for the vertex cover problem.

Proof. To analyze the algorithm, we write the dual program over edge variables ye as

Maximize ∑
e∈E

ye

subject to ∑
e∈Ev

ye ≤ 1 ∀v ∈V

ye ≥ 0 ∀e ∈ E

where Ev is the set of edges incident on vertex v. Now, note that setting ye = 1 for every edge we picked
over the course of our algorithm is a feasible dual solution (since we removed all adjacent vertices after each
step, we never picked two edges incident on the same vertex). But for every such edge, we only choose two
vertices, and the primal cost is simply the number of vertices we choose. By weak duality therefore, this
algorithm is a two approximation.

9-4

3.2 Set Cover

We can employ the same technique to solve set cover. In this problem, we have a universe U of n elements,
and a set of sets S := {S1,S2, . . . ,Sm} where for each Si ∈ S ,Si ⊆ U . We want to choose a minimum
number of sets in S so as to “cover” every element in U , meaning that each element in U should be present
in at least one set we pick. Our algorithm will again be simple: Iteratively choose the set that maximizes the
number of elements it covers that are not already covered by some set we previously chose.

Theorem 4. The greedy set cover algorithm has an O(log(n)) approximation factor.

Proof. For the analysis, we write the dual program over element variables ye as

Maximize ∑
e∈E

ye

subject to ∑
e∈S

ye ≤ 1 ∀S ∈S

ye ≥ 0 ∀e ∈ E

The program looks almost identical to the vertex cover dual, but we will need to be slightly more careful
in setting the dual variables for the analysis. Every time the algorithm chooses a set S, let nS be the number
of previously uncovered elements in U that the set covers. A natural setting of the dual variables might be,
for every element e, to set ye := 1/nS for the set S that first covered e. Then ∑e ye equals the primal objective,
however our dual solution may be infeasible. Thus, we want to bound, for a given S, how large ∑e∈S ye can
be, and if we are successful, we can simply scale down all of the ye values to get an approximation.

Consider some set S chosen by our algorithm. Suppose w.l.o.g., that the algorithm covers elements in S
in the order e1,e2, . . . ,e|S|. Clearly, ye1 ≤ 1/|S|. If S first covered e1, then ye1 = 1/|S|, and if another set first
covered e1, it must have covered at least as many new elements as S, and so ye1 ≤ 1/|S|. We can apply the
same argument iteratively to get

ye1 ≤
1
|S|

ye2 ≤
1

|S|−1

ye3 ≤
1

|S|−2
...

ye|S| ≤ 1

So summing, we find that ∑e∈S ye ≤ H|S|, the |S|’th harmonic number. Asymptotically then, ∑e∈S ye ≤
O(log(|S|)). We can thus scale all of the ye dual variables down by a logarithmic factor in the size of the
largest set in S to get a feasible dual solution yielding a lower bound no more than O(log(n)) off from our
primal objective, completing the proof.

9-5

4 Summary

We concluded our discussion of primal dual algorithms with an in depth look at a primal dual algorithm for
the k-median problem. Our algorithm exploited a Lagrangian preserving approximation algorithm for the
facility location problem by taking the Lagrangian relaxation of the k-median problem. After arguing that
we could appropriately round a fractional solution with small support, we found that this technique provided
us with a 2(3+ ε)-approximation. Subsequently, we introduced the dual fitting technique of analysis, and
gave two simple examples: vertex cover and set cover.

9-6

