Duke CS, Fall 2018

CompSci 516
Database Systems

Lecture 6
Storage and Index

Instructor: Sudeepa Roy

CompSci 516: Database Systems

Announcements

e HW1 and project proposal deadlines next week:
— Due on 09/27 (Thurs), 11:55 pm, no late days
— HW1 submission on gradescope (code on piazza)
— Proposal submission on sakai (one per group)
— Project ideas on sakai

* Project group members due today
— Please email compsci516-staff@cs.duke.edu by tonight
— One email per group
— Please also send a tentative project title
— Private threads on piazza will be created

* Anyone in a group of size <= 27

Duke CS, Fall 2017 CompSci 516: Database Systems 2

Where are we now?

We learnt
v" Relational Model and Query Languages
v’ sQL, RA, RC

v Postgres (DBMS)
v" XML (overview)
= HWI1

v" Database Normalization

Next
« DBMS Internals
— Storage
— Indexing
— Query Evaluation
— Operator Algorithms

— External sort
— Query Optimization

Duke CS, Fall 2018 CompSci 516: Database Systems

Reading Material

* [RG]
— Storage: Chapters 8.1, 8.2, 8.4, 9.4-9.7
— Index: 8.3, 8.5
— Tree-based index: Chapter 10.1-10.7
— Hash-based index: Chapter 11

Additional reading
e [GUW]
— Chapters 8.3, 14.1-14.4

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

What will we learn?

* How does a DBMS organize files?
— Record format, Page format

e Whatis an index?

What are different types of indexes?

— Tree-based indexing:
* B+ tree
* insert, delete

— Hash-based indexing
 Static and dynamic (extendible hashing, linear hashing)

 How do we use index to optimize performance?

Duke CS, Fall 2018 CompSci 516: Database Systems

Storage

Duke CS, Fall 2018 CompSci 516: Database Systems

DBMS Architecture

A typical DBMS has a layered
architecture

Query Parsing,
Optimization,

and Execution

* The figure does not show the _
concurrency control and Relational Operators

recovery components

— to be done in “transactions”

Files and Access Methods [

Buffer Management -

e This is one of several possible
architectures

— each system has its own variations

Disk Space Management |

These layers

— must consider
DB \ concurrency
control and

recovery

Duke CS, Fall 2018 CompSci 516: Database Systems

Data on External Storage

e Data must persist on disk across program executions in a
DBMS
— Datais huge
— Must persist across executions

— But has to be fetched into main memory when DBMS processes the
data

* The unit of information for reading data from disk, or writing
data to disk, is a page

* Disks: Can retrieve random page at fixed cost

— But reading several consecutive pages is much cheaper than reading
them in random order

Duke CS, Fall 2018 CompSci 516: Database Systems

Disk Space Management

 Lowest layer of DBMS software manages space on disk

* Higher levels call upon this layer to:
— allocate/de-allocate a page
— read/write a page

Size of a page = size of a disk block
= data unit

 Request for a sequence of pages often satisfied by allocating
contiguous blocks on disk

e Space on disk managed by Disk-space Manager

— Higher levels don’t need to know how this is done, or how free space
is managed

Duke CS, Fall 2018 CompSci 516: Database Systems 9

Buffer Management

Suppose
* 1 million pages in db, but only space for 1000 in memory
* A query needs to scan the entire file

e DBMS has to

— bring pages into main memory

— decide which existing pages to replace to make room for a new
Page
— called Replacement Policy
e Managed by the Buffer manager

— Files and access methods ask the buffer manager to access a
page mentioning the “record id” (soon)

— Buffer manager loads the page if not already there

Duke CS, Fall 2018 CompSci 516: Database Systems

10

Buffer Management

Buffer pool = main memory is partitioned into frames
either contains a page from disk or is a free frame

Page Requests from Higher Levels

BUFFER POOL I

N

disk page

A

free frame

MAIN MEMORY

DISK o cho1ce of frame dictated
by replacement policy

e Data must be in RAM for DBMS to operate on it
e Table of <frame#, pageid> pairs is maintained

Duke CS, Fall 2018 CompSci 516: Database Systems 11

When a Page is Requested ...

For every frame, store
e adirty bit:
— whether the page in the frame has been modified since it has been
brought to memory
— initially O or off

* apin-count:
— the number of times the page in the frame has been requested but
not released (and no. of current users)
— initially O
— when a page is requested, the count in incremented
— when the requestor releases the page, count is decremented
— buffer manager only reads a page into a frame when its pin-count is 0

— if no frame with pin-count O, buffer manager has to wait (or a
transaction is aborted -- later)

When a Page is Requested ...

Check if the page is already in the buffer pool
if yes, increment the pin-count of that frame
If no,
— Choose a frame for replacement using the replacement policy

— If the chosen frame is dirty (has been modified), write it to disk
— Read requested page into chosen frame

Pin (increase pin-count of) the page and return its address to the
requestor

If requests can be predicted (e.g., sequential scans), pages
can be pre-fetched several pages at a time

Concurrency Control & recovery may entail additional I/O when a
frame is chosen for replacement

- e.g. Write-Ahead Log protocol : when we do Transactions

Buffer Replacement Policy

* Frame is chosen for replacement by a replacement policy

- Least-recently-used (LRU)
— add frames with pin-count 0 to the end of a queue
— choose from head

« Clock (an efficient implementation of LRU)
« First In First Out (FIFO)
- Most-Recently-Used (MRU) etc.

Duke CS, Fall 2018 CompSci 516: Database Systems 14

Buffer Replacement Policy

* Policy can have big impact on # of I/O’s
 Depends on the access pattern

e Sequential flooding: Nasty situation caused by LRU +
repeated sequential scans
— What happens with 10 frames and 9 pages?
— What happens with 10 frames and 11 pages?

— # buffer frames < # pages in file means each page request in each scan
causes an |/O

— MRU much better in this situation (but not in all situations, of course)

Duke CS, Fall 2018 CompSci 516: Database Systems 15

DBMS vs. OS File System

* Operating Systems do disk space and buffer management too:

* Why not let OS manage these tasks?

e DBMS can predict the page reference patterns much more
accurately

— can optimize
— adjust replacement policy
— pre-fetch pages — already in buffer + contiguous allocation

— pin a page in buffer pool, force a page to disk (important for
implementing Transactions concurrency control & recovery)

* Differences in OS support: portability issues

 Some limitations, e.g., files can’t span disks

Duke CS, Fall 2018 CompSci 516: Database Systems

16

Next..

* How are pages stored in a file?

* How are records stored in a page?
— Fixed length records
— Variable length records

e How are fields stored in a record?
— Fixed length fields/records
— Variable length fields/records

Duke CS, Fall 2018 CompSci 516: Database Systems

17

Files of Records

* Page or block is OK when doing I/0O, but higher
levels of DBMS operate on records, and files of
records

 FILE: A collection of pages, each containing a
collection of records

* Must support:
— insert/delete/modify record

— read a particular record (specified using record id)

— scan all records (possibly with some conditions on the
records to be retrieved)

Duke CS, Fall 2018 CompSci 516: Database Systems 18

File Organization

* File organization: Method of arranging a file of
records on external storage

— One file can have multiple pages

— Record id (rid) is sufficient to physically locate the page
containing the record on disk

— Indexes are data structures that allow us to find the

record ids of records with given values in index search key
fields

* NOTE: Several uses of “keys” in a database
— Primary/foreign/candidate/super keys
— Index search keys

Duke CS, Fall 2018 CompSci 516: Database Systems 19

Alternative File Organizations

Many alternatives exist, each ideal for some situations, and
not so good in others:

- Heap (random order) files: Suitable when typical access is a
file scan retrieving all records

- Sorted Files: Best if records must be retrieved in some
order, or only a “range” of records is needed.

- Indexes: Data structures to organize records via trees or
hashing

— Like sorted files, they speed up searches for a subset of records,
based on values in certain (“search key”) fields

— Updates are much faster than in sorted files

Duke CS, Fall 2018 CompSci 516: Database Systems 20

Unordered (Heap) Files

* Simplest file structure contains records in no
particular order

* As file grows and shrinks, disk pages are allocated
and de-allocated

e To support record level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages
— keep track of the records on a page

 There are many alternatives for keeping track of this

Duke CS, Fall 2018 CompSci 516: Database Systems 21

Heap File Implemented as a List

Data
Page

Data
Page

Data
Page

D

\
Data
Page

Data
Page

T T
N NN Y

someplace

* Each page contains 2 ‘pointers’ plus data

* Problem?

— to insert a new record, we may need to scan several pages

on the free list to find one with sufficient space

Duke CS, Fall 2018

Data
Page

A N N

CompSci 516: Database Systems

N N N 0N

Full Pages

Pages with
Free Space

The header page id and Heap file name must be stored

22

Heap File Using a Page Directory

Data

Header Page 1
Page

Data
Page 2

Data
DIRECTORY Page N

 The entry for a page can include the number of free
bytes on the page.

 The directory is a collection of pages
— linked list implementation of directory is just one alternative
— Much smaller than linked list of all heap file pages!

Duke CS, Fall 2018 CompSci 516: Database Systems

How do we arrange a collection of
records on a page?

* Each page contains several slots
— one for each record

* Record is identified by <page-id, slot-number>

* Fixed-Length Records
e Variable-Length Records

* For both, there are options for
— Record formats (how to organize the fields within a record)
— Page formats (how to organize the records within a page)

Duke CS, Fall 2018 CompSci 516: Database Systems 24

Page Formats: Fixed Length Records

Slot 1 Slot 1
Slot 2 Slot 2
Free — ™~
e o o Space e o o
Slot N J \@L End of
_ lecture 6
Slot M
N 1)...]0]|1 IM\
number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

 Record id = <page id, slot #>

e Packed: moving records for free space management changes rid; may not be
acceptable

* Unpacked: use a bitmap — scan the bit array to find an empty slot
* Each page also may contain additional info like the id of the next page (not shown)

Duke CS, Fall 2018 CompSci 516: Database Systems 25

Page Formats: Variable Length Records

Need to find a page with the right amount of space
— Too small = cannot insert
— Too large — waste of space

if a record is deleted, need to move the records so that all free space
is contiguous

— need ability to move records within a page

* Can maintain a directory of slots (next slide)
— Slot contains <record-offset, record-length>
— deletion = set record-offset to -1

Record-id rid = <page, slot-in-directory> remains unchanged

Duke CS, Fall 2018 CompSci 516: Database Systems 26

Page Formats: Variable Length Records

Rid = (i,N
Page i

Rid = iiiZi
Rid = iiili
7

~_
N

\\ \
20 16 24 N Pointer
to start
N .. 2 1_ 4 dlots o(; ?rzz
space
SLOT DIRECTORY

 Can move records on page without changing rid
— 5o, attractive for fixed-length records too

* Store (record-offset, record-length) in each slot
* rid-s unaffected by rearranging records in a page
Duke CS, Fall 2018 CompSci 516: Database Systems 27

Record Formats: Fixed Length

Fl F2 F3 F4
L1 L2 L3 L4
Base address (B) Address = B+L1+L2

* Each field has a fixed length
— for all records
— the number of fields is also fixed
— fields can be stored consecutively
* Information about field types same for all records in a file
— stored in system catalogs
* Finding i-th field does not require scan of record

— given the address of the record, address of a field can be obtained
easily

Duke CS, Fall 2018 CompSci 516: Database Systems 28

Record Formats: Variable Length

* Cannot use fixed-length slots for records
 Two alternative formats (# fields is fixed):

F1 F2 F3 F4
4 $ $ $ $
ol / Fields Delimited by Special Symbols 1 use delimiters
Count
F1 F2 F3 F4
M//—/Z use offsets at the
Array of Field Offsets start of each record

* Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead

* Modification may be costly (may grow the field and not fit in the page)

Duke CS, Fall 2018 CompSci 516: Database Systems 29

Duke CS, Fall 2018

Indexes

CompSci 516: Database Systems

30

Indexes

* Anindex on a file speeds up selections on the search key
fields for the index

— Any subset of the fields of a relation can be the search key for an
index on the relation.

— “Search key” is not the same as “key”
key = minimal set of fields that uniquely identify a tuple

* Anindex contains a collection of data entries, and
supports efficient retrieval of all data entries k* with a
given key value k

Duke CS, Fall 2018 CompSci 516: Database Systems 31

Remember Terminology

* Index search key (key): k

— Used to search a record

INDEX
does this

e Data entry : k*
— Pointed to by k
— Contains record id(s) or record itself

e Records or data

— Actual tuples
— Pointed to by record ids

Duke CS, Fall 2018 CompSci 516: Database Systems

32

Alternatives for Data Entry k™ in Index k

* In a data entry k* we can store:

1. (Alternative 1) The actual data record with key value k,
or

2. (Alternative 2) <k, rid>
* rid = record of data record with search key value k, or

3. (Alternative 3) <k, rid-list>
* list of record ids of data records with search key k>

e Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data
entries with a given key value k

Duke CS, Fall 2018 CompSci 516: Database Systems 33

Alternatives for Data Entries: Alternative 1

* |n a data entry k* we can store:

1. The actual data record with key value k Advantages/
Disadvantages?

Index structure is a file organization for data records
— instead of a Heap file or sorted file
How many different indexes can use Alternative 17

At most one index can use Alternative 1

— Otherwise, data records are duplicated, leading to redundant storage and potential
inconsistency

If data records are very large, #pages with data entries is high
— Implies size of auxiliary information in the index is also large

Duke CS, Fall 2018 CompSci 516: Database Systems 34

Alternatives for Data Entries: Alternative 2, 3

* |n a data entry k* we can store:

1. The actual data record with key value k Advantages/

2. <k, rid> Disadvantages?
* rid = record of data record with search key value k

3. <k, rid-list>
* list of record ids of data records with search key k>

- Data entries typically much smaller than data records

— So, better than Alternative 1 with large data records
— Especially if search keys are small.

- Alternative 3 more compact than Alternative 2

— but leads to variable-size data entries even if search keys have fixed length.

Duke CS, Fall 2018 CompSci 516: Database Systems 35

Index Classification

* Primary vs. secondary
e Clustered vs. unclustered
* Tree-based vs. Hash-based

Duke CS, Fall 2018 CompSci 516: Database Systems

36

Primary vs. Secondary Index

* |f search key contains primary key, then called
primary index, otherwise secondary

— Unique index: Search key contains a candidate key

- Duplicate data entries:
— if they have the same value of search key field k
— Primary/unigue index never has a duplicate
— Other secondary index can have duplicates

Duke CS, Fall 2018 CompSci 516: Database Systems 37

Clustered vs. Unclustered Index

* |f order of data records in a file is the same as, or ‘close to/,
order of data entries in an index, then clustered, otherwise
unclustered

— Alternative 1 implies clustered
— Alternative 2, 3 are typically unclustered

unless sorted according to the search key

— Sometimes, clustered also implies Alternative 1

since sorted files are rare

— Afile can be clustered on at most one search key

— Cost of retrieving data records (range queries) through index varies
greatly based on whether index is clustered or not

Duke CS, Fall 2018 CompSci 516: Database Systems

Clustered vs. Unclustered Index

* Suppose that Alternative (2) is used for data entries, and that the data records are
stored in a Heap file

To build clustered index, first sort the Heap file
— with some free space on each page for future inserts
— Overflow pages may be needed for inserts
— Thus, data records are “close to’, but not identical to, sorted

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries

/ \ / \

Data entries | | Data entries
/A \ NN (Index File) W X
Z/8ERI\ NN\ atati) /N [Nl T
Data Records D Data Records

Duke CS, Fall 2018 CompSci 516: Database Systems 39

Methods for indexing

 Tree-based
* Hash-based

* (in detail later)

Duke CS, Fall 2018 CompSci 516: Database Systems

40

System Catalogs

For each index:

— structure (e.g., B+ tree) and search key fields

For each relation:

- name, file name, file structure (e.g., Heap file)

— attribute name and type, for each attribute

— index name, for each index

— integrity constraints

For each view:

— view name and definition

Plus statistics, authorization, buffer pool size, etc.

(described in [RG] 12.1)

Catalogs are themselves stored as relations!

Duke CS, Fall 2018 CompSci 516: Database Systems

41

