
9/27/18

1

CompSci 516
Database	Systems

Lecture	9
Index	Selection

and	
External	Sorting

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Announcements

• Project	proposal	and	HW1	due	today	(Thurs,	09/27)	11:55	
pm
– project	proposal:	sakai
– HW1:	gradescope

• If	gradescope does	not	work,	submit	a	zip	file	on	sakai (a	
backup	folder	has	been	created)

• timeout	has	been	increased	to	60	mins	from	20	mins
– Submit	by	(well	before)	the	deadline	(strict)

• note	that	it	may	take	>	20	mins	for	autograder to	run!
– Late	marks	may	lose	all	or	some	points

• Remember	to	write	only	one	query	per	question!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 2

Today

• Index	selection
• External	sort

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

Reading	Material

• Index:	as	in	Lecture	7/8

• External	sorting:	
• [RG]		
– External	sorting:	Chapter	13

• [GUW]
– Chapter	15.4.1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.

Selection	of	Indexes

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5

Different	File	Organizations

Search	key	=	<age,	sal>	

Consider	following	options:

• Heap	files
– random	order;	insert	at	end-of-file

• Sorted	files
– sorted	on	<age,	sal>

• Clustered	B+	tree	file
– search	key	<age,	sal>

• Heap	file	with	unclustered B+-tree	index	
– on	search	key	<age,	sal>

• Heap	file	with	unclustered hash	index	
– on	search	key	<age,	sal>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

We	need	to	understand	the	importance
of	appropriate	file	organization	and	index

9/27/18

2

Possible	Operations

• Scan
– Fetch	all	records	from	disk	to	buffer	pool

• Equality	search
– Find	all	employees	with	age	=	23	and	sal =	50
– Fetch	page	from	disk,	then	locate	qualifying	record	in	page

• Range	selection
– Find	all	employees	with	age	>	35

• Insert	a	record
– identify	the	page,	fetch	that	page	from	disk,	inset	record,	write	back	

to	disk	(possibly	other	pages	as	well)

• Delete	a	record
– similar	to	insert

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7

Understanding	the	Workload
• A	workload	is	a	mix	of	queries and	updates

• For	each	query	in	the	workload:
– Which	relations	does	it	access?
– Which	attributes	are	retrieved?
– Which	attributes	are	involved	in	selection/join	conditions?		How	
selective	are	these	conditions	likely	to	be?	

• For	each	update	in	the	workload:
– Which	attributes	are	involved	in	selection/join	conditions?		How	
selective	are	these	conditions	likely	to	be?

– The	type	of	update	(INSERT/DELETE/UPDATE),	and	the	attributes	that	are	
affected

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

Choice	of	Indexes

• What	indexes	should	we	create?
– Which	relations	should	have	indexes?		What	field(s)	
should	be	the	search	key?		Should	we	build	several	
indexes?

• For	each	index,	what	kind	of	an	index	should	it	be?
– Clustered?		Hash/tree?		

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9

More	on	Choice	of	Indexes
• One	approach:
– Consider	the	most	important	queries
– Consider	the	best	plan	using	the	current	indexes
– See	if	a	better	plan	is	possible	with	an	additional	index.		
– If	so,	create	it.
– Obviously,	this	implies	that	we	must	understand	how	a	DBMS	
evaluates	queries	and	creates	query	evaluation	plans

– We	will	learn	query	execution	and	optimization	later	- For	
now,	we	discuss	simple	1-table	queries.

• Before	creating	an	index,	must	also	consider	the	impact	
on	updates	in	the	workload

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10

Trade-offs	for	Indexes
• Indexes	can	make	
– queries	go	faster
– updates	slower

• Require	disk	space,	too

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11

Index	Selection	Guidelines
• Attributes	in	WHERE	clause	are	candidates	for	index	keys

– Exact	match	condition	suggests	hash	index
– Range	query	suggests	tree	index
– Clustering	is	especially	useful	for	range	queries

• can	also	help	on	equality	queries	if	there	are	many	duplicates

• Try	to	choose	indexes	that	benefit	as	many	queries	as	possible
– Since	only	one	index	can	be	clustered	per	relation,	choose	it	based	on	

important	queries	that	would	benefit	the	most	from	clustering

• Multi-attribute	search	keys	should	be	considered	when	a	WHERE	clause	
contains	several	conditions
– Order	of	attributes	is	important	for	range	queries

• Note:	clustered	index	should	be	used	judiciously
– expensive	updates,	although	cheaper	than	sorted	files

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

9/27/18

3

Examples	of	Clustered	Indexes
• B+	tree	index	on	E.age can	be	used	

to	get	qualifying	tuples

• How	selective	is	the	condition?
– everyone	>	40,	index	not	of	much	
help,	scan	is	as	good

– Suppose	10%	>	40.	Then?

• Depends	on	if	the	index	is	clustered
– otherwise	can	be	more	expensive	
than	a	linear	scan

– if	clustered,	10%	I/O	(+	index	pages)

SELECT E.dno
FROM Emp E
WHERE E.age>40

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13

What	is	a	good	indexing
strategy?

Which	attribute(s)?
Clustered/Unclustered?
B+	tree/Hash?

Examples	of	Clustered	Indexes
Group-By	query

• Use	E.age as	search	key?
– Bad	If	many	tuples	have	E.age >	10	or	if	not	

clustered….
– …using	E.age index	and	sorting	the	retrieved	

tuples	by	E.dno may	be	costly

• Clustered	E.dno index	may	be	better
– First	group	by,	then	count	tuples	with	age	>

10
– good	when	age	>	10	is	not	too	selective

• Note:	the	first	option	is	good	when	the	
WHERE	condition	is	highly	selective	(few	
tuples	have	age	>	10),	the	second	is	good	
when	not	highly	selective

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

What	is	a	good	indexing
strategy?

Which	attribute(s)?
Clustered/Unclustered?
B+	tree/Hash?

Examples	of	Clustered	Indexes

Equality	queries	and	duplicates

• Clustering	on	E.hobby helps
– hobby	not	a	candidate	key,	several	
tuples	possible

• Does	clustering	help	now?	
– (eid =	key)
– Not	much	
– at	most	one	tuple	satisfies	the	
condition

SELECT E.dno
FROM Emp E
WHERE E.hobby=‘Stamps’

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15

SELECT E.dno
FROM Emp E
WHERE E.eid=50

What	is	a	good	indexing
strategy?

Which	attribute(s)?
Clustered/Unclustered?
B+	tree/Hash?

Indexes	with	Composite	Search	Keys	
• Composite	Search	Keys:	Search	on	a	

combination	of	fields

• Equality	query:	Every	field	value	is	
equal	to	a	constant	value.	E.g.	wrt
<sal,age>	index:
– age=20	and	sal =75

• Range	query:	Some	field	value	is	not	a	
constant.	E.g.:
– sal >	10	– which	combination(s)	

would	help?

– <age,	sal>	does	not	help
– B+tree on	<sal>	or	<sal,	age>	helps
– has	to	be	a	prefix

sue 13 75

bob
cal
joe 12

10

20
8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20
12,10

11,80

13,75

20,12

10,12

75,13
80,11

11
12
12
13

10
20
75
80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Composite	Search	Keys
• To	retrieve	Emp records	with	age=30	AND sal=4000,	an	index	on	

<age,sal>	would	be	better	than	an	index	on	age or	an	index	on	sal
– first	find	age	=	30,	among	them	search	sal =	4000

• If	condition	is:		20<age<30		AND 3000<sal<5000:	
– Clustered	tree	index	on	<age,sal>	or	<sal,age>	is	best.

• If	condition	is:		age=30		AND 3000<sal<5000:	
– Clustered	<age,sal>	index	much	better	than	<sal,age>	index
– more	index	entries	are	retrieved	for	the	latter

• Composite	indexes	are	larger,	updated	more	often
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

Index-Only	Plans
• A	number	of	queries	can	be	answered	without	retrieving	any	

tuples	from	one	or	more	of	the	relations	involved	if	a	suitable	
index	is	available

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
Tree index!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18

• For	index-only	strategies,	
clustering	is	not	
important

9/27/18

4

External	Sorting

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19

quick	review	of	mergesort on	whiteboard

Why	Sort?
• A	classic	problem	in	computer	science
• Data	requested	in	sorted	order	

– e.g.,	find	students	in	increasing	gpa order

• Sorting	is	first	step	in	bulk	loading	B+	tree	index
• Sorting	useful	for	eliminating	duplicate	copies	in	a	
collection	of	records

• Sort-merge	join	algorithm	involves	sorting
• Problem:	sort	1Gb	of	data	with	1Mb	of	RAM

– need	to	minimize	the	cost	of	disk	access

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20

2-Way	Sort:	Requires	3	Buffers
• Suppose	N	=	2k pages	in	the	file
• Pass	0:	Read	a	page,	sort	it,	write	it.

– repeat	for	all	2k pages
– only	one	buffer	page	is	used

• Pass	1:
– Read		two	pages,	sort	(merge)	them	using	one	output	page,	write	them	to	disk
– repeat	2k-1		times
– three	buffer	pages	used

• Pass	2,	3,	4,	…..	continue

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21

Two-Way	External	Merge	Sort
• Each	sorted	sub-file	is	

called	a	run
– each	run	can	contain	
multiple	pages

• Each	pass	we	read	+	write	
each	page	in	file.

• N	pages	in	the	file,		
• =>	the	number	of	passes

• So	toal cost	is:

• Not	too	practical,	but	useful	to	
learn	basic	concepts	for	
external	sorting

é ù= +log2 1N

é ù()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS	0

PASS	1

PASS	2

PASS	3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

9

General	External	Merge	Sort

• To	sort	a	file	with	N	pages	using	B	buffer	pages:
– Pass	0:	use	B	buffer	pages:

• Produce	⌈N/B⌉ sorted	runs	of	B	pages	each.
– Pass	1,	2,	…,		etc.:	merge	B-1	runs to	one	output	page

• keep	writing	to	disk	once	the	output	page	is	full	

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2.

• Suppose we have more than 3 buffer pages.
• How can we utilize them?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23

Cost	of	External	Merge	Sort

• Number	of	passes:1	+	⌈logB-1⌈N/B⌉⌉
• Cost	=	2N	*	(#	of	passes)	– why	2	times?
• E.g.,	with	5	buffer	pages,	to	sort	108	page	file:
• Pass	0:	sorting	5	pages	at	a	time

– ⌈108/5⌉ =	22	sorted	runs	of	5	pages	each	(last	run	is	only	3	
pages)	

• Pass	1:			4-way	merge
– ⌈22/4⌉ =	6	sorted	runs	of	20	pages	each	(last	run	is	only	8	pages)

• Pass	2:		4-way	merge
– (but	2-way	for	the	last	two	runs)
– [6/4⌉ =	2	sorted	runs,	80	pages	and	28	pages

• Pass	3:		2-way	merge	(only	2	runs	remaining)
– Sorted	file	of	108	pages

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24

9/27/18

5

Number	of	Passes	of	External	Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

High	B	is	good,	although	CPU	cost	increases

12

I/O	for	External	Merge	Sort

• If	10	buffer	pages
– either	merge	9	runs	at	a	time	with	one	output	buffer
– or	8	runs	with	two	output	buffers

• If	#page	I/O	is	the	metric
– goal	is	minimize	the	#passes
– each	page	is	read	and	written	in	each	pass

• If	we	decide	to	read	a	block of	b	pages	sequentially
– Suggests	we	should	make	each	buffer	(input/output)	be	a	
block of	pages

– But	this	will	reduce	fan-out	during	merge	passes
• i.e.	not	as	many	runs	can	be	merged	again	any	more

– In	practice,	most	files	still	sorted	in	2-3	passes

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26

Double	Buffering
• To	reduce	CPU	wait	time	for	I/O	request	to	
complete,	can	prefetch into	`shadow	block’.	

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27

Using	B+	Trees	for	Sorting

• Scenario:	Table	to	be	sorted	has	B+	tree	index	on	
sorting	column(s)

• Idea:	Can	retrieve	data	entries	(then	records)	in	
order	by	traversing	leaf	pages.

• Is	this	a	good	idea?
• Cases	to	consider:

– B+	tree	is	clustered: Good	idea!
– B+	tree	is	not	clustered: Could	be	a	very	bad	idea!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28

Clustered	B+	Tree	Used	for	Sorting

• Cost:	root	to	the	left-most	
leaf,	then	retrieve	all	leaf	
pages	(Alternative	1)

• If	Alternative	2	is	used?		
Additional	cost	of	
retrieving	data	records:		
each	page	fetched	just	
once

☛ Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence	set")

17

Unclustered	B+	Tree	Used	for	Sorting

• Alternative	(2)	for	data	entries;	each	data	entry	
contains	rid of	a	data	record

• In	general,	one	I/O	per	data	record!

(Directs search)

Data Records

Index

Data Entries
("Sequence	set")

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

9/27/18

6

Summary

• External	sorting	is	important;	DBMS	may	dedicate	
part	of	buffer	pool	for	sorting!

• External	merge	sort	minimizes	disk	I/O	cost:
– Pass	0:	Produces	sorted	runs	of	size	B	(#	buffer	pages)	
– Later	passes:	merge	runs
– #	of	runs	merged	at	a	time	depends	on	B,	and	block	size.
– Larger	block	size	means	less	I/O	cost	per	page.
– Larger	block	size	means	smaller	#	runs	merged.
– In	practice,	#	of	runs	rarely	more	than	2	or	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31

