
1

CompSci 514: Computer
Networks

Lecture 5: Congestion Control

Xiaowei Yang

2

Outline
• Background on TCP congestion control
• The congestion control algorithm
• Theoretic background
• Macroscopic modeling

3

The Internet architecture

• Packet switching
• Statistical multiplexing
• Q: N users, and one network

– How fast should each user send?
– Why is it a difficult problem?

...

4

Background

• Original TCP (Cerf74)
– Static window, no congestion control, no RTT

estimation
– In October of 86, the Internet had the first of

what became a series of �congestion
collapse�: increased load leads to decreased
throughput

– The NSFnet phase-I backbone dropped three
orders of magnitude from its capacity of 32
kbit/s to 40 bit/s, and continued until end nodes
started implementing Van Jacobson's
congestion control between 1987 and 1988.

http://en.wikipedia.org/wiki/NSFnet
http://en.wikipedia.org/wiki/Congestion_control

Possible explanations

• Queueing delay increases
• TCP times out
• TCP retransmits too early, wasting the

network’s bandwidth to retransmit the
same packets already in transit and
reducing useful throughput (goodput)

5

Review of TCP’s sliding window
algorithm

• A well-known algorithm in networking
• Used for

– Reliable transmission
– Flow control
– Congestion control

6

Stop-and-wait

• Send one frame, wait
for an ack, and send
the next

• Retransmit if times
out

• Note in the last figure
(d), there might be
confusion: a new
frame, or a duplicate?

Sequence number
• Add a sequence

number to each frame
to avoid the ambiguity

Sliding window
• Stop-and-wait: too

slow
• Key idea: allowing

multiple outstanding
(unacked) frames to
keep the pipe full

Sliding window on sender
• Assign a sequence number (SeqNum) to

each frame
• Maintains three variables

– Send Window Size (SWS)
– Last Ack Received (LAR)
– Last Frame Sent (LFS)

• Invariant: LFS – LAR ≤ SWS

• Sender actions
– When an ACK arrives, moves LAR to the

right, opening the window to allow the sender
to send more frames

– If a frame times out before an ACK arrives,
retransmit

Slide window this way when an ACK arrives

Sliding window on receiver for
flow control

• Maintains three window variables
– Receive Window Size (RWS)
– Largest Acceptable Frame (LAF)
– Last frame received (LFR)

• Invariant
– LAF – LFR ≤ RWS

• When a frame with SeqNum arrives
– Discards it if out of window

• Seq ≤ LFR or Seq > LAF
– If in window, decides what to ACK

• Cumulative ack
• Acks SeqNumToAck even if higher-numbered packets

have been received
• Sets LFR = SeqNumToAck-1, LAF = LFR + RWS
• Updates SeqNumToAck

Drawbacks of static window
sizes

• One TCP flow
– MSS = 512 bit, Window size = 10, RTT =

100ms
• 10 TCP flows, 100 TCP flows, …

14

Design Goals
• Congestion avoidance: making the

system operate around the knee
to obtain low latency and high
throughput

• Congestion control: making the
system operate left to the cliff to
avoid congestion collapse

• Congestion avoidance:
making the system
operate around the knee
to obtain low latency and
high throughput

• Congestion control:
making the system
operate left to the cliff to
avoid congestion collapse

Key Improvements from the
TCP88 paper

• RTT variance estimate
– Old design: RTTn+1 = a RTT + (1- a) RTTn

– RTO = β RTTn+1

• Exponential backoff
• Slow-start
• Dynamic window sizing
• Fast retransmit

Challenge

• Send at the “right” speed
– Fast enough to keep the pipe full
– But not to overrun the “pipe”

• Drawback?
– Share nicely with other senders

Key insight: packet conservation
principle and self-clocking

• When pipe is full, the speed of ACK
returns equals to the speed new packets
should be injected into the network

Solution: Dynamic window
sizing

• Sending speed: SWS / RTT

• à Adjusting SWS based on available
bandwidth

• The sender has two internal parameters:
– Congestion Window (cwnd)
– Slow-start threshold Value (ssthresh)

• SWS is set to the minimum of (cwnd, receiver
advertised win)

Two Modes of Congestion
Control

1. Probing for the available bandwidth
– slow start (cwnd < ssthresh)

2. Avoid overloading the network
– congestion avoidance (cwnd >= ssthresh)

Slow Start
• Initial value: Set cwnd = 1 MSS

• Modern TCP implementation may set initial cwnd to a much
larger value

• When receiving an ACK, cwnd+= 1 MSS

Congestion Avoidance

• If cwnd >= ssthresh then each time an
ACK is received, increment cwnd as
follows:

• cwnd += MSS * (MSS / cwnd) (cwnd measured in
bytes)

• So cwnd is increased by one MSS only if
all cwnd/MSS segments have been
acknowledged.

Example of
Slow Start/Congestion Avoidance

Assume ssthresh = 8 MSS cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

cwnd = 10

0
2
4
6
8
10
12
14

t=0 t=2 t=4 t=6
Roundtrip times

C
w

nd
 (i

n
se

gm
en

ts
)

ssthresh

Congestion detection

• What would happen if a sender keeps
increasing cwnd?
– Packet loss

• TCP uses packet loss as a congestion signal

• Loss detection
1. Receipt of a duplicate ACK (cumulative ACK)
2. Timeout of a retransmission timer

Reaction to Congestion

• Reduce cwnd

• Timeout: severe congestion
– cwnd is reset to one MSS:

cwnd = 1 MSS
– ssthresh is set to half of the current size of the

congestion window:
ssthressh = cwnd / 2

– entering slow-start

Reaction to Congestion
• Duplicate ACKs: not so congested (why?)
• Fast retransmit

– Three duplicate ACKs indicate a packet
loss

– Retransmit without timeout

27

Duplicate ACK example
1K SeqNo=0

AckNo=1024

AckNo=1024

1K SeqNo=1024

SeqNo=20481K

AckNo=1024

SeqNo=30721K

SeqNo=40961K

1. duplicate

2. duplicate

AckNo=1024

SeqNo=10241K

SeqNo=51201K

3. duplicate

Reaction to congestion: Fast

Recovery

• Avoiding slow start (changed from TCP88)

– ssthresh = cwnd/2

– cwnd = cwnd+3MSS

– Increase cwnd by one MSS for each
additional duplicate ACK

• When ACK arrives that acknowledges “new
data,” set:

cwnd=ssthresh

enter congestion avoidance

Flavors of TCP Congestion
Control

• TCP Tahoe (1988, FreeBSD 4.3 Tahoe)
– Slow Start
– Congestion Avoidance
– Fast Retransmit

• TCP Reno (1990, FreeBSD 4.3 Reno)
– Fast Recovery
– Modern TCP implementation

• New Reno (1996)
• SACK (1996)
• TCP CUBIC (Current linux and window TCP)

30

The Sawtooth behavior of TCP

• For every ACK received
– Cwnd += 1/cwnd

• For every packet lost
– Cwnd /= 2

RTT

Cwnd

31

Why does it work? [Chiu-Jain]

– A feedback control system
– The network uses feedback y to adjust users� load
åx_i

32

Goals of Congestion Avoidance

– Efficiency: the closeness of the total load on the resource ot its
knee

– Fairness:

• When all x_i�s are equal, F(x) = 1
• When all x_i�s are zero but x_j = 1, F(x) = 1/n

– Distributedness
• A centralized scheme requires complete knowledge of the state of

the system
– Convergence

• The system approach the goal state from any starting state

33

Metrics to measure convergence

• Responsiveness
• Smoothness

34

Model the system as a linear
control system

• Four sample types of controls
• AIAD, AIMD, MIAD, MIMD

35

Phase plot

x1

x2

36

TCP congestion control is AIMD

• Problems:
– Each source has to probe for its bandwidth
– Congestion occurs first before TCP backs off
– Unfair: long RTT flows obtain smaller bandwidth

shares

RTT

Cwnd

37

Macroscopic behavior of TCP

pRTT
MSS
•
•5.1

• Throughput is inversely proportional to RTT:

• In a steady state, total packets sent in one sawtooth
cycle:
– S = w + (w+1) + … (w+w) = 3/2 w2

• the maximum window size is determined by the loss rate
– 1/S = p
– w =

• The length of one cycle: w * RTT
• Average throughput: 3/2 w * MSS / RTT

1
1.5p

41

Conclusion

• Congestion control is one of the
fundamental issues in networking

• TCP congestion control algorithm
• The AIMD algorithm
• TCP macroscopic behavior model

