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Abstract
Historically, the evolution of network routers was driven primarily by performance. Recently, owing
to the need for better control over network operations and the constant demand for new features,
programmability of routers has become as important as performance. However, today’s fastest
routers, which have 10–100 ports each running at a line rate of 10–100 Gbit/s, use fixed-function
hardware, which cannot be modified after deployment. This dissertation describes three router
hardware primitives and their corresponding software programming models that allow network
operators to program specific classes of router functionality on such fast routers.

First, we develop a system for programming stateful packet-processing algorithms such as
algorithms for in-network congestion control, buffer management, and data-plane traffic engineering.
The challenge here is the fact that these algorithms maintain and update state on the router. We
develop a small but expressive instruction set for state manipulation on fast routers. We then expose
this to the programmer through a high-level programming model and compiler.

Second, we develop a system to program packet scheduling: the task of picking which packet
to transmit next on a link. Our main contribution here is the finding that many packet scheduling
algorithms can be programmed using one simple idea: a priority queue of packets in hardware
coupled with a software program to assign each packet’s priority in this queue.

Third, we develop a system for programmable and scalable measurement of network statistics.
Our goal is to allow programmers to flexibly define what they want to measure for each flow and scale
to a large number of flows. We formalize a class of statistics that permit a scalable implementation
and show that it includes many useful statistics (e.g., moving averages and counters).

These systems show that it is possible to program several packet-processing functions at speeds
approaching today’s fastest routers. Based on these systems, we distill two lessons for designing
fast and programmable routers in the future. First, specialized designs that program only specific
classes of router functionality improve packet processing throughput by 10–100x relative to a
general-purpose solution. Second, joint design of hardware and software provides us with more
leverage relative to designing only one of them while keeping the other fixed.
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Chapter 1

Introduction

1.1 Background
Computer networks contain two types of elements: end hosts that generate packets and routers1 that
forward these packets between the end hosts. Historically, the Internet was architected so that most
of the complexity resided in the end hosts, while the routers themselves were simple. According
to Clark [95], this architecture was a result of the primary design goal of the Internet: the ability
to easily interconnect a wide variety of existing networks (e.g., long-haul networks, local-area
networks, satellite networks, and radio networks) through a set of routers between these networks.
Quoting Clark, “The Internet architecture achieves this flexibility by making a minimum set of
assumptions about the function which the net will provide.”

The minimum functionality assumed of and provided by the network’s routers was best-effort
and unreliable packet forwarding. Notably absent from a router’s feature set were reliable packet
delivery, packet prioritization, monitoring features to attribute a router’s resource usage to specific
end hosts, and security features to detect network breaches. As a result, the early routers were
singularly dedicated to packet forwarding. A focus on packet forwarding alone made it simpler to
design high-speed routers. It also helped broaden the Internet’s reach by interconnecting existing
networks with minimum friction. But, it sidelined other goals [95] such as network performance,
security, and monitoring.

Today, four decades after ideas underlying the Internet were first published [90], it is clear that
routers need to do much more than packet forwarding for at least two reasons. First, once the
basic goal of interconnecting different networks is achieved, other goals like performance, security,
and monitoring rise in prominence. Second, many large-scale private networks (e.g., datacenters,
private wide-area networks, and enterprise networks) do not need to concern themselves with
interconnecting diverse networks as the Internet had to. Such private networks can expect more
from the network. As a result, a typical router today implements many features beyond packet
forwarding, pertaining to security (e.g., access control), monitoring (e.g., counting the number of
packets belonging to each flow), and performance (e.g., priority queues).

While a router’s feature set has grown steadily with time, there’s little consensus between

1We use the term router to refer to both switches and routers in this dissertation.
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Figure 1-1: Timeline of prominent router algorithms since the 1980s. Only the ones shaded in blue
are available on the fastest routers today.

network operators and router vendors on a router’s feature set. Inevitably, there are network
operators whose needs fall outside their router’s feature set. But, because today’s fastest routers
are built out of specialized forwarding hardware, they are largely fixed-function2 devices, i.e., their
functionality cannot be changed once the router has been built. In such cases, the operator has
no alternative but to wait 2–3 years for the next generation of the router hardware. This is best
illustrated by the lag time between the standardization and availability of new overlay protocols [34].

As a result, the rate of innovation in new router algorithms is outstripping our ability to get these
algorithms into today’s fastest routers, i.e., routers with between 10 and 100 ports, each running at
between 10 and 100 Gbit/s. Figure 1-1 shows a timeline of prominent router algorithms that have
been developed since the 1980s. Of these, only a handful are available in the fastest routers today
because there is no way to program a new router algorithm on these routers.

Against this backdrop, if an operator wants to introduce new network functionality, what are her
choices? One is to give up on changing routers altogether and make all the required changes at the
end hosts. Relying solely on the end hosts, however, results in cumbersome or suboptimal solutions.
As a first example, imagine measuring the queueing latency at a particular hop in the network. One
could do this by collecting end-to-end ping measurements between a variety of vantage points
and then fusing these measurements together to estimate per-hop queueing latency—a process
commonly called network tomography. Not only is this indirect, it is also inaccurate relative to
directly instrumenting the router at that hop to measure its own queueing latency. As a second
example, consider the problem of congestion control, which divides up a network’s capacity fairly
among competing users. There are many in-network solutions to congestion control [139, 195],
which outperform the end-host-only approaches to congestion control used today [122, 198].
However, there is no way to deploy these in-network solutions using a fixed-function router today.

Another alternative is to use a software router: a catch-all term for a router built on top of
some programmable substrate, such as a general-purpose CPU [144, 103], a network processor,3 a
graphics processing unit (GPU) [123], or a field-programmable gate array (FPGA) [216]. Figure 1-2
tracks the evolution of aggregate capacity of software routers and compares them to the fastest
routers known at any point in time. The figure shows two trends. First, until the mid 1990s, software
routers were in fact the fastest routers; the early routers [126] were minicomputers loaded with
forwarding software. Second, since the mid 1990s, growing demands for higher link speeds, fueled

2The term fixed-function was first used to describe graphics processing units (GPUs) with limited or no programma-
bility [16]. We use it in an analogous sense here.

3A CPU with an instruction set tailored to packet processing [29, 26].
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Figure 1-2: Aggregate capacity of software routers since the first router on the ARPANET in
1969 [126]. Until the mid 1990s, software routers were sufficient. Since then, however, the fastest
routers have largely been fixed-function devices, built out of dedicated non-programmable hardware,
which gives these routers a 10–100x performance improvement relative to the best software routers.

by the Internet’s growth, have meant that the fastest routers are now built out of dedicated hardware.
Hardware specialization gives today’s fastest routers a 10–100 × performance improvement

relative to the fastest software routers. This performance improvement is the result of fully exploiting
the abundant parallelism available in packet processing. First, data parallelism, the ability to
simultaneously process either different parts of the same packet or packets belonging to different
ports. Second, pipeline parallelism, the ability to simultaneously perform different operations
on different packets. But, hardware specialization carries a cost: because routers are built out of
specialized hardware, they are fixed-function devices that can not be programmed in the field.

Recent work in software-defined networking [108] (SDN) and programmable router chips [86,
60, 25] has endowed fast routers with limited flexibility. SDN allows operators to program the
network’s control plane, which is the part of the network that computes a network’s routing tables.
SDN does this by moving route computations out of the routers and on to a logically centralized
programmable server running on a CPU.

Programmable router chips allow operators to program parts of the data plane: the part of the
network that forwards packets based on the routing tables. For instance, these chips allow an operator
to program the router’s parser to recognize new packet headers, such as a new overlay format [34].
They also allow the operator to program packet header transformations (e.g., decrementing the IP
TTL field) so long as these transformations do not modify router state.

However, both SDN and programmable router chips are still insufficient to express the grayed-
out algorithms shown in Figure 1-1 because (1) these algorithms programmatically manipulate
router state and (2) they require flexibility in packet scheduling. State modification on routers and
the router’s scheduler are largely ignored by both SDN and programmable router chips.
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1.2 Primary contributions
This dissertation considers the problem of designing routers that approach the speeds of today’s
fastest fixed-function routers, while also being programmable. My thesis is that it is possible to
design router hardware that is both fast and programmable, if we restrict ourselves to program-
ming specific classes of router functionality. It is this specificity that allows us to resolve the
programmability-performance tension; indeed, our designs provide a much more restricted form of
programmability than a Turing-complete processor.

The challenge here is to pick classes of router functionality that are simultaneously (1) practically
useful to network operators, (2) broad enough to cover a range of current and future use cases within
that class, and yet (3) narrowly focused enough to permit a high-speed hardware implementation. We
will describe high-speed programmable hardware primitives and their corresponding programming
models in software for three classes of router functionality: stateful data-plane algorithms, packet
scheduling, and scalable network measurement. Table 1.1 summarizes our contributions. §1.3, §1.4,
and §1.5 expand on each of the three contributions.

1.2.1 Evaluation metrics
The goal of this dissertation is to design fast and programmable routers. Accordingly, we measure
each of our three systems on two attributes, performance and programmability, as described below.

The traditional approach to evaluating performance of a software system is to measure the
system’s throughput on some workloads. This approach does not apply to evaluating hardware
designs, which are built for a specific clock rate or throughput. Hardware designs provide this clock
rate or throughput even under worst-case conditions, regardless of the workload presented to them.

To provide worst-case guarantees, hardware designs exploit spatial parallelism—by chaining
together computations in a pipeline (pipeline parallelism) and simultaneously performing multiple
operations within a pipeline stage (data parallelism). Put differently, hardware designs spend circuit
area in return for deterministic high performance. The question then is whether these designs
consume a large amount of area to provide such performance guarantees and whether they can
provide acceptable performance, as measured by the design’s clock rate.

Hence, to evaluate performance, we estimate if the hardware components of our systems can
run at a high clock rate while not taking up too much gate and wire area. To do so, we code any
new hardware components as programs in the Verilog hardware description language. We then
pass this Verilog program to a logic synthesis tool [12, 6] that produces a gate-level implementation
from Verilog programs. The synthesis tool also reports whether the resulting implementation meets
timing at a given clock frequency and the area taken up by the gates in the implementation.4 When
we say a hardware design is feasible, we mean that it meets timing at a high clock frequency (1
GHz in this dissertation) and its gate area is modest relative to the area of a router chip (200 mm2 in
this dissertation based on the minimum area estimates provided by Gibb et al. [115]).

4A full hardware implementation also requires a place-and-route [41] step after logic synthesis to physically place
these gates and route wires between them. This increases the area of designs, especially if the design is dominated by
wires, as is the case with crossbars. Because our designs are dominated by gates, not wires, we do not perform this
place-and-route step when estimating area.
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Stateful data-plane algorithms (Chapter 4)

Examples: In-network congestion control (e.g., XCP [139] and RCP [195]), active queue
management (e.g., RED [111], BLUE [109], and CoDel [169])
Technical challenge: How do we allow programmable router state modification at the router’s line
rate, when a new packet can be received as often as every nanosecond?
Programming model: Packet transactions (§4.2)
Hardware primitive: Atoms (§4.1)
Key finding: A small set of atoms (Table 4.4) is simultaneously (1) expressive enough to serve as
the instruction set for many stateful algorithms (Table 4.5) and (2) feasible in high-speed hardware
(§4.4). Further, we find that these atoms can support several new use cases that were unanticipated
at the time the atoms were designed (Table 4.6).

Scheduling algorithms (Chapter 5)

Examples: Weighted Fair Queueing [99] and priority scheduling [183]
Technical challenge: Can we find an abstraction that unifies many disparate scheduling algorithms?
Programming model: Scheduling trees (§5.2)
Hardware primitive: A priority queue data structure called a Push In First Out Queue (PIFO)
(§5.4)
Key finding: A priority queue of packets with a program to set each packet’s priority can express
many scheduling algorithms (§5.3) and is feasible in high-speed hardware (§5.5).

Scalable per-flow statistics (Chapter 6)

Examples: Per-flow measurements of moving averages, counters, and loss rates
Technical challenge: Can we allow programmers to flexibly define the per-flow statistics they
want to measure and also scale these measurements to a large number of flows?
Programming model: Performance queries (§6.1)
Hardware primitive: Programmable hardware key-value store. Keys correspond to flows and
values to statistics. (§6.2)
Key finding: A class of statistics measurements, which we call the linear-in-state class (§6.2.2),
can be scaled to a large number of flows without losing accuracy. This class covers many practically
useful statistics such as counters, moving average filters, and conditional counters (§6.4).

Table 1.1: Contributions of this dissertation

17



To evaluate if our systems are programmable, we evaluate the expressiveness of the program-
ming models in each of our systems. If we are able to express a diverse set of algorithms using a
programming model, we say that the programming model is expressive. Our approach to expressive-
ness is empirical: beyond specific example programs, we do not have theoretical characterizations
of the set of programs that can or cannot be programmed using our programming models (§7.1.2).

In addition, to assess the correctness of our designs, we built a C++ simulator of a programmable
router that models the behavior of the essential computational elements of a programmable router at
the level of individual clock cycles (§4.1).

1.3 Stateful data-plane algorithms
In Chapter 4, we consider the problem of programming stateful data-plane algorithms at high
packet processing rates. These are algorithms that operate on a sequence of packets in a streaming
manner, doing a bounded amount of work per packet and manipulating a bounded amount of router
state in the process. They include algorithms for managing the router’s buffer (e.g., RED [111]
and BLUE [109]), load balancing (e.g., CONGA [65] and flowlet switching [187]), and in-network
congestion control (e.g., XCP [139] and RCP [195]).

High-speed data-plane programming on routers poses two challenges: (1) what hardware
instructions are required to support programmable state modification at high speeds, and (2) what is
the right programming model? To address these challenges, we develop a system for data-plane
programming, Domino, which contains three main components: an instruction set (atoms), a
programming model (packet transactions), and a compiler from packet transactions to atoms.

1.3.1 Atoms: Hardware for high-speed state manipulation
Atoms capture a router’s instruction set. They specify atomic units of packet processing provided by
the router hardware, e.g., an atomic counter or an atomic test-and-set. Figure 1-3 shows an example
atom. Atoms are atomic in the sense that if some state is updated by an atom as part of processing a
packet, the next packet arriving at that atom will see the updated value of that state. The processing
within atoms is constrained to meet the atomicity requirement. We enforce this constraint when
designing atoms in hardware by ensuring that the input-to-output latency of the atom’s digital circuit
is under a clock cycle. This guarantees that any state updated by the atom has been updated to its
correct value in time for the next packet arriving at the atom a clock cycle later.5

1.3.2 Packet transactions: A programming model for stateful algorithms
Packet transactions provide a programming model for data-plane algorithms. A packet transaction
is an atomic and isolated block of code capturing an algorithm’s logic written in a domain-specific
language (DSL) called Domino. Figure 1-4 shows an example packet transaction. Packet trans-
actions provide programmers with the illusion that the transaction’s body executes serially from

5Note that this is a sufficient condition for atomicity and may not always be necessary.
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if (count == 9):
pkt.sample = pkt.src
count = 0

else:
pkt.sample = 0
count++

Figure 1-4: A packet transaction that samples
the source IP address of every 10th packet. State
variables (count) are in red.

start to finish on each packet, in the order in which packets arrive at the router. Conceptually, when
programming with packet transactions, there is no overlap in packet processing across packets—akin
to an infinitely fast single-threaded processor carrying out packet processing on each packet. Packet
transactions are expressive and capture many important data-plane algorithms. Further, their serial
semantics shield programmers from the router’s data and pipeline parallelism.

1.3.3 Compiling from packet transactions to atoms
The Domino compiler compiles packet transactions written in the Domino DSL to a pipeline of
atoms provided by the router. It rejects the code if the router’s atoms cannot support the packet
transaction. The compiler bridges the gap between the serial single-threaded execution model seen
by the programmer and the data-parallel and pipeline-parallel execution model of the router.

The compiler has three passes (Figure 1-5). First (§4.3.1), it preprocesses the code to make it
easier to infer dependencies between packet-processing operations. Second (§4.3.2), the compiler
transforms the preprocessed, but still serial, packet transaction into a parallel pipeline of codelets.
When pipelining, the compiler maintains the following invariant: if each codelet executes atomically
and passes off its results (e.g., pkt.tmp in Figure 1-5) to the next codelet, the behavior will be
indistinguishable from the packet transaction itself executing atomically on each packet. Third
(§4.3.3), the compiler maps each codelet one-to-one to an atom provided by the underlying router,
rejecting the code if the codelet cannot be supported by an atom.

The compiler provides an all-or-nothing guarantee: if the compiler compiles a program, the
program will run at the line rate of the router.6 All other programs that cannot run at the router’s

6We use the term line rate in this dissertation to mean both the maximum bit/packet rate of a particular router
port/line (e.g., 10 Gbit/s) and the maximum aggregate bit/packet rate of a router: the product of the per-port line rate
and the number of ports (e.g., 64×10 Gbit/s = 640 Gbit/s). It should be clear from the context which interpretation of
line rate we are referring to.
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pkt.tmp = pkt.old == 9;

pkt.new = pkt.tmp ? 0 : (pkt.old + 1);

pkt.sample = pkt.tmp ? pkt.src : 0

count = pkt.new;

Preprocessed code

if (count == 9):
pkt.sample = pkt.src
count = 0

else:
pkt.sample = 0
count++

Input:  Packet transaction

Codelet pipeline

pkt.old = count;

pkt.tmp = pkt.old == 9;

pkt.new = pkt.tmp ? 0 :(pkt.old + 1);

count = pkt.new;

pkt.sample = pkt.tmp ? pkt.src : 0
pkt.tmp

Figure 1-5: The three passes of Domino’s compiler shown on the packet transaction from Figure 1-4.

line rate will be rejected. A program may be rejected either because the router’s atoms are not
expressive enough for the program’s operations or there aren’t enough atoms for all operations
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in the program. A conventional compiler for a general-purpose CPU compiles all programs, but
a program’s run-time performance depends on its complexity. In Domino, only programs that
are simple enough to run at the router’s line rate will be compiled, obviating the need for any
performance profiling.

1.3.4 Evaluation
Developing atoms for a router is a chicken-and-egg problem. A router’s atoms determine what
algorithms the router can support, while the algorithms determine what atoms are required in the
first place. Designing the right atoms is especially important for a programmable router because, in
contrast to a general-purpose CPU, there is no way to “emulate” functionality in software when
hardware support is not available: recall that if an atom does not exist to support a program’s
operations, the program will be rejected.

To develop atoms, we use the Domino compiler to experiment with different atoms and iteratively
modify the atoms until they support enough algorithms (Figure 1-6). Using this process, we
developed seven atoms of increasing complexity (Table 4.4) that allow us to progressively program
more and more algorithms from Figure 1-1. For instance, measurement using Bloom filters only
requires simple read and write operations on state. On the other hand, heavy-hitter detection [210]
uses a count-min sketch [96] that relies on an atomic counter. Finally, algorithms like flowlet
switching [187] require conditional writes to a state variable.

After freezing the design of these atoms, we found that our atoms could express several new
use cases that were unanticipated when the atoms were designed (Table 4.6). This provides us with
some evidence that these atoms are indeed programmable and can generalize to new algorithms
beyond the initial algorithms that influenced their design in the first place.

1.4 Programmable packet scheduling
Packet scheduling is an important determinant of network performance. The choice of scheduling
algorithm is tied to a network’s performance goals. For instance, an algorithm that divides link
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capacity fairly is ideal in a multi-tenant setting [99], while the shortest remaining processing time
algorithm is ideal for a single tenant who desires low flow completion time [68]. Today’s routers
provide a fixed set of scheduling algorithms (e.g., priority queues, Deficit Round Robin [186], and
rate limiting [58]). While configuration settings on these scheduling algorithms can be tweaked,
there is no way for an operator to program a new scheduling algorithm that is tailored to their needs.

Routers lack programmable scheduling because there is no single abstraction to express many
scheduling algorithms [99, 183, 180, 68, 150] that appear so different at first brush. This lack of a
single unifying abstraction is not merely an academic concern. It has practical consequences: in
the absence of a single abstraction that can then be hardened in hardware, we are left with using a
general-purpose substrate such as a CPU to program scheduling. As we mentioned earlier, this can
hurt performance substantially.

Push In First Out Queues (PIFOs) (Chapter 5) provide such an abstraction.7 They exploit our
observation that in many practical schedulers the relative order of packets that are already buffered
does not change in response to new packet arrivals (§5.1). Hence, when a packet arrives, it can be
pushed into the right location based on a packet priority (push in), but packets are always dequeued
from the head (first out). A PIFO is simply a priority queue of packets with a small program to
assign each packet its priority.8 Yet, by flexibly programming a packet’s priority assignment, a
network operator can use PIFOs to program a variety of previously proposed scheduling algorithms.

1.4.1 Programming model for packet scheduling
Our programming model for scheduling couples a PIFO with a program to determine a packet’s
rank in the PIFO. This rank can denote the packet’s scheduling order (for work-conserving algo-
rithms such as Weighted Fair Queueing [99]) or absolute wall-clock departure time (for non-work-
conserving algorithms such as traffic shaping [58]). This program is written as a packet transaction,
introduced earlier. Depending on whether the program determines the scheduling order or time, the
program is called either a scheduling transaction or a shaping transaction respectively.

A single PIFO coupled with a scheduling or shaping transaction can express many classical
scheduling algorithms, e.g., Weighted Fair Queueing (Figure 1-7a) and Token Bucket Shaping
(Figure 1-7b). But, a single PIFO is still restricted to scheduling algorithms with the property that
the relative order of packets that are already buffered does not change in response to new packet
arrivals. A canonical class of scheduling algorithms that violate this relative order property is the
class of hierarchical scheduling algorithms. A well-known example of this class is Hierarchical
Packet Fair Queueing (HPFQ) [76]. HPFQ first divides up the link’s capacity fairly among classes,
and then when each class is scheduled, divides up the class’s transmission opportunities fairly
among its constituent flows. It can be thought of a recursive version of fair queueing.

To support hierarchical scheduling, we extend our programming model from a single PIFO to a
tree of PIFOs. We also allow an entry in a PIFO to be either a packet or a reference to another PIFO.

7PIFOs were used as a theoretical construct to establish the equivalence of combined input-output queued routers
and output-queued routers [94]. We show here that they can be used practically for programmable packet scheduling.

8We use the term PIFO instead of priority queue because, within the context of networking, priority queues typically
refer to an implementation of work-conserving priority scheduling. PIFOs can be used for both work-conserving and
non-work-conserving algorithms (§5.3).
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1 f = flow(p) # compute flow from packet p
2 if f in last_finish:
3 p.start = max(virtual_time, last_finish[f])
4 else: # p is first packet in f
5 p.start = virtual_time
6 last_finish[f] = p.start + p.length/f.weight
7 p.rank = p.start

(a) Scheduling transaction for the Start-Time Fair
Queueing implementation [118] of Weighted Fair
Queueing.

1 tokens = tokens + r * (now - last_time)
2 if (tokens > B):
3 tokens = B
4 if (p.length <= tokens):
5 p.send_time = now
6 else:
7 p.send_time = now + (p.length - tokens) / r
8 tokens = tokens - p.length
9 last_time = now

10 p.rank = p.send_time

(b) Shaping transaction for Token Bucket Shaping.

Figure 1-7: Examples of scheduling and shaping transactions. p.x refers to a packet field x in packet
p. y refers to a state variable that is persisted on the router across packets, e.g., last_finish and
virtual_time in this snippet. p.rank denotes the packet’s computed rank.

Left Right

root
True,

WFQ_Root

p.class == Left,

WFQ_Left

p.class == Right,

WFQ_Right

Figure 1-8: Scheduling tree for HPFQ. The scheduling transactions WFQ_Root, WFQ_Left, and
WFQ_Right are similar to Figure 1-7a and differ only in how the flow is computed from the packet.
This tree has no shaping transaction.

More formally, a node in a scheduling tree (Figure 1-8) has three attributes: (1) a predicate that
determines which packets are handled by that node, (2) a scheduling transaction that determines a
packet’s rank in a scheduling PIFO attached to that node, and (3) an optional shaping transaction
that determines a packet’s rank in an optional shaping PIFO attached to that node. The shaping
transaction is optional because it is only relevant to non-work-conserving schedulers. It can be
disregarded entirely for work-conserving schedulers.

We now explain the semantics of a scheduling tree during dequeues and enqueues. During a
dequeue, we walk the scheduling tree starting from the root. We dequeue the scheduling PIFO at
the root, resulting in either a reference to another scheduling PIFO or a packet. If the result is a
packet, we are done, and we transmit the packet. If not, we continue recursively, dequeueing from
the scheduling PIFO that is pointed to until we find a packet.

When a packet is enqueued, we walk the tree from the leaf whose predicate captures the packet
to the root. Along this leaf-to-root path, we execute scheduling and (optionally) shaping transactions
attached to the path’s nodes. Figure 1-9 illustrates the timing of various operations related to a
node’s scheduling and a shaping PIFO. A node’s scheduling transaction inserts either a packet or a
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Figure 1-9: Child’s shaping transaction (1b) defers enqueue into Parent’s scheduling PIFO (2) until
time T. Blue arrows show enqueue paths. Red arrows show dequeue paths.

PIFO reference into the node’s scheduling PIFO. A node’s shaping transaction inserts a reference
𝑅 to the node’s scheduling PIFO in the node’s shaping PIFO. Once the shaping transaction has
executed, execution of transactions for this packet is temporarily suspended. When the reference 𝑅
is dequeued from the shaping PIFO, it is enqueued into the node’s parent’s scheduling PIFO using
the parent’s scheduling transaction and the rest of the leaf-to-root path is resumed. The shaping
PIFO thus provides an optional mechanism for a node to defer enqueues into its parent’s scheduling
PIFO, which is useful when combining hierarchical scheduling with traffic shaping (Figure 5-4 in
Chapter 5 shows an example.).

1.4.2 Expressiveness of our programming model
The PIFO-based programming model unifies several scheduling algorithms and allows us to program
a wide variety of scheduling algorithms using the single PIFO primitive, e.g., Weighted Fair
Queueing [99], Token Bucket Shaping [58], Hierarchical Packet Fair Queueing [76], Least-Slack
Time-First [150], the Rate-Controlled Service Disciplines [214], and fine-grained priority scheduling
(e.g., Shortest Job First).

1.4.3 Hardware for programmable scheduling
We designed high-speed hardware to support a PIFO-based programming model. When designing
hardware for PIFOs, we set out to meet performance targets that are typical for a single-chip
shared-memory router today. These are routers that are built out of a single chip,9 and whose packet
buffer and scheduling logic is shared across all ports. Sharing the packet buffer and scheduling
logic reduces the memory and digital logic cost associated with packet scheduling.

9Also called an application-specific integrated circuit or ASIC.
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For concreteness, we picked a target clock frequency of 1 GHz to reflect the requirement
of performing one enqueue and one dequeue every nanosecond, typical of high-speed routers
today [86]. We targeted a packet buffer of size 12 MByte based on the buffer size of the Broadcom
Trident II [40], a commercial single-chip shared-memory router. With a cell size of 200 bytes,10 a
12 MByte buffer can support up to 60000 packets in the worst case.

Hence we need a PIFO that can support up to 60K packets. A naive way to implement a
60K-entry PIFO is to use a flat sorted array of 60K elements and insert an incoming element into
this array in a manner reminiscent of insertion sort. Concretely, an incoming element’s rank would
be compared in parallel to the ranks of all 60K elements. This would produce a bitmask denoting
which elements were greater than or lesser than the incoming element. Because the array is always
sorted, the bitmask would have a single 0-to-1 transition. The position of this 0-to-1 transition could
be detected using a priority encoder. Finally, the new element could be inserted into this position.
However, the difficulty with this approach of using a flat sorted array is that it is hard to lay out 60K
parallel comparators, one for each element in the PIFO.

Instead, we exploit the observation that in most practical scheduling algorithms, scheduling
is performed across flows and not individual packets. This is because, in most schedulers, packet
ranks increase monotonically across consecutive packets within a flow. This ensures that packets
within a flow are transmitted in the order in which they arrive, thereby preventing packet reordering
within a flow.

Because ranks increase monotonically within a flow, we only need to look at the first packet of
each flow to determine which packet to dequeue next. This reduces the number of elements that
need to be sorted from 60K packets in the naive implementation to around 1K flows in the smarter
implementation. We picked this 1K number with reference to the Broadcom Trident II that supports
~10 queues on each of its ~100 ports.

We find that transistor technology has evolved to the point where it is relatively cheap to
build a sorted array of 1K flows, where a flow can be enqueued into or dequeued from the array
every nanosecond. In a recent industry-standard 16 nm technology node, a hardware design for a
programmable 5-level hierarchical scheduler costs less than 4% additional chip area relative to a
200 mm2 baseline router chip [116].

1.5 Programmable and scalable network measurement
Chapter 6 considers the problem of programmable and scalable network measurement. Concretely,
can we allow network operators to flexibly specify the per-flow statistics they want to measure (e.g.,
a moving average over queueing latencies or a count of packets or bytes) at the flow granularity they
desire (e.g., at the 5-tuple level or at the level of each distinct destination IP address)? Current router
solutions for measurement [8, 11] fix either the statistics that can be measured or the granularity
at which the statistics can be measured. The challenge here is to provide a set of measurement
primitives that can cover a range of statistics while also scaling to a large number of flows, because
the granularity of a flow can be as fine-grained as the 5-tuple.

10A cell is the minimum unit of memory allocation in the packet buffer.

25



result = filter(pktstream, qid == Q && tout - tin > 1ms)
// Filter out packets whose queueing delay at queue Q exceeds one ms.

result = map(pktstream, [tin/epoch_size], [epoch])
// Round off packet time stamps to the nearest epoch of size epoch_size.

def count([c], []):
c = c + 1

result = groupby(pktstream, [5tuple], count)
// Partition packets by 5-tuple and count the number of packets in each 5-tuple.

Figure 1-10: Three example Marple queries. pktstream refers to the original packet performance
stream with one tuple for each packet seen in the network.

1.5.1 Programming model
To allow network operators to express a wide range of performance measurement questions, we
provide them with the abstraction of a single performance packet stream for the entire network.
Conceptually, the performance packet stream is a stream of tuples, one for each packet, containing
information identifying the packet (source and destination address and ports) and its performance
information (the timestamp at which the packet was enqueued/dequeued at each network queue).

Network operators can write queries that operate on this performance packet stream using a
query language called Marple. Marple has functional constructs like map, filter, and groupby

similar to functional APIs in programming languages like Python, Java, Scala, and Haskell. Figure 1-
10 shows some example queries in Marple. These constructs take a stream of tuples as input and
return an output stream of tuples. Because all constructs produce and consume streams, Marple
queries can be easily composed.

The output stream either transforms each tuple in the input stream (map), drops certain tuples
from the input stream based on a predicate (filter), or partitions the input stream into substreams
and then aggregates the tuples within each substream based on a user-defined aggregation function
(groupby). Marple’s use of user-defined aggregation functions differentiates its groupby construct
from the groupby construct supported by classical query languages like SQL. SQL only supports
specific order-independent aggregation functions like counts and averages. Unlike Marple, SQL
does not allow general, user-defined, and potentially order-dependent aggregation functions.

1.5.2 Hardware for programmable network measurement
A naive implementation of performance queries would stream relevant performance information
for every packet to a centralized collection server, which would execute the performance query on
the incoming packet stream. However, this would require enormous computational capacity on
the server and a separate measurement network just to stream per-packet information to the server.
For instance, modern stream processing systems support a throughput of ~100K–1M operations
per second per core [4, 21, 125, 2, 48], but processing every single packet from a single 1 Tbit/s
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router requires around ~100M operations per second even for relatively large 10000 bit packets.
Instead, we use programmable routers as first-class citizens to perform early filtering, aggregation,
and packet transformations. The net effect is a substantial reduction in the amount of data sent out
to and processed by the collection server.

Many of Marple’s constructs (e.g., map and filter) are stateless in the sense that they do not
need to maintain any router state. For instance, a map query could take an input packet stream, round
off the enqueue timestamp of each packet in the stream to the nearest millisecond, and return the
result as a new stream. This query is stateless because it can operate independently on each packet
without maintaining any state on the router that persists between packets. Supporting stateless
queries is relatively straightforward. Emerging programmable router chips [86, 60, 25, 3] already
provide an instruction set that performs stateless transformations on packet headers. We leverage
this instruction set as is to execute stateless queries because a packet-processing pipeline naturally
fits the streaming model of our queries.

On the other hand, the groupby query is stateful. To see why, consider a groupy query that
(1) partitions the packet stream into substreams based on the 5-tuple and (2) counts the number
of packets within each substream. This query is stateful because it needs to maintain a dictionary
mapping each 5-tuple to its count as part of the persistent router state. To implement the groubpy

query, this dictionary is updated by incrementing some 5-tuple’s counter on each packet. To support
Marple’s groupby, we design a programmable key-value store in hardware. The keys represent the
flows and the values represent the state being aggregated according to the aggregation function as
packets are processed. In the example above, the key would be a 5-tuple and the value would be a
count of packets belonging to that 5-tuple.

This key-value store has two requirements that are at odds with each other: it needs to be fast
to process packets at the router’s line rate (a packet every nanosecond), and it needs to be large to
store a large number of flows. Static random-access memory (SRAM) can be accessed once every
nanosecond, but has low memory density and can only fit a small number of flows. On the other
hand, dynamic random-access memory (DRAM) has much better density allowing it to support
many more flows, but can be accessed only once every ten nanoseconds or so.

We use caching to address both requirements: a fast SRAM cache stores the currently active
flows, while a backing store in DRAM handles evictions from the cache. However, cache misses in
traditional processor designs lead to unpredictable memory access latencies while the data is being
fetched from the main memory. A processor handles this by occasionally stalling its pipeline to
handle a cache miss. But stalling a router pipeline prevents us from providing the deterministic
latency guarantees that routers are known and benchmarked for.

Instead, as Figure 1-11 shows, we treat a cache miss as the arrival of a packet from a new flow
and initialize the cache entry as though we have just started aggregating packets from a new flow.
When this cache entry is eventually evicted, we merge it against the old value for that entry in
the backing store. The merge operation requires reading and writing from DRAM, which does
incur unpredictable access latencies. But, it happens off the critical path during evictions alone.
Importantly, it does not affect the critical path of packet processing in the router’s chip.

What exactly does this merge operation look like? As a simple example, if the value in the
key-value store was a counter; the merge operation would then simply add up the old and new
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Figure 1-11: Marple’s key-value store vs. a traditional cache

counts. But is it always possible to merge an aggregation function accurately i.e., the value after the
merge should be the same as the value that would be obtained in an ideal system with an infinitely
large cache that needs no merging?

We can prove (§6.2.5.3) that there are aggregation functions for which it is not possible to
merge efficiently without losing accuracy. However, we formally characterize a class of aggregation
functions for which such merging is possible without losing accuracy. We call this class the
linear-in-state class because aggregation functions in this class take the following form:

𝑆 = 𝐴(𝑝) * 𝑆 +𝐵(𝑝) (1.1)

Here 𝑆 is the state/value that is being updated by the aggregation function, while 𝐴 and 𝐵 are
functions of a bounded number of packets into the past including the current one. The linear-in-state
class captures a variety of aggregation functions including counters, predicated counters, moving
average filters, and arbitrary functions on sliding windows.

1.5.3 Evaluation

We evaluate Marple’s expressive power by using it to express several diverse performance queries,
e.g., tracking the loss rate on a per-flow basis, measuring the extent of reordering in a TCP flow,
measuring a moving average of queueing latencies on a per-flow basis, and detecting the presence
of TCP incast [202].

Our Marple compiler compiles queries to two different targets: an atom pipeline to determine
the hardware feasibility of Marple queries and a P4-based software router [37] for end-to-end case
studies of Marple in Mininet [149]. We find that Marple queries occupy a small fraction of the
router’s computational and memory resources. Computationally, queries require a small number of
atoms. Memory-wise, the programmable key-value store requires an SRAM cache that occupies a
modest amount of additional chip area. Our Mininet experiments show that Marple can be used to
iteratively troubleshoot problems such as occasional latency spikes that occur because of bursty
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background traffic.
We determine the eviction rate from the SRAM cache using a trace-driven simulation on publicly

available packet traces from CAIDA [54, 53] and a university datacenter [78]. For a 64 Mbit on-chip
cache, which occupies about 10% of the area of a 64×10-Gbit/s router chip, we estimate that the
cache eviction rate from a single top-of-rack router can be handled by a single 8-core server running
Redis [43]. Relative to a strawman that sends every packet to the collection server (i.e., a 100%
eviction rate), the on-chip cache results in a reduction in eviction rate of 34–81x (Figure 6-8).

1.6 Lessons learned
We conclude this chapter by distilling some general lessons for designing fast and programmable
routers in the future that go beyond the specific contributions of each of the three systems.

1.6.1 The power of specialization
The most important lesson here is the power of specialization: the idea of targeting hardware and
software to specific classes of router functionality. The three systems in the dissertation demonstrate
how narrowing our focus to specific router functionality allows us to resolve the performance-
programmability tradeoff that has affected software routers so far. Put differently, it allows us to get
the best of both worlds, but for restricted classes of router functionality.

More formally, the three systems are specialized in the sense that they are not Turing-complete:
they cannot simulate a Turing machine, an idealization of the general-purpose CPU. We refer the
reader to §4.1.4 and Table 4.1, §5.3.5, and §6.3 for specific examples of what each of the three
systems cannot express.

Yet, each covers a large number of use cases within specific functionality classes (stateful data-
plane algorithms, scheduling, and measurement queries) without giving up performance relative
to a fixed-function router. Viewed differently, by specializing, each system provides an order of
magnitude improvement in performance relative to a general-purpose software router. Intellectually,
these results suggest that there is a rich space of system designs that is as yet unexplored—if we
choose to look beyond Turing-complete systems.

1.6.2 Jointly designing hardware and software
We are entering an era where Moore’s law has slowed down or effectively stopped [127]. In this
new era, transistors are no longer guaranteed to get smaller or faster every year. Besides, it may not
be cost effective to move to smaller or faster transistors because of rising non-recurrent engineering
costs associated with newer transistor technologies [142]. In the heyday of Moore’s law, processor
hardware automatically got faster year on year. Software automatically enjoyed the free lunch of
improved performance because of improvements in the underlying hardware. With the imminent
end of Moore’s law, it is no longer apparent how these performance improvements will be sustained.

Jointly designing hardware and software in service of a higher level goal suggests a way to
continue improving performance. Year on year, the greatest performance improvements could
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now come from human creativity in specializing hardware to specific goals and then appropriately
exposing this specialized hardware to software. This is already visible in domains such as machine
learning. For instance, the tensor processing unit [135] is a chip tailored to deep learning, and
TensorFlow [62] is its corresponding programming model.

The systems presented in this dissertation are examples of joint hardware and software design
in the context of networking, where we develop both the underlying hardware (atoms, PIFOs, and
hardware key-value stores) and the corresponding software (packet transactions, scheduling trees,
and performance queries) for specific goals (stateful data-plane algorithms, scheduling, and statistics
measurement).

1.7 Source code availability
Source code for the systems presented in this dissertation is available online at http://web.mit.edu/
domino, http://web.mit.edu/pifo, and http://web.mit.edu/marple. Each URL contains links to the
relevant source code for each project:

1. For Domino, the source code consists of a C++ simulator for high-speed router hardware
(https://github.com/packet-transactions/banzai), C++ code for the Domino compiler (https://
github.com/packet-transactions/domino-compiler), Domino code (https://github.com/packet-
transactions/domino-examples) for the algorithms described in Tables 4.3 and 4.6, and Verilog
code for the atoms (https://github.com/packet-transactions/atomsyn).

2. For PIFO, the source code consists of a C++ reference implementation of the PIFO hardware
(https://github.com/programmable-scheduling/pifo-machine), and a Verilog implementation
of the PIFO hardware (https://github.com/programmable-scheduling/pifo-hardware).

3. For Marple, the source code consists of a Java compiler for Marple queries (https://github.com/
performance-queries/marple), instructions to setup a testbed for Mininet experiments using
Marple (https://github.com/performance-queries/testbed), and the example Marple queries
used in our evaluation (https://github.com/performance-queries/marple-domino-experiments).
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Chapter 2

Background and Related Work

As background for the rest of this dissertation, we first review several prior approaches to network
programmability (§2.1). We then review work that is closely related to and concurrent with the work
presented in this dissertation (§2.2). This chapter focuses on literature that is generally related to
the broad themes of this dissertation. Chapters 4, 5, and 6 discuss literature that is more specifically
related to each of our three systems.

2.1 A history of programmable networks

2.1.1 Minicomputer-based routers (1969 to the mid 1990s)

The first router on a packet-switched network was likely the Interface Message Processor (IMP) on
the ARPANET in 1969 [126]. The IMP described in the original IMP paper [126] was implemented
on the Honeywell DDP-516 minicomputer. In today’s terminology, such a router would be called a
software router because it was implemented as software on top of a general-purpose computer.

This approach of implementing routers on top of minicomputers was sufficient for the modest
forwarding rates required at the time. For instance, the IMP paper reports that the IMP’s maximum
throughput was around 700 kbit/s, sufficient to service several 50 kbit/s lines in both directions.
Such minicomputer-based routers were also eminently programmable: changing the functionality
of the router simply required upgrading the forwarding software on the minicomputer.

This approach of building production routers using minicomputers continued into the mid 1990s.
A notable example of a software router during the 1970s was David Mills’ Fuzzball router [160].
The most well known examples from the 1980s were Noel Chiappa’s C Gateway [22], which was the
basis for the MIT startup Proteon [14], and William Yeager’s “Ships in the Night” multiple-protocol
router [56], which was the basis for the Stanford startup Cisco Systems.

By the mid 1990s, software could no longer keep up with the demand for higher link speeds
caused by the rapid adoption of the Internet and the World Wide Web. Juniper Networks’ M40
router [55] was an early example of a hardware router in 1998. The M40 contained a dedicated chip
to implement the router’s data plane along with a control processor to implement the router’s control
plane. As we described in Chapter 1, since the mid 1990s, the fastest routers have predominantly
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been built out of dedicated hardware because hardware specialization is the only way to sustain the
yearly increases in link speeds (Figure 1-2).

2.1.2 Active Networks (mid 1990s)
The mid 1990s saw the development of active networks [206, 64], an approach that advocated that
the network be programmable or “active” to allow the deployment of new services in the network
infrastructure. There were at least two approaches to active networks. First, the programmable
router approach [64], which allowed a network operator to program a router in a restricted manner.
Second, the capsule approach [206, 205, 204], where end hosts would embed programs into packets
as capsules, which would then be executed by the router.

Active networks came to be associated mostly with the capsule approach [108]. But the capsule
approach raised some security concerns. Because programs were embedded into packets by end
users, it was possible that a malicious or erroneous end user program could corrupt the entire
router. One way to resolve security concerns was to execute the capsule program within an isolated
application-level virtual machine like the Java virtual machine [206, 205, 204]. However, isolation
using a virtual machine came at the cost of degraded forwarding performance.

Even with techniques to provide efficient isolation, such as SNAP [163], there was a significant
performance hit when carrying out packet forwarding on a general-purpose processor. For instance,
SNAP reported a forwarding rate of 100 Mbit/s in 2001, about two orders of magnitude slower than
the Juniper M40 40 Gbit/s hardware router developed in 1998 [55].

The capsule approach—probably the most ambitious of all active networking visions—has not
panned out in its most general form due to security concerns. However, recent systems [23] have
exposed a far more restricted subset of a router’s features to end hosts (e.g., the ability for an end
host to read router state, but not write to it), reminiscent of the capsule approach. On the other hand,
the programmable router approach has seen adoption in various forms: software-defined networking
and programmable router chips both provide network operators with different kinds of restricted
router programmability.

2.1.3 Software routers (1999 to present)
One approach to programmability since the late 1990s has been to use a general-purpose substrate
for writing packet processing programs, in contrast to fixed-function router hardware that can not be
programmed. The general-purpose substrate has varied over the years. For instance, Click [144] used
a single-core CPU in 2000. In the early 2000s, Intel introduced a line of processors tailored towards
networking called network processors, such as the IXP1200 [27] in 2000 and the IXP2800 [26] in
2002. The RouteBricks project used a multi-core processor [103] in 2009, the PacketShader project
used a GPU [123] in 2010, and the NetFPGA-SUME project used an FPGA in 2014 [216].

Software routers have found adoption as a means of programming routers at the expense of
performance. They have been especially beneficial in scenarios where the link speeds are lower, but
the computational requirements are higher. For instance, this approach has been used to implement
MAC layer algorithms in WiFi [83, 82, 141] and signal processing algorithms in the wireless
physical layer [197, 81].
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Many domain-specific languages (DSLs) for packet processing were developed in parallel with
the development of software routers. For instance, Click [144] uses C++ for packet processing on
software routers. packetC [104] and Microengine C [24] target network processors. When designing
the Domino DSL (Chapter 4), our syntax and semantics were inspired by these DSLs. However,
because Domino targets high-speed routers, it is more constrained. For instance, because compiled
programs run at the router’s line rate, Domino forbids loops.

2.1.4 Software-defined networking (2004 to now)

Starting in the early 2000s, researchers argued for separating the router’s control plane (the part of
the router that runs a distributed routing protocol to computes its routing tables) from the router’s
data plane (the part of the router that actually forwards packets by looking them up in the routing
table) [87, 107, 208, 119, 88]. As an example, an implementation of a link-state routing protocol
would be part of the control plane, while an implementation of a longest-prefix-based table lookup
would be part of the data plane.

The idea behind this approach, which later came to be called software-defined networking
(SDN) [59], was that much of the flexibility desired by network operators when managing large-
scale networks (e.g., traffic engineering, access control, creating virtual networks) had to do
with the control plane, not the data plane. Furthermore, the control plane executed relatively
infrequently compared with the data plane: once every few milliseconds, as opposed to once every
few nanoseconds. Hence, while the data plane had to be implemented in hardware for performance,
the relatively infrequent nature of the control plane’s operations allowed it to be moved out of
the router and on to a commodity general-purpose processor, where it could be much more easily
programmed.

SDN also introduced the idea of centralized control: the idea that by moving router control
planes off the router and on to a general-purpose processor, the entire control plane for the network
could be centralized at a few servers. This, in turn, allowed those few servers to compute routes for
the entire network with the benefit of global network visibility. Effectively, SDN replaced an error-
prone distributed route computation protocol with a much simpler centralized graph computation
(e.g., shortest paths using Dijkstra’s algorithm).

SDN also required a mechanism for the control plane to populate the contents of the routing
tables once the control plane had computed routes for each router. These tables would then be
consulted by the data plane when forwarding packets. The most well-known of these mechanisms
was the OpenFlow API [158], which exposed a minimal interface to the routing tables in router
hardware. The goal of OpenFlow was to serve as a minimum common denominator across interfaces
to routing tables in different router chips. This was so that existing chips could immediately support
the OpenFlow API.

While the OpenFlow API made it possible to program the network’s control plane, it did not
necessarily make it easy. Hence, the development of SDN also led to the development of high-
level programming languages to program a router’s control plane [112, 162]. While SDN saw a
considerable amount of research work in programming and verifying rich control plane policies, it
saw much less work in enabling programmability in the data plane.
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2.1.5 Network functions virtualization (2012 to now)
Network functions virtualization (NFV) [33] sought to move richer packet processing functionality,
beyond vanilla packet forwarding, onto commodity general-purpose processors and the cloud
infrastructure [185]. This packet processing functionality included deep-packet inspection, load
balancing, intrusion detection, and WAN acceleration, colloquially unified under the umbrella term
“middlebox.” Several systems emerged to program both the data [174] and control [113] plane of
such middleboxes.

One common use case for such middleboxes is at the edge of a network (e.g., at a cellular base
station), where a variety of packet-processing functions run on a cluster of processors [171] every
time a client accesses the Internet. Because NFV carries out its packet processing on a software
platform, it can also be viewed as a practical use case for software routers at the edge where the link
rate requirements are relatively modest.

2.1.6 Edge/end-host based software-defined networking (2013 to now)
It soon became clear that the OpenFlow API was not expressive enough to capture all the needs
of network operators because it was designed as a common minimum denominator API for easy
adoption. The lack of expressiveness in OpenFlow led to the edge-based approach to software-
defined networking [89, 145, 177].

In this approach, the network’s routers were divided into two classes. The edge routers were
located at the entrance or edge of a network and performed programmable packet manipulation.
At the center of the network were the core routers that simply forwarded packets with little to no
programmability. Because the edge routers were spatially distributed to serve clients in different
locations, each edge router had to only handle a small slice of the overall aggregate traffic into and
out of the network.

As a result, the edge routers had far less demanding performance requirements relative to the
core, which allowed them to be implemented on general-purpose CPUs. Using a general-purpose
CPU for programming edge routers allowed them to be far more programmable than the restricted
OpenFlow API. Open Virtual Switch [177] is one well-known example of an edge router; it runs
within the hypervisor on an end host and connects together multiple virtual machines on a single
end host to the network. More recently, increasing performance requirements on the edge have led
to implementing such virtual switches on an FPGA [110].

Taken to its logical extreme, the edge router could be the end host itself. Hence, when discussing
edge-based approaches, we also include several recent proposals that use the end hosts to achieve
network flexibility. For instance, Eden [75] provides a programmable data plane using commodity
routers by programming end hosts alone. Tiny Packet Programs (TPP) [130] allow end hosts to
embed small programs in packet headers, which are then executed by the router in a style similar to
capsule-based active networks. TPPs use a restricted instruction set to alleviate the performance
and security concerns of active networks. On the measurement and monitoring side, many systems
monitor network performance from end hosts alone [73, 209, 114, 166, 31].

Edge-based or end-host-based solutions are necessary for application context that is not avail-
able within the network. For instance, knowledge of which application used the network, which
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may be useful in monitoring, is only available at the end hosts. Similarly, many network security
applications, such as filtering spam are best run on the end hosts because the information required
to determine what is spam and what is not is best left on the end host for privacy reasons. Fur-
thermore, quite a bit of programmable networking functionality can be implemented with edge
programmability alone (e.g., network virtualization, access control, security policies etc.).

However, the edge-based approach is inadequate for all network problems. For instance, there
is a substantial improvement in performance from using network support for congestion control
(e.g., DCTCP [66] that uses explicit congestion notification support from the routers and XCP [139]
that uses explicit information on the extent of congestion from the routers). Many other recent
proposals for improving network performance rely on support from the routers within the core
of the network [68, 74, 207, 195, 213, 65, 201]. There is also a considerable improvement in
network visibility from direct in-network monitoring, in contrast to “triangulating” the root cause
of a network problem using network measurements from different end host vantage points. In
summary, the absence of a programmable network core leaves significant performance on the table
and complicates network debugging.

One could argue for a hybrid network architecture that combines edge-based programmability
with smarter, but fixed, core routers. Such an architecture still puts all the programmability at
the edge but augments core routers with a small set of fixed features to support programmability
from the edge. Examples of this approach include Universal Packet Scheduling [161] and In-band
Network Telemetry [23, 143], which augment routers with a fine-grained priority queue and the
ability to export queue size information into packets, but otherwise leave all the programmability to
the edge.

This hybrid approach would be future proof and general if there existed a small set of features
that could then be deemed sufficient for a fixed-function router. If such a small set of fixed features
did indeed exist, it would be preferable and simpler to build a fixed-function router rather than a
programmable router. But the last few decades of increasing feature creep in a router suggest that
a “silver bullet” feature set is very unlikely. In such a setting, where features are constantly under
churn, programmability within the network provides future proofness and peace of mind for the
network operator: the ability to quickly add features to a router when required without lengthy
hardware iteration cycles.

2.2 Concurrent research on network programmability

2.2.1 Programmable router chips

Besides the edge-based approach to network programmability, another response to the difficulty of
repeatedly extending OpenFlow was to develop a programmable router chip. This router chip would
have a minimal instruction set that would permit a network operator to express OpenFlow-like
forwarding rules for any new protocol format. This is in contrast to OpenFlow, which only supports
a fixed set of actions as part of the forwarding rules (drop, decrement TTL, forward, etc.) on a fixed
set of packet headers (UDP, TCP, IP, etc.).

Recent academic work [86] and commercial router chips [3, 25, 60] embody this approach
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of building routers that are both fast and programmable. The P4 programming language [85]
has emerged as an industry effort towards a standard programming language for these chips. P4
compilers [134] then compile these P4 programs to programmable router architectures such as the
RMT [86] and FlexPipe [25] architectures.

To the extent that we know based on publicly available documents, these chips provide flexibility
on two counts: recognizing user-specific header formats and programmatically manipulating packet
headers for functions such as forwarding, tunneling, and access control, i.e., functions that do not
modify router state.

In particular, they do not provide the programmability required to implement many of the
grayed-out algorithms in Figure 1-1. These algorithms require the ability to programmatically
manipulate router state on every packet, the ability to program which packet a router link must
schedule next, and the ability to program what per-flow statistics a router must measure for a large
number of flows.

2.2.2 Programmable traffic management

In an early position paper [191], we argued for the ability to program a router’s traffic management
algorithms: active queue management and packet scheduling algorithms. We presented a quantitative
case for such programmability by considering a set of three router configurations and showing that
none of the three configurations was unilaterally the best. This was because there were workloads
and application objectives for which one configuration was better than the other, while for other
workloads and application objectives, the situation was reversed. In other words, there did not seem
to be a single “silver bullet” algorithm, making a case for multiple algorithms to be programmed
based on a network operator’s objectives.

As part of the same paper, we proposed that router designers add a small FPGA to each router,
which could be programmed to support new traffic management algorithms. We estimated that
this FPGA could run the CoDel [169] and RED [111] algorithms at the full line rate of a single 10
Gbit/s port—even with minimum-size packets.

The results in this dissertation realize the goals outlined in our earlier position paper at speeds
approaching the fastest routers today. We do so by developing dedicated hardware that avoids the
area, performance, and power penalties associated with an FPGA [147]. For instance, it is hard
to clock an FPGA beyond 100 MHz, while custom hardware can run at 1 GHz or more. Using
multiple FPGAs (e.g., one for each port, like our position paper did [191]) adds considerable area,
power, and cost to a high-speed router chip.

2.2.3 Centralized data planes

Fastpass [176] manages a datacenter network at fine time scales using a logically centralized arbiter
server that regulates packet transmissions from all end hosts within the network. A logically
centralized arbiter provides the global visibility needed to perform resource management for the
entire network. Put differently, Fastpass adopts the idea of centralized control from SDN, but applies
it to the data plane instead of the control plane.
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In Fastpass, when an application on an end host calls send() on a socket, the end host sends a
message to the arbiter specifying its network demands. Upon receiving this message, the arbiter
specifies the times at which the end host must transmit and the network path that the end host’s
packets must follow during those times.

In subsequent work, Flexplane [170] uses the arbiter as an emulator to emulate existing resource
management algorithms (e.g., active queue management algorithms like RED to manage the router’s
buffer and scheduling algorithms like WFQ to schedule the router’s links). Flowtune [175] applies
Fastpass-style ideas to the centralized management of groups of packets called flowlets, instead of
packets. This allows the centralized arbiter in Flowtune to handle larger networks than Fastpass.

Fastpass, Flexplane, and Flowtune are all applicable to networks of a modest size, until the
centralized arbiter becomes a bottleneck. Microbenchmarks that stress the Flowtune arbiter alone
show that an arbiter running on a 64-core server can manage a network with an aggregate capacity of
184 Tbit/s [175]. However, the largest network that a Fastpass-style approach has been benchmarked
on (in the Flexplane paper [170]) is a network of 40 10-Gbit/s servers connected to a single top-of-
rack router.

In summary, by leveraging a centralized data plane implemented on a commodity CPU, Fastpass
provides more flexibility than a restricted interface exposed by a programmable router chip—but at
a significant scalability cost.

2.2.4 Stateful packet processing

SNAP [71] programs stateful data-plane algorithms using a network transaction: an atomic block
of code that treats the entire network as one router [137]. It then uses a compiler to translate
network transactions into rules on each router. SNAP needs a lower level compiler to compile
these router-local rules to a router’s pipeline and can use Domino for this purpose. In fact, we
compile several examples from SNAP to study the generality of our atoms in Table 4.6. FAST [164]
provides router support and software abstractions for state machines. As §4.4 shows, atoms support
more general stateful processing beyond state machines. In turn, this enables a much wider class of
data-plane algorithms.

2.2.5 Universal Packet Scheduling (UPS)

UPS [161] shares our goal of flexible packet scheduling. UPS approaches this goal by seeking a sin-
gle scheduling algorithm that is universal and can emulate any scheduling algorithm. Theoretically,
UPS finds that the well-known LSTF scheduling discipline [150] is universal if packet departure
times for the scheduling algorithm to be emulated are known up front. Practically, UPS shows that
by appropriately initializing slacks, many different scheduling objectives can be emulated using
LSTF. LSTF is programmable using PIFOs, but the set of schemes practically expressible using
LSTF is limited. For example, LSTF cannot express:

1. Hierarchical scheduling algorithms such as HPFQ, because it uses only one priority queue.
2. Non-work-conserving algorithms. For such algorithms, LSTF must know the departure time

of each packet up-front, which is not practical.
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3. Short-term bandwidth fairness in fair queueing, because LSTF maintains no router state
except one priority queue. As shown earlier in Figure 1-7a, programming a fair queueing
algorithm requires us to maintain a virtual time state variable. Without this, a new flow could
have arbitrary virtual start times, and be deprived of its fair share indefinitely. UPS provides a
fix to this that requires estimating fair shares periodically, which is hard to do in practice in
an environment where flows continuously start and stop.

The restrictions in UPS/LSTF are a result of a limited programming model. UPS assumes that
routers are fixed and cannot be programmed to modify packet fields or manipulate router state.
Further, it only has a single priority queue. By using atom pipelines to execute scheduling and
shaping transactions, and by composing multiple PIFOs together, PIFOs express a wider class of
scheduling algorithms.

2.2.6 Measurements using sketches

Several systems for network measurement use summary data structures that give up some accuracy
to fit measurement information within limited router memory [153, 152, 154, 165, 212, 210]. These
systems provide traffic volume statistics (i.e., statistics derived from flow counts) using summary
data structures like sketches that tradeoff accuracy for low memory consumption. Since counting is
linear-in-state and can be scalably implemented in Marple, Marple sidesteps this tradeoff. Instead,
Marple trades off memory size with cache eviction rate (§6.4). Marple also allows users to perform
a broader set of aggregations (the linear-in-state class) beyond counters without losing accuracy.

2.2.7 Languages for network measurement

Prior network query languages [97, 112, 168, 121] allow users to ask questions primarily about traffic
volumes, since their input data is collected using NetFlow and match-action rule counters [158]. In
contrast, Marple enables expressive performance questions on data collected with purpose-built
router hardware. Marple shares some language constructs with Gigascope [97] and Sonata [121],
but supports aggregations directly in the router chip.

2.2.8 Recent router support for measurement

In-band Network Telemetry (INT) [23, 143] exposes queue lengths to end hosts by stamping it
on the packet itself. Marple builds on INT and provides flexible filters and aggregations directly
in routers. Marple’s data aggregation in routers saves the bandwidth needed to collect INT data
distributed over many end hosts. Besides, with INT alone, performance information may be lost,
since packets carrying the INT data may be dropped on the way to end hosts. The Tetration chip [11]
provides flow-level telemetry, exposing a fixed set of metrics including latency, window and packet
size variation, and a “burst measurement” at a fixed granularity (e.g., 5-tuple). In contrast, Marple
allows both the metrics and granularity to be flexible using programmable aggregation functions
and programmer-supplied groupby fields respectively.
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2.3 Summary
This chapter summarized both the historic background that sets up the context for this dissertation
and the related work that is concurrent with this dissertation. The main difference in approach
between this dissertation and prior approaches to router programmability is the joint design of both
hardware and software.

Jointly designing hardware and software provides us with more leverage than treating either as
unchangeable. Past approaches either propose hardware or software improvements, while treating
the other as fixed. We briefly describe 5 examples of how this additional leverage helps the systems
in this dissertations relative to systems in prior work.

Universal Packet Scheduling. UPS adds a fine-grained priority queue to a fixed router, but otherwise
treats the router hardware as unmodifiable, opting to carry out priority assignments in software at
the edge. Relative to UPS, PIFOs are able to express a broader set of scheduling algorithms because
we develop new programmable router hardware (atoms) to maintain and update state on the router.

Flexplane. Flexplane moves the data plane into slower commodity hardware to emulate algorithms
like RED and WFQ. By modifying router hardware to support atoms, Domino allows such AQM
schemes to be programmed directly without emulation on high-speed router hardware.

Hardware support for counters. Many router hardware designs optimize for the fixed software
requirement of per-flow counters [184]. Marple develops an expressive programming language for
measurements in software along with hardware support for this language. This allows Marple to
support a wider range of queries beyond counters.

CONGA. CONGA [65] is a load-balancing algorithm that uses congestion-aware flowlet-based load
balancing to handle asymmetry in the network topology. CONGA is implemented on a custom chip
by developing new router hardware specifically for load balancing. In contrast, we developed a
programming model in software as part of Domino in addition to the atom hardware. This allows us
to reuse the same programmable atoms for many different algorithms including CONGA.

SONATA. SONATA [121] is a measurement system that sources its measurements from statistics
exported by OpenFlow and NetFlow. By designing new router hardware for programmable mea-
surement, Marple can express a wider range of measurements than what is supported by either
OpenFlow or NetFlow.
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Chapter 3

The Hardware Architecture of a
High-Speed Router

This chapter describes the hardware architecture of a high-speed router to provide the reader with a
mental model of a router chip for the rest of this dissertation. We first describe the main functions of
a router. We then describe the performance requirements for a high-speed router today. Motivated
by these performance requirements, we consider two strawman hardware architectures and explain
their shortcomings. We then describe the predominant pipeline-based architecture of high-speed
routers today. We conclude by describing how the programmable hardware primitives proposed by
this dissertation fit within the hardware architecture of a high-speed router.

3.1 Overview of a router’s functionality
A router’s functionality can be divided into two major planes: the control plane and the data plane.
The control plane is responsible for network management functionality such as running distributed
routing protocols (e.g., BGP, IS-IS, and OSPF) to enable end-to-end connectivity, creating access
control rules, and setting up tunnels for network virtualization. The control plane writes rules into a
router’s match-action tables.1 Each rule in one of these tables specifies that the router must carry
out a specific action on a packet if the incoming packet’s header matches a particular pattern. As an
example, a rule could instruct the router to transmit a packet on a particular output port (action) if
the packet has a certain destination IP address (match).

The data plane is responsible for reading the match-action table and carrying out the appropriate
action operation on every packet. The data plane matches the relevant packet headers against the
match half of a match-action table rule. If the packet matches a particular rule, the data plane carries
out the action half of that rule on the packet’s headers. If the packet does not match any rule, some
default action is carried out.

The control plane typically runs when the network’s topology or the network’s policy changes.
The data plane, on the other hand, needs to run on every packet. The rate of policy or topology
changes is typically much less than the rate at which packets are processed at a router. Hence, the

1Also known as lookup tables, routing tables, or just tables.
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Figure 3-1: Facebook’s Wedge 100 router from the Open Compute Project [20]. The COM-Express
CPU module serves as the control plane, while the Tomahawk ASIC is a router chip that serves as
the data plane. Image courtesy of Facebook [35].

control plane runs on a general-purpose CPU, while the data plane is implemented in dedicated
hardware as part of a router chip. Figure 3-1 shows an example router.

3.2 Performance requirements for a high-speed router
This dissertation focuses on programming router features that were previously implemented in fixed-
function hardware, i.e., the data plane of the router. Hence, we focus on the hardware architecture
of the data plane here. To understand the hardware architecture of the router chip that implements
the router’s data plane, it is useful to have a sense of the performance requirements of a router.

For illustration, let’s consider a 1 Tbit/s router, representative of many high-speed routers
today [18, 19, 5]. Let’s assume that the router needs to forward 1000 bit packets. Finally, let’s
assume that on each packet, the router needs to carry out ~10 operations, such as determining
the output port based on the destination address, access control, tunneling, measurement, and
decrementing the IP TTL field. These requirements imply that the router needs to support about 10
operations on a billion packets per second, or 10 billion operations per second.

3.3 Strawman 1: a single 10 GHz processor
One approach to architecting a router chip is to build a single in-order scalar processor that can run
at 10 GHz and support 10 billion operations per second (Figure 3-2a). But a clock rate of 10 GHz
is out of reach today. Even with painstaking manual design, the fastest general purpose processor
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Figure 3-2: Two strawman designs for a high-speed router

chips today do not exceed 3.5 Ghz, and most other chips (e.g., graphics processors and digital signal
processors) have lower clock speeds in the 1 GHz range.

3.4 Strawman 2: an array of processors with shared memory

An obvious solution to this problem is to have many scalar in-order processors operate in parallel
on different packets. In this architecture, when a packet comes in, a distributor sends the packet
to a free in-order processor. This processor then runs that packet to completion, i.e., it performs
all operations for that packet before accepting a new packet. This architecture is similar to some
network processors [27, 26, 9]. With such an approach, to handle 10 billion operations per second,
we would need 10 1-GHz processors. Each processor would perform 1 billion operations per second,
which is much more feasible (Figure 3-2b).

The problem with the processor array approach is that it needs shared memory: memory that is
accessible from all processors. This memory would centrally store all match-action tables that need
to be consulted during packet forwarding. This memory needs to be accessible from all processors
so that any processor can match packets against any match-action table on every clock cycle.

The memory containing the match-action tables needs to support 10 billion matches (reads)
per second. Memory designs typically run at the same clock frequency as the processor (1 GHz)
and support a single read or write operation per clock cycle (single-ported memory). Supporting
10 billion matches per second at a 1 GHz clock requires a multi-ported memory that can handle
multiple reads every clock cycle. Multi-ported memory consumes considerably more area than
single-ported memory. Further, there is a substantial increase in wiring delay and wiring area when
a single block of memory needs to be connected to many different processors.
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3.5 A pipeline architecture for high-speed routers
To avoid having to use multi-ported memories, high-speed routers are typically architected as a
shared-nothing pipeline (Figure 3-3). Each pipeline stage is dedicated to a fixed functionality, such
as destination address lookup, tunneling, measurement, or access control. Each pipeline stage has
its own dedicated local memory to store its own match-action tables. This architecture provides
parallelism: at any point, each pipeline stage is working on a different packet. It also does so
without sharing memory between processors: each match-action table is local and can be accessed
only by the pipeline stage to which it belongs.

This pipeline architecture is the architecture followed by most high-speed routers today. Packets
arriving at a router (Figure 3-4) are parsed by a parser that turns packets into header fields. These
header fields are first processed by an ingress pipeline consisting of match-action tables arranged
in stages. Processing a packet at a stage may modify its header fields, through match-action rules,
as well as some persistent state at that stage, e.g., packet counters. After the ingress pipeline, the
packet is queued. A queue might build up any time two input ports have a packet for the same
output port during the same clock cycle. Once the scheduler dequeues the packet, it is processed by
a similar egress pipeline before it is transmitted.2

3.5.1 The internals of a single pipeline stage
Each pipeline stage implements the match-action model at high speed. Packets are received at a
pipeline stage at the clock rate of the pipeline (~1 GHz). Within a pipeline stage, the match unit
extracts the relevant packet headers from the packets so that the extracted headers can be matched
against rules in a match-action table. For instance, a match unit might extract the TCP headers out
of all the packet headers to match the TCP’s source port against 22 to detect SSH traffic and, as part
of the action, prioritize SSH traffic by setting the IP ToS field.

Once the relevant headers are extracted, they are matched against match-action rules stored in
an on-chip match-action table. This match can either be exact (e.g., determining the next hop based
on the destination’s MAC address) or can use wildcards to indicate don’t-care bits (e.g., matching

2In practice, the ingress and egress pipeline can be time multiplexed on top of a single shared physical pipeline to
improve hardware utilization [86].
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Figure 3-4: Architecture of a high-speed router showing the parser, pipelines, and scheduler.

a destination IP address against different possible IP subnets). The memory for the match-action
table is structured as a hash table in SRAM for exact matches and as a ternary content-addressable
memory (TCAM) for wildcard matches.

If a match is successful, the rule that matched against the headers of the incoming packet is
returned. This rule contains information required for the action, such as the concrete numeric
value of the output port in the case of a destination-address lookup. If the packet does not match
successfully against any rule in the match-action table, some default action is carried out. Typically,
the default action sends the packet to the control plane CPU of the router.

This whole processing sequence within a pipeline stage: extracting relevant headers for a match,
looking them up in a match-action table, and then carrying out the appropriate action, can take 10s
of clock cycles for any given packet. At the same time, the pipeline stage must be ready to accept
a new packet every clock cycle. To allow this, the pipeline stage is itself internally pipelined: the
header extraction for one packet proceeds in parallel with the table lookup for a second packet and
the action execution for a third packet.

3.5.2 Flexible match-action processing
Initially the set of fields on which matches could be performed were fixed and limited to a small
set of standard header fields (e.g., TCP, UDP, and IP). Similarly, the actions allowed on the packet
headers were restricted to a fixed set of actions, such as dropping a packet, forwarding a packet
through an output port, or setting a priority field on a packet. The common subset of match fields
and actions that were supported by most fixed-function routers was standardized as part of the
OpenFlow API [158], which provided control planes with a standardized and portable way to access
the data planes of a variety of high-speed routers.

Over time, however, the fixed nature of matches and actions led to a progressive increase in
the number of fields supported by OpenFlow [85]. This eventually lead to the development of
flexible match-action processing as embodied in recent high-speed routers [60, 25, 3]. In these
routers, a programmable parser [115] allows the user to specify a new protocol format. Using the
programmable parser, the router parses bytes into this new protocol format, and the ingress and
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egress pipelines can match on header fields that are part of the new protocol format.
This flexible match-action processing is enabled by an input multiplexer in a match-action stage,

which can extract a user-specified field from anywhere in the packet’s headers for matching, without
being constrained to a fixed set of fields available at fixed locations in the packet’s headers. With
this hardware capability, a network operator can now program a router to recognize a new packet
format. She can then match on fields within this new format and compose new user-defined actions
out of a small set of primitive actions that support modifications on individual fields.

However, flexible match-action processing largely ignores the question of programmable manip-
ulation of state in the data plane as part of the action. Instead, the primitive actions are restricted
to stateless manipulation of packet headers, e.g., adding two packet headers and writing the result
into a third. As we will see in §4.1, one of our contributions is developing a machine model for
programmable routers that supports programmable state modification in the data plane of the router.

3.6 Using multiple pipelines to scale to higher speeds

Both the ingress and egress pipelines are shared across a number of router ports. They handle
aggregate traffic belonging to all these ports, regardless of packet size. When the aggregate traffic
requirement is small enough, a single ingress and egress pipeline suffice. For instance, a 64-port
router with a line rate of 10 Gbit/s per port and a minimum packet size of 64 bytes must process up
to 1 billion packets per second, after accounting for minimum inter-packet gaps [86]. This can be
supported by a single pipeline that runs at 1 GHz and is shared across all 64 ports.

For higher aggregate capacities, multiple 1-GHz pipelines are required because, as discussed
earlier, it is technically challenging to achieve a clock rate higher than 1 GHz in most chips. While
having multiple pipelines allows the router to scale to higher aggregate speeds, it comes at the cost
of fragmenting memory for lookup tables across different pipelines. For instance, packets in one
pipeline cannot access lookup tables present in another pipeline. Hence, if a lookup table needs to
be accessed by two different pipelines, it must be replicated, wasting some memory in the process.

Even in a multi-pipeline router, the scheduler memory that stores packet payloads is typically
shared to reduce the overall memory requirement. This memory needs to handle packet enqueues
from multiple ingress pipelines and packet dequeues from multiple egress pipelines. To support
the ability to handle enqueues and dequeues from multiple pipelines, the scheduler’s memory is
multi-ported. This is possible without considerable area overhead by exploiting the fact that the
scheduler’s memory is structured as a set of First In First Out Queues with a limited set of operations
(i.e., enqueues and dequeues). The limited set of operations on the scheduler’s memory allows the
development of multi-ported memory for the scheduler without considerable area expense.3

Throughout this dissertation, we assume a single pipeline router. For concreteness, we assume
the pipeline runs at 1 GHz (i.e., every pipeline stage handles a new packet every 1 ns), although
our concepts generalize to other clock frequencies. We discuss how our ideas can be extended to
multi-pipeline routers later (§7.1.4).

3By contrast, our strawman design for routers based on an array of processors with shared memory (§3.4) requires a
more general-purpose, and hence expensive, form of multi-ported memory.
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3.7 Clarifying router terminology
Routers are classified based on several attributes in the literature. In this subsection, we briefly
discuss some of the major classifications to clarify the terminology used in this dissertation.

At a conceptual level, routers are classified into output-queued and input-queued routers de-
pending on whether the queues build up at the input ports or the output ports of a router [138]. An
output-queued router is preferable because it offers more predictable performance: if an output port
has a large backlog of packets it only affects that output port and no other ports.

One implementation of an output-queued router is a shared memory router, where the scheduler’s
memory for buffering packets is shared across all output ports of the router. This memory needs to
support enqueues from any of the input ports and dequeues from any of the output ports every clock
cycle [128, 66]. In addition to emulating an output-queued router, a shared memory implementation
has the benefit that the memory pool can be allocated to output ports on demand, without committing
memory to output ports at hardware design time.

With a single ingress and a single egress pipeline shared across all ports, sharing memory
is relatively straightforward: each pipeline enqueues or dequeues once every clock cycle, which
can be supported by single-ported memory. With multi-pipeline routers, this requires specialized
multi-ported memories in the scheduler as discussed earlier.

Routers with single and multiple pipelines are instances of a single chip router, where a single
chip provides aggregate forwarding capacity for the full line rate at all ports, while emulating an
output-queued router. For even higher aggregate speeds, such as those seen in core routers, multiple
such chips are put together on a motherboard in a Fat Tree topology [129], but such multi-chip
routers are not necessarily output-queued anymore.

Unless otherwise mentioned, a router in this dissertation refers to a single-chip, single-pipeline,
shared-memory, output-queued router.

3.8 Summary
This chapter provided an overview of the hardware architecture of a high-speed router to serve
as a mental model of a router chip for the rest of this dissertation. The programmable hardware
designs that we propose are intended to replace fixed-function router hardware within the hardware
architecture presented here.

For instance, atoms, introduced in §1.3.1 and detailed in §4.1, replace fixed action units within
a match-action stage. Our hardware design for PIFOs, introduced in §1.4.3 and detailed in §5.4,
replaces the First In First Out Queues usually found in a scheduler. Finally, the on-chip cache
for our programmable key-value store, introduced in §1.5.2 and detailed in §6.2, takes the place
of a match-action table within a match-action stage. The off-chip backing store in our key-value
store runs on the control plane: either on the general-purpose CPU controlling the router or on a
centralized measurement server.
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Chapter 4

Domino: Programming Stateful Data-Plane
Algorithms

This chapter focuses on the hardware and software required to program stateful data-plane algo-
rithms on high-speed routers. These algorithms process and transform packets, reading and writing
state in the router. Examples include active queue management [111, 146, 169], congestion control
with router feedback [139, 195], network measurement [210, 106], and data-plane traffic engineer-
ing [65, 187]. Hence, the central question of this chapter is: how do we enable programmable
stateful packet processing on a high-speed router? Concretely, what is the right instruction set for
programmable state modification, what is the the right programming model for stateful algorithms,
and how do we compile from the programming model to the instruction set?

In answering these questions, this chapter makes three new contributions. Our first contribution is
Banzai, a machine model for programmable high-speed routers (§4.1). Banzai is inspired by existing
programmable router chips, which provide programmable, but stateless packet transformations.
Banzai extends such chips with functionality required for high-speed and programmable state
modifications. Specifically, Banzai models two important constraints (§4.1.3) for stateful operations
at the router’s line rate: the inability to share state between different packet-processing units
and the requirement that any router state modifications be visible to the next packet entering the
router. Based on these constraints, we introduce atoms to represent a programmable router’s
packet-processing units.

Our second contribution is a new abstraction to program data-plane algorithms called packet
transactions (§4.2). A packet transaction is a sequential code block that is atomic and isolated
from other such code blocks. Packet transactions provide programmers with the illusion that the
transaction’s body executes serially from start to finish on each packet in the order in which packets
arrive at the router’s ingress or egress pipeline. Conceptually, when programming with packet
transactions, there is no overlap in packet processing across packets—akin to an infinitely fast
single-threaded processor carrying out packet processing on each packet. The code within a packet
transaction is written in Domino, a new imperative domain-specific language (DSL).

Packet transactions let the programmer focus on the operations needed for each packet without
worrying about other concurrent packets. Packet transactions have an all-or-nothing guarantee: all
packet transactions accepted by the packet transactions compiler will run at the router’s line rate, or
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be rejected. There is no “slippery slope” of running network algorithms at lower speeds as with
network processors or software routers: when compiled, a packet transaction runs at the router’s
line rate, or not at all. Performance is not just predictable, but guaranteed.

Our third contribution is a compiler from Domino packet transactions to a Banzai target (§4.3).
The Domino compiler extracts codelets from transactions: code fragments, which if executed
atomically, guarantee a packet transaction’s semantics. It then uses program synthesis [193] to map
codelets to atoms, rejecting the transaction if the atom cannot execute the codelet.

We evaluate Domino’s expressiveness by programming a variety of data-plane algorithms
(Table 4.3) in Domino. We find that Domino provides a concise and natural programming model
for stateful data-plane algorithms.

Next, we design a small set of atoms that can express these algorithms (§4.4.2). We show that
compiler targets with these atoms are feasible at a 1 GHz clock rate in a 32-nm standard-cell library
with < 2% cost in area relative to a 200 mm2 baseline router chip [115].

We compile data-plane algorithms written in Domino to these targets (§4.4.3) to show how
a target’s atoms determine the algorithms it can support (Table 4.5). To study the generality of
our atoms, we froze the design of our atoms and compiled a new set of Domino algorithms to our
atoms. As Table 4.6 shows, our atoms were able to generalize to new and unanticipated use cases,
providing empirical evidence of their programmability. Based on our experiences with Domino, we
distill several lessons for programmable router design (§4.4.5).

Code for the Domino compiler, the Banzai machine model, and the code examples listed in
Tables 4.3 and 4.6 is available at http://web.mit.edu/domino.

4.1 A machine model for programmable state manipulation on
high-speed routers

Banzai is a machine model for programmable high-speed routers that serves as the compiler target
for Domino. Banzai is inspired by recent programmable router architectures such as Barefoot
Networks’ Tofino [3], Intel’s FlexPipe [25], and Cavium’s XPliant Packet Architecture [60]. Banzai
abstracts these architectures and extends them with stateful processing units to implement data-plane
algorithms. These processing units, called atoms, model atomic operations that are supported by a
programmable high-speed router. In other words, atoms serve as the instruction set of the router.

Recall from Chapter 3 that high-speed routers are architected in hardware as a pipeline where
each pipeline stage processes a new packet every clock cycle of 1 ns. Having to process a packet
every clock cycle in each stage constrains the operations that can be performed on each packet. In
particular, any packet operation that modifies state visible to the next packet is constrained to finish
execution in a single clock cycle (§4.1.2 shows why). Any programmable router chip will provide a
small set of processing units or primitives that respect these constraints. These primitives could be
used for manipulating packets and/or state in a stage and determine which algorithms can or cannot
run on the router. We now describe this concept of constrained computation in greater detail.
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Figure 4-1: Banzai models the ingress or egress pipeline of a programmable router. An atom
corresponds to an action in a match-action table. Internally, an atom contains local state and a
digital circuit modifying this state. Figure 4-2 details an atom.
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(a) Circuit for the atom

bit choice = ??;
int constant = ??;
if (choice) {

x = x + constant;
} else {

x = x - constant;
}

(b) Atom template.

Figure 4-2: An atom and its template. The atom above can add or subtract a constant from a
state variable x based on two configurable parameters, constant and choice. Each “??” in the
template represents a configuration parameter that must be instantiated so that the atom implements
some computation. For instance, setting choice to 1 and constant to 1 allows us to implement x=x+1
using this atom.
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4.1.1 The Banzai machine model
A programmable router that provides programmability in parsing and match-action processing [86,
60, 25, 3] has the architecture shown in the top half of Figure 4-1: a programmable parser, followed
by an ingress pipeline, followed by a scheduler, followed by an egress pipeline. Banzai (the bottom
half of Figure 4-1) models the ingress or egress router pipeline. It models the computation within a
match-action table in a stage (i.e., the action half of the match-action table), but not how packets are
matched (e.g., exact match or wildcard match). Banzai does not model packet parsing and assumes
that packets arriving to Banzai are already parsed.

Concretely, Banzai is a feed-forward pipeline because it is hard to physically route backward-
flowing wires that would be required for feedback. Banzai consists of a number of stages executing
synchronously on every clock cycle. Each stage processes one packet every clock cycle and hands
off one packet to the next stage every clock cycle. Note that while the throughput of a stage is one
packet per clock cycle, the latency of a packet through a stage can be multiple clock cycles (to
extract headers for a match, perform the match, and then perform the action). This is handled by
internally pipelining each Banzai stage (§3.5.1).

Unlike a CPU pipeline, which occasionally experiences pipeline stalls, Banzai’s pipeline is
deterministic, never stalls, and always sustains the router’s line rate even at the smallest packet
size—and hence the highest packet processing rate. However, relative to a CPU pipeline, Banzai is
restricted in the operations it supports (§4.1.3).

4.1.2 Atoms: Banzai’s processing units
An atom is an atomic unit of packet processing supported natively by a Banzai machine, and the
atoms within a Banzai machine form its instruction set. Each pipeline stage in Banzai contains a
vector of atoms. Atoms in this vector modify mutually exclusive sections of the same packet header
in parallel in every clock cycle, and process a new packet header every clock cycle.

In addition to packet headers, atoms may modify persistent state on the router to implement
stateful data-plane algorithms. To support such algorithms at a router’s line rate, the atoms for
a Banzai machine need to be substantially richer (Table 4.4) than the simple RISC-like stateless
instruction sets for programmable routers [86]. We explain why below.

Suppose we need to atomically increment a router counter to count packets. One approach is
hardware support for three simple RISC-like single-cycle operations: (1) read the counter from
memory in the first clock cycle, (2) add 1 in the next, and (3) write it to memory in the third. This
approach, however, does not provide atomicity. To see why, suppose packet 𝐴 increments the
counter from 0 to 1 by executing its read, add, and write at clock cycles 1, 2, and 3 respectively. If
packet 𝐵 issues its read at time 2, it will increment the counter again from 0 to 1, when it should be
incremented to 2.

Locks over the shared counter are a potential solution. However, locking causes packet 𝐵 to
wait during packet 𝐴’s increment, and the router no longer provides a deterministic throughput
of one packet every clock cycle. CPUs employ micro-architectural techniques such as operand
forwarding for this problem. But these techniques still suffer pipeline stalls, which prevents line-
rate performance from being achieved under worst-case conditions. Instead, Banzai’s approach
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to resolving this problem is to provide a small set of atomic operations that complete within a
clock cycle. Programs that require multi-cycle atomic operations are rejected because line-rate
performance cannot be guaranteed for them under worst-case conditions.

For instance, in the case of the counter, Banzai provides an atomic increment operation with an
atom to read a counter, increment it, and write it back in a single stage within one clock cycle. It
uses the same approach of reading, modifying, and writing back to implement a limited set of other
stateful atomic operations that complete within a clock cycle. Figure 4-2a shows an example atom.
Table 4.4 provides a representative set of atoms.

Unlike stateful atomic operations, stateless atomic operations are easier to support with simple
RISC-like instructions for binary operations on a pair of packet fields. Consider, for instance,
the operation pkt.f1 = pkt.f2 + pkt.f3 - pkt.f4. This operation does not modify any
persistent router state and only accesses packet fields. It can be implemented atomically by using 2
atoms in a 2-stage pipeline. In the first stage, an atom adds fields f2 and f3 and writes the result
to a temporary. In the second stage, another atom subtracts f4 from the temporary. Generalizing
from this example, an instruction set designer can provide simple stateless instructions operating on
a pair of packet fields. These instructions can then be composed into larger stateless operations,
without designing atoms specifically for each stateless operation.

Representing atoms. An atom is represented by an atom template (Figure 4-2b): a body of
sequential code that captures the atom’s behavior. When executing, the atom template can make
use of (1) a small number of packet fields, (2) internal state local to the atom, and (3) configuration
parameters that provide the atom with its programmability. Atom templates allow us to create and
experiment with Banzai machines with different atoms.

When implemented as a digital circuit, an atom completes execution of the entire atom template
within a clock cycle, modifying a packet and any internal state before processing the next packet.
The designer of a programmable router would develop these atoms, and expose them to a router
compiler as the programmable router’s instruction set, e.g., Table 4.4.

Using this representation, a router counter that wraps around at a configurable value C can be
written as the atom:1

int C = ??
if (counter < C)
counter = counter + p.x;

else
counter = 0;

Similarly, a stateless operation like setting a packet field to a configurable constant value C can
be written as the atom:

int C = ??
pkt.field = C;

1We use p.x to represent field x within a packet p and a bare x to represent a state variable x that persists across
packets. The ?? notation is used to denote a configuration parameter.
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4.1.3 Constraints for line-rate operation

Memory limitations. State in Banzai is local to each atom. It can neither be shared by atoms within
a stage, nor by atoms across stages. This is because building multi-ported memories (to store the
state) accessible to multiple atoms is technically challenging and consumes additional chip area.
However, state can be read into a packet header in one stage, for subsequent use by a downstream
stage. Figure 4-3b shows an example: last_time is read into pkt.last_time in stage 2, for
subsequent use by stage 3. But, the Banzai pipeline is feed-forward, so state can only be carried
forward, not backward.

Computational limitations. Atoms need to execute atomically from one packet to the next, so any
state internal to the atom must be updated before the next packet arrives at that atom. Because
packets may be separated by as little as one clock cycle, we mandate that atom templates finish
execution within one clock cycle, and constrain them at hardware design time to do so.

Termination within a clock cycle is enforced at hardware design time by ensuring that the atom’s
digital circuit meets timing at a given clock rate (§4.4.2). As programmable routers and transistor
technology evolve, we expect that atoms will evolve as well, but constrained by the clock-cycle
requirement.

Resource limits. We also limit the number of atoms in each stage (pipeline width) and the number
of stages in the pipeline (pipeline depth). This is similar to limits on the number of stages, tables
per stage, and memory per stage in programmable router architectures [134, 86].

4.1.4 Limitations of Banzai

Banzai is a good fit for data-plane algorithms that modify a small set of packet headers and carry
out small amounts of computation per packet. Data-plane algorithms like deep packet inspection
and WAN optimization require a router to parse and process the packet payload as well, effectively
parsing a large “header” consisting of each byte in the payload. This is challenging to implement
on a router that processes packets at 1 GHz, and such algorithms are best left to general-purpose,
but slower, CPUs [171]. Some algorithms require complex computations, but not on every packet,
e.g., a measurement algorithm that periodically scans a large table to perform garbage collection.
Banzai’s atoms model small operations that occur on every packet, and are unsuitable for such
complex operations that span many clock cycles.

4.2 Packet transactions
A programmer programs a data-plane algorithm by writing it as a packet transaction in Domino
(Figure 4-3a). The Domino compiler then compiles this transaction to an atom pipeline for a Banzai
machine (Figure 4-3b). We first describe packet transactions in greater detail by walking through
the example shown in Figure 4-3a (§4.2.1). Next, we discuss language constraints in Domino
(§4.2.2) informed by the domain of high-speed routers. We then discuss how the execution of packet
transactions is triggered (§4.2.3) and how we handle multiple transactions (§4.2.4).
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1 #define NUM_FLOWLETS 8000
2 #define THRESH 5
3 #define NUM_HOPS 10
4

5 struct Packet {
6 int sport;
7 int dport;
8 int new_hop;
9 int arrival;

10 int next_hop;
11 int id; // array index
12 };
13

14 int last_time [NUM_FLOWLETS] = {0};
15 int saved_hop [NUM_FLOWLETS] = {0};
16

17 void flowlet(struct Packet pkt) {
18 pkt.new_hop = hash3(pkt.sport,
19 pkt.dport,
20 pkt.arrival)
21 % NUM_HOPS;
22

23 pkt.id = hash2(pkt.sport,
24 pkt.dport)
25 % NUM_FLOWLETS;
26

27 if (pkt.arrival - last_time[pkt.id]
28 > THRESH)
29 { saved_hop[pkt.id] = pkt.new_hop; }
30

31 last_time[pkt.id] = pkt.arrival;
32 pkt.next_hop = saved_hop[pkt.id];
33 }

(a) Flowlet switching written in Domino

pkt.saved_hop = saved_hop[pkt.id];

pkt.next_hop = pkt.tmp2 ? 
                         pkt.new_hop : 
                         pkt.saved_hop;

pkt.last_time = last_time[pkt.id];
last_time[pkt.id] = pkt.arrival;

pkt.tmp = pkt.arrival - pkt.last_time;

pkt.new_hop = 
hash3(pkt.sport,
           pkt.dport, 
           pkt.arrival)
% NUM_HOPS;

pkt.tmp2 = pkt.tmp > THRESH;

pkt.id =
hash2(pkt.sport,
           pkt.dport)
% NUM_FLOWLETS;

saved_hop[pkt.id] = pkt.tmp2 ? 
                                 pkt.new_hop :
                                 pkt.saved_hop;

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

(b) 6-stage Banzai pipeline for flowlet
switching. Control flows from top to bot-
tom. Stateful atoms are in grey.

Figure 4-3: Programming flowlet switching in Domino

4.2.1 Domino by example

We use flowlet switching [187] as our running example. Flowlet switching is a load-balancing
algorithm that sends bursts of packets, called flowlets, from a TCP flow on a randomly chosen
next hop. These bursts are chosen such that two consecutive bursts are separated by a large time
interval of quiescence between them. This ensures that packets do not arrive out of order at a TCP
receiver—even if packets in different bursts are reordered because they experience different delays
along different load-balanced paths. For ease of exposition, we use only the source and destination
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ports in the hash function that randomly computes the next hop for flowlet switching.
Figure 4-3a shows flowlet switching in Domino and demonstrates its core language constructs.

All packet processing happens in the context of a packet transaction (the function flowlet starting
at line 17). The function’s argument type Packet declares the fields in a packet (lines 5–12)2

that can be referenced by the function body (lines 18–32). The function body can also modify
persistent router state using global variables (e.g., last_time and saved_hop on lines 14 and
15, respectively). The function body may use intrinsics such as hash2 on line 23 to directly
access hardware accelerators on the router such as hash generators. The Domino compiler uses an
intrinsic’s signature to analyze read/write dependencies (§4.3.2), but otherwise considers an intrinsic
a blackbox. The compiler directly passes intrinsics to the underlying router chip for execution,
similar to intrinsics in GCC [52].

Packet transaction semantics. Semantically, the programmer views the router as invoking the
packet transaction serially from start to finish on each packet in the order in which packets arrive,
with no concurrent packet processing. Put differently, the packet transaction modifies the passed-in
packet argument and runs to completion, before starting on the next packet. These semantics allow
the programmer to program under the illusion that a single, extremely fast, processor is serially
executing the packet processing code for all packets. The programmer does not have to worry about
parallelizing the code within and across pipeline stages to run on a high-speed router pipeline.

4.2.2 The Domino language

Domino’s syntax (Figure 4-4) is similar to an imperative language, but with several constraints (Ta-
ble 4.1). These constraints are required so that the compiler can provide deterministic performance
guarantees for Domino programs. Memory allocation, unbounded iteration counts, and unstructured
control flow cause variable performance, which may prevent an algorithm from achieving the
router’s line rate. Hence, Domino forbids all three.

Additionally, within a Domino transaction, each array can only be accessed using a single
packet field. Repeated accesses to the same array are allowed only if that packet field is unmodified
between accesses. For example, all read and write accesses to last_time use the index pkt.id.
pkt.id is not modified during the course of a single transaction execution (single packet); it only
changes between executions (packets). This restriction on arrays mirrors restrictions on the stateful
memories attached to atoms (§4.1.3), which are single ported and hence only allow a single memory
address to be read/written every clock cycle.

4.2.3 Triggering the execution of packet transactions

Packet transactions specify how to process packet headers and state. To specify when to execute
packet transactions, programmers use guards: predicates on packet fields that trigger a transaction if
a packet matches the guard. For example, the guard (pkt.tcp_dst_port == 80) could trigger
heavy-hitter detection [210] on packets with TCP destination port 80.

2A field is either a packet header, e.g., source port (sport) and destination port (dport), or packet metadata (id).
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No iteration (while, for, do-while).
No unstructured control flow (goto, break, continue).
No heap, dynamic memory allocation, or pointers.
At most one location in each array is accessed by a single execution of a transaction.
No access to unparsed portions of the packet (payload).

Table 4.1: Restrictions in Domino

𝑙 ∈ literals 𝑣 ∈ variables 𝑏𝑜𝑝 ∈ binary ops 𝑢𝑜𝑝 ∈ unary ops

𝑒 ∈ expressions ::= 𝑒.𝑓 | 𝑙 | 𝑣 | 𝑒 𝑏𝑜𝑝 𝑒 | 𝑢𝑜𝑝 𝑒 | 𝑒[𝑑.𝑓 ] |
𝑓(𝑒1, 𝑒2, . . .)

𝑠 ∈ statements ::= 𝑒 = 𝑒 | if (𝑒) {𝑠} else {𝑠} | 𝑠 ; 𝑠
𝑡 ∈ packet txns ::= 𝑛𝑎𝑚𝑒(𝑣){𝑠}

𝑑 ∈ packet decls ::= {𝑣1, 𝑣2, . . .}
𝑠𝑣 ∈ state var inits ::= 𝑣 = 𝑒 | 𝑠𝑣 ; 𝑠𝑣

𝑝 ∈ Domino programs ::= {𝑑; 𝑠𝑣; 𝑡}

Figure 4-4: Domino grammar. Types (void, struct, int, and Packet) are elided for simplicity.

Guards can be realized using the match unit in a match-action table, with the actions being
the atoms compiled from a packet transaction. Guards can take various forms, e.g., exact, ternary,
longest-prefix, and range-based matches, depending on the matches supported by the match units
in the match-action pipeline. In this chapter, we focus only on compiling packet transactions, i.e.,
generating the actions for the match-action tables. We assume that the programmer specifies a
reasonable guard that can be supported using the match unit.

4.2.4 Handling multiple transactions

So far, we have discussed a single packet transaction corresponding to a single data-plane algorithm.
In practice, a router would run multiple data-plane algorithms, each processing its own subset of
packets. To address this, we envision a policy language that specifies pairs of guards and transactions.
Realizing a policy is straightforward when all guards are disjoint: each guard-transaction pair can
be compiled independently. When guards overlap, multiple transactions need to execute on the
same subset of packets, requiring a mechanism to compose transactions.

One composition semantics is to run the two transactions one after another sequentially in a
user-specified order. This can be achieved by concatenating the two transaction bodies to create a
larger transaction. We leave a detailed exploration of alternative composition semantics to future
work. We focus only on compiling a single packet transaction here.
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Figure 4-5: Passes in the Domino compiler

if (pkt.arrival - last_time[pkt.id] > THRESH) {
saved_hop[pkt.id] = pkt.new_hop;

} =⇒
pkt.tmp = pkt.arrival - last_time[pkt.id] > THRESH;
saved_hop[pkt.id] = pkt.tmp // Rewritten

? pkt.new_hop
: saved_hop[pkt.id];

Figure 4-6: Branch removal

4.3 The Domino compiler
The Domino compiler translates Domino programs to Banzai targets. The compiler provides an
all-or-nothing model: if compilation succeeds, the program will run at the target router’s line
rate with packet transaction semantics. Otherwise, if the program cannot run at the router’s line
rate, it will not be compiled. This all-or-nothing model trades off diminished programmability for
guaranteed line-rate performance. This in contrast to software routers that provide greater flexibility
and compile any program, but result in lower and unpredictable performance at run-time [101].

The Domino compiler has three passes (Figure 4-5), which we illustrate using the flowlet
switching example. Preprocessing (§4.3.1) simplifies packet transactions into a simpler form
known as three-address code [57]. Pipelining (§4.3.2) transforms preprocessed code into code
for a Pipelined Virtual Router Machine (PVSM), an intermediate representation that models a
router pipeline with no computational or resource limits. Code generation (§4.3.3) transforms this
intermediate representation into configuration for a Banzai target, while respecting the target’s
computational and resource limits (§4.1.3). During the code generation step, the program is rejected
if it either cannot be implemented by the target’s atoms or there are an insufficient number of atoms.
The Domino compiler uses many existing compilation techniques, but adapts them in important
ways to suit the domain of high-speed routers (§4.3.4).

4.3.1 Preprocessing

Branch removal. A packet transaction’s body can contain (potentially nested) branches (e.g.,
lines 27 to 29 in Figure 4-3a). Branches alter control flow and complicate dependency analysis, i.e.,
whether a statement should precede another. We transform branches into conditional assignments,

58



pkt.id = hash2(pkt.sport,
pkt.dport)

% NUM_FLOWLETS;
...
last_time[pkt.id] = pkt.arrival;
...

=⇒

pkt.id = hash2(pkt.sport, // Read flank
pkt.dport)

% NUM_FLOWLETS;
pkt.last_time = last_time[pkt.id]; // Read flank
...
pkt.last_time = pkt.arrival; // Rewritten
...
last_time[pkt.id] = pkt.last_time; // Write flank

Figure 4-7: Rewriting state variable operations

pkt.id = hash2(pkt.sport,
pkt.dport)
% NUM_FLOWLETS;

pkt.last_time = last_time[pkt.id];
...
pkt.last_time = pkt.arrival;
last_time[pkt.id] = pkt.last_time;

=⇒

pkt.id0 = hash2(pkt.sport, // Rewritten
pkt.dport)
% NUM_FLOWLETS;

pkt.last_time0 = last_time[pkt.id0]; // Rewritten
...
pkt.last_time1 = pkt.arrival; // Rewritten
last_time[pkt.id0] = pkt.last_time1; // Rewritten

Figure 4-8: Converting to static single-assignment form

starting from the innermost if and proceeding outwards (Figure 4-6). This turns the transaction body
into straight-line code with no branches, which simplifies dependency analysis during pipelining
(§4.3.2).

Rewriting state variable operations. We now identify state variables in a packet transaction, e.g.,
last_time and saved_hop in Figure 4-3a. For each state variable, we create a read flank to read
the variable into a temporary packet field. For an array, we also move the index expression into the
read flank using the fact that only one array index is accessed per packet (§4.2.2).

Within the packet transaction, we replace the state variable with the temporary packet field, and
create a write flank to write this temporary packet field back to the state variable (Figure 4-7). After
this step, the only operations on state variables are reads and writes that are present in the read and
write flanks respectively; all arithmetic happens on packet fields. Restricting stateful operations to
just reads and writes simplifies handling of state during pipelining (§4.3.2).

Converting to static single-assignment form. We next convert the code to static single-assignment
form (SSA) [98], where every packet field is assigned exactly once. We do this by replacing every
assignment to a packet field with a new packet field and propagating this until the next assignment to
the same field (Figure 4-8) . Because fields are assigned once, SSA removes Write-After-Read and
Write-After-Write dependencies. Only Read-After-Write dependencies remain during pipelining
(§4.3.2).

Flattening to three-address code. Three-address code is a simplified representation of a program
where all instructions are either (1) reads/writes into state variables present in the read/write flanks
or (2) operations on packet fields of the form pkt.f1 = pkt.f2 op pkt.f3, where op can be
an arithmetic, logical, relational, or conditional3 operator. We also allow either one of pkt.f2 or

3Conditional operations alone have four arguments.
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pkt.f3 to be an intrinsic function call. To convert to three-address code, we flatten expressions
that are not in three-address code using temporary packet fields, e.g., pkt.tmp2 in Figure 4-9.

Flattening to three-address code breaks down statements in the packet transaction into a much
simpler form that is closer to the atoms available in the Banzai target. For instance, there are no
nested expressions. The simpler form of three-address code statements makes it easier to map them
one-to-one to atoms during code generation (§4.3.3).

4.3.2 Pipelining

At this point, the preprocessed three-address code is still one sequential code block. Pipelining turns
this sequential code block into a pipeline of codelets, where each codelet is a sequential block of
three-address code statements. This codelet pipeline corresponds to an intermediate representation
we call the Pipelined Virtual Router Machine (PVSM). PVSM has no computational or resource
limits, analogous to intermediate representations for CPUs [30] that have infinite virtual registers.
Later, during code generation, we map these codelets to atoms available in a Banzai target while
respecting its constraints.

We create PVSM’s codelet pipeline using the steps below.
1. Create a graph with one node for each statement in the preprocessed code.
2. Now, add stateful dependencies by adding a pair of edges between the read and write flanks

of the same state variable. For instance, in Figure 4-10a, we add a pair of edges between
the pair of nodes pkt.last_time = last_time[pkt.id] and last_time[pkt.id] =
pkt.arrival. Because of preprocessing, all stateful operations are paired up as read and
write flanks. Hence, there is no risk of a “stranded” stateful operation.

3. Now, add stateless dependencies by adding an edge from any node that writes a packet variable
to any node that reads the same packet variable, e.g., from pkt.tmp = pkt.arrival -
pkt.last_time to pkt.tmp2 = pkt.tmp > THRESH in Figure 4-10a. We only need
to check for read-after-write dependencies because write-after-read and write-after-write
dependencies do not exist after SSA, and we eliminate control dependencies [98] through
branch removal.

4. Generate strongly connected components (SCCs) of this dependency graph and condense
them into a directed acyclic graph (DAG). This captures the notion that all operations on a
state variable must be confined to one codelet/atom because state cannot be shared between
atoms. Figure 4-10b shows the DAG produced by condensing Figure 4-10a.

5. Schedule the resulting DAG by creating a new pipeline stage when one node depends on
another. This results in the codelet pipeline shown in Figure 4-3b.4

The codelet pipeline implements the packet transaction on a router pipeline with no computational
or resource constraints. We handle these next.

4We refer to this both as a codelet and an atom pipeline because codelets map one-to-one atoms (§4.3.3).
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1 pkt.id = hash2(pkt.sport, pkt.dport) % NUM_FLOWLETS;
2 pkt.saved_hop = saved_hop[pkt.id];
3 pkt.last_time = last_time[pkt.id];
4 pkt.new_hop = hash3(pkt.sport, pkt.dport, pkt.arrival) % NUM_HOPS;
5 pkt.tmp = pkt.arrival - pkt.last_time;
6 pkt.tmp2 = pkt.tmp > THRESH;
7 pkt.next_hop = pkt.tmp2 ? pkt.new_hop : pkt.saved_hop;
8 saved_hop[pkt.id] = pkt.tmp2 ? pkt.new_hop : pkt.saved_hop;
9 last_time[pkt.id] = pkt.arrival;

Figure 4-9: Flowlet switching in three-address code. Lines 1 and 4 are flipped relative to Figure 4-3a
because pkt.id is an array index expression and is moved into the read flank.

pkt.next_hop = pkt.tmp2 ?
                         pkt.new_hop :
                         pkt.saved_hop

saved_hop[pkt.id] = pkt.tmp2?
                                pkt.new_hop :
                                pkt.saved_hop

pkt.id = hash2(pkt.sport,
                        pkt.dport)
             % NUM_FLOWLETS

pkt.last_time = last_time[pkt.id]

pkt.tmp = pkt.arrival -pkt.last_time last_time[pkt.id] = pkt.arrival

pkt.tmp2 = pkt.tmp > THRESH

pkt.new_hop = hash3(pkt.sport,
                                    pkt.dport,
                                    pkt.arrival)
                         % NUM_HOPS

pkt.saved_hop = saved_hop[pkt.id]

(a) Stateless dependencies in black, stateful in gray.

=⇒

pkt.next_hop = pkt.tmp2 ?
                         pkt.new_hop :
                         pkt.saved_hop

saved_hop[pkt.id] = pkt.tmp2?
                                pkt.new_hop :
                                pkt.saved_hop

pkt.id = hash2(pkt.sport,
                        pkt.dport)
             % NUM_FLOWLETS

pkt.last_time = last_time[pkt.id]

pkt.tmp = pkt.arrival -pkt.last_time

last_time[pkt.id] = pkt.arrival

pkt.tmp2 = pkt.tmp > THRESH

pkt.new_hop = hash3(pkt.sport,
                                    pkt.dport,
                                    pkt.arrival)
                         % NUM_HOPS

pkt.saved_hop = saved_hop[pkt.id]

(b) DAG after condensing SCCs.

Figure 4-10: Dependency graphs before and after condensing strongly connected components

4.3.3 Code generation

To determine if a codelet pipeline can be compiled to a Banzai target, we consider two constraints
specified by any Banzai target (§4.1.3). First, resource limits specify the number of atoms in a stage
(pipeline width) and number of stages (pipeline depth). Second, computational limits specify the
atom templates provided by a Banzai target and limit what computations can be carried out by an
atom.

Resource limits. To handle resource limits, we scan each pipeline stage in the codelet pipeline
starting from the first to check for pipeline width violations. If we violate the pipeline width, we
insert as many new stages as required and spread codelets evenly across these stages. We continue
until the number of codelets in all stages is under the pipeline width, rejecting the program if we
exceed the pipeline depth.
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Computational limits. Next, we determine if each codelet in the pipeline can be mapped to atoms
provided by the Banzai target. In general, codelets have multiple three-address code statements that
need to execute atomically. For instance, updating the state variable saved_hop in Figure 4-3b
requires a read followed by a conditional write. It is not apparent whether such codelets can be
mapped to an available atom. We develop a new technique to determine the implementability of a
codelet, given an atom template.

Each atom template has a set of configuration parameters, where the parameters determine the
atom’s behavior. For instance, Figure 4-2a shows an atom that can perform stateful addition or
subtraction, depending on the configuration parameters choice and constant. Each codelet can
be viewed as a functional specification of the atom. With that in mind, the mapping problem is
equivalent to searching for values of the atom’s configuration parameters that result in the atom
implementing the codelet.

We use the SKETCH program synthesizer [193] for this purpose, as the atom templates can be
easily expressed using SKETCH. SKETCH also provides efficient search algorithms and has been
used for similar purposes in other domains [91, 92]. As an illustration, assume we want to map
the codelet x=x+1 to the atom template shown in Figure 4-2b. SKETCH will search for possible
parameter values so that the resulting atom is functionally identical to the codelet, for all possible
input values of x up to a certain bound. In this case, SKETCH finds the solution with choice=0
and constant=1. In contrast, if the specification is the codelet x=x*x, SKETCH will return an
error as no parameters exist.

Using program synthesis for code generation frees the compiler developer from implementing
custom code generators for different Banzai targets. Instead, the compiler developer only has
to express the Banzai target’s atom templates using SKETCH, and the SKETCH synthesizer
automatically maps codelets to atoms.

4.3.4 Related compiler techniques
Table 4.2 shows the relationship between Domino’s compilation techniques and prior work. The
use of Strongly Connected Components (SCCs) is inspired by software pipelining for VLIW
architectures [148]. The size of the largest SCC inversely affects the maximum steady-state
throughput of the pipelined loop in software pipelining. For Domino, it affects the circuit area of
the atom required to run a program at a fixed throughput: the target’s line rate. There is a duality
here: Domino trades off an increase in space (in terms of circuit area) for guaranteed performance
in time (the target’s line rate).

Program synthesis was used for code generation in Chlorophyll [178]. Code generation for
Domino also shares similar goals to technology mapping [159] and instruction selection [63].
However, prior work maps a code sequence to multiple instructions/tiles, using heuristics to
minimize instruction count. Domino’s problem is simpler: we map each codelet to a single atom
using SKETCH. The simpler problem allows a non-heuristic solution: if there is any way to map a
given codelet to an atom, SKETCH will find it.

Branch removal resembles If-Conversion [70], a technique used in vectorizing compilers.
This procedure is easier in Domino because there is no backward control transfer (goto, break,
continue).
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Technique Prior Work Differences
Conversion to
straight-line code

If-Conversion [70] No backward control flow (gotos, break,
continue)

SSA Cytron et al. [98] SSA runs on straight-line code with no
branches

Strongly Connected
Components

Lam [148] Scheduling in space vs. time

Code generation us-
ing program synthesis

Chlorophyll [178],
technology map-
ping [159], instruc-
tion selection [63]

Optimal vs. best-effort mapping, One-to-
one mapping vs. one-to-many mapping

Table 4.2: Domino’s compiler in relation to prior work

Algorithm Stateful operations LOC P4
LOC

Bloom filter (3 hash
functions)

Test/Set membership bit on every packet. 29 104

Heavy hitters [210] (3
hash functions)

Increment count-min sketch [96] on every packet. 35 192

Flowlet switch-
ing [187]

Update saved next hop if flowlet threshold is exceeded. 37 107

RCP [195] Accumulate RTT sum if RTT is under maximum allowable RTT. 23 75
Sampled Net-
Flow [45]

Sample a packet if packet count reaches N. Reset count to 0 when
it reaches N.

18 70

HULL [67] Update counter for virtual queue. 26 95
Adaptive Virtual
Queue (AVQ) [146]

Update virtual queue size and virtual capacity. 36 147

Priority computation
for weighted fair
queueing (Chapter 5)

Compute packet’s virtual start time using finish time of last packet
in that flow.

29 87

DNS TTL change
tracking [84]

Track number of changes in announced TTL for each domain. 27 119

CONGA [65] Update best path’s utilization/id if we see a better path. Update
best path utilization alone if it changes.

32 89

CoDel [169] Update whether we are marking or not, time for next mark, num-
ber of marks so far, and time at which minimum queueing delay
will exceed target.

57 271

Table 4.3: Data-plane algorithms

4.4 Evaluation
We evaluate Domino’s expressiveness by using it to program several data-plane algorithms (Ta-
ble 4.3), and comparing it to writing them in P4 (§4.4.1). To validate that these algorithms can run
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at the router’s line rate, we design a concrete set of Banzai machines (Table 4.4) as compiler targets
for Domino (§4.4.2). We estimate that these machines are feasible in hardware because their atoms
incur modest chip area overhead. We use the Domino compiler to show that we can compile the
algorithms in Table 4.3 to the targets in Table 4.4 (§4.4.3). We conclude with some lessons for
programmable router design (§4.4.5).

4.4.1 Expressiveness
We program several data-plane algorithms (Table 4.3) using Domino. These algorithms encompass
data-plane traffic engineering, in-network congestion control, active queue management, network se-
curity, and measurement. We also used Domino to express the priority computation for programming
scheduling using PIFOs, as described in greater detail in Chapter 5.

In all these cases, the algorithms are already available as blocks of imperative code from online
sources or published papers; translating them to Domino syntax was straightforward. In contrast,
expressing any of them in P45 requires manually teasing out portions of the algorithm that can
reside in independent match-action tables and then chaining these tables together.

Of the algorithms in Table 4.3, flowlet switching has a publicly available and manually written
P4 implementation [17] that we can directly compare against. This implementation requires 231
lines of uncommented P4, compared to only 37 lines of Domino code in Figure 4-3a. Furthermore,
using P4 also requires the programmer to manually specify tables, the actions within tables, and
how tables are chained—all to implement a single data-plane algorithm. The Domino compiler
automates this process; to demonstrate this, we developed a backend for Domino that generates the
equivalent P4 code. We list the number of lines of code for these auto-generated P4 programs in
Table 4.3.

4.4.2 Compiler targets
We design a set of compiler targets for Domino based on the Banzai machine model (§4.1). First,
we describe how to assess the feasibility of atoms: whether they can run at a 1 GHz clock frequency,
and what area overhead they incur in silicon. Next, we discuss the design of stateless and stateful
atoms separately. Finally, we discuss how these stateless and stateful atoms are combined together
in our compiler targets.

Atom feasibility. We synthesize a digital circuit corresponding to an atom template by writing the
atom template in Verilog, and using the Synopsys Design Compiler [12] to compile the Verilog code.
The Design Compiler checks if the resulting circuit meets timing at 1 GHz in a 32-nm standard-cell
library and outputs its gate area. We use this gate area, along with the area of a 200 mm2 baseline
router chip [115], to estimate the area overhead for provisioning a Banzai machine with multiple
instances of this atom.

Designing stateless atoms. Stateless atoms are relatively easy to design because complicated state-
less operations can be broken up into multiple pipeline stages without violating atomicity (§4.1.2).

5We are referring to P4 at the time the Domino paper was published. As we describe in §8.1, many of Domino’s
ideas (including packet transactions) are part of the latest version of P4.
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We design a stateless atom that can support simple arithmetic (add, subtract, left shift, right shift),
logical (and, or, xor), relational (>=, <=, ==, !=), and conditional instructions (C’s “?” operator)
on a pair of packet fields. Any packet field can also be substituted with a constant operand. This
stateless atom is similar to the stateless instruction set described by RMT [86]. When synthesized
using the Synopsys Design Compiler, this atom meets timing at 1 GHz and occupies an area of
1384 µm2 (Table 4.4).

Designing stateful atoms. As we have seen, a stateless computation can be easily pipelined over
multiple stateless atoms in different pipeline stages. However, there is no easy way to pipeline a
stateful computation over multiple stateful atoms and still retain atomicity. For instance, §4.1.2
illustrates how pipelining violates atomicity even for a counter.

However, designing the right set of stateful atoms for a router is a chicken-and-egg problem: the
choice of stateful atoms determines which algorithms can execute on that target, while the choice
of algorithms dictates what stateful atoms are required in the router. Indeed, other programmable
substrates (e.g., graphics processors and digital signal processors) go through an iterative process to
design a good instruction set.

We use the Domino compiler to help us design a reasonable set of stateful atoms. Concretely,
we pick a data-plane algorithm and execute the first two stages of the Domino compiler to generate
a codelet pipeline. We then inspect the stateful codelets, and create an atom that expresses all the
computations required by the stateful codelets. We verify that this atom can indeed express all these
computations by executing all three stages of the compiler on the data-plane algorithm with that
atom as the target. We then move on to the next algorithm, and check if the same atom suffices. If
not, we repeatedly extend our atom through a trial-and-error process to capture more computations,
all the while using the compiler to verify our intuitions on extending atoms.

In the process, we generate a containment hierarchy of atoms (Table 4.4), each of which works
for a subset of algorithms. The complexity of the atoms increases as we proceed down this hierarchy:
every atom in the hierarchy can express all the computations that its predecessors can. These atoms
start out with the simplest stateful capability: the ability to read or write state alone (Read/Write).
They then move on to the ability to read, add, and write back state atomically (RAW), a predicated
version of the same (PRAW), a version that permits two independent read-add-writes depending on
whether a predicate is true or false (IfElseRAW), and so on.

A more complex stateful atom can support more data-plane algorithms, but it occupies more area
and may not meet timing at 1 GHz. When synthesized to a 32-nm standard-cell library, however, we
find that all our stateful atoms comfortably meet timing at 1 GHz. However, the area and minimum
input-to-output delay of the atom’s circuit increases with the atom’s complexity (Table 4.4).

The compiler targets. We design seven Banzai machines as compiler targets. A single Banzai
machine has 600 atoms.

1. 300 are stateless atoms of the single stateless atom type from Table 4.4.
2. 300 are stateful atoms of one of the seven stateful atom types from Table 4.4 (Read/Write

through Pairs).
These 300 stateless and stateful atoms are laid out as 10 stateless and stateful atoms per pipeline
stage and 30 pipeline stages. While the number 300 and the pipeline layout are arbitrary, they are
sufficient for all examples in Table 4.3, and incur modest area overhead as we show next. In the
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Atom Description Area
(µm2) at
1 GHz

Minimum
critical-path
delay (ps)

Stateless Arithmetic, logic, relational, and con-
ditional operations on packet/constant
operands

1384 387

Read/Write Read/Write packet field/constant into
single state variable.

250 176

ReadAddWrite (RAW) Add packet field/constant to state vari-
able (OR) Write packet field/constant
into state variable.

431 316

Predicated ReadAddWrite
(PRAW)

Execute RAW on state variable only if a
predicate is true, else leave unchanged.

791 393

IfElse ReadAddWrite
(IfElseRAW)

Two separate RAWs: one each for
when a predicate is true or false.

985 392

Subtract (Sub) Same as IfElseRAW, but also allow sub-
tracting a packet field/constant.

1522 409

Nested Ifs (Nested) Same as Sub, but with an additional
level of nesting that provides 4-way
predication.

3597 580

Paired updates (Pairs) Same as Nested, but allow updates to a
pair of state variables, where predicates
can use the earlier values of both state
variables.

5997 606

Table 4.4: Atom areas and minimum critical-path delays in a 32-nm standard-cell library. All atoms
meet timing at 1 GHz. Each of the seven compiler targets contains 300 instances of one of the seven
stateful atoms (Read/Write to Pairs) and 300 instances of the single stateless atom.

future, we anticipate these numbers being decided empirically based on what algorithms are most
frequently run on such platforms.

We estimate the area overhead of these seven targets relative to a 200 mm2 chip [115], which is
at the lower end of chip sizes today. For this, we multiply the individual atom areas from Table 4.4
by 300 for both the stateless and stateful atoms. For 300 atoms, the area overhead is 0.2 % for the
stateless atom and 0.9 % for the Pairs atom, the largest among our stateful atoms. The area overhead
combining both stateless and stateful atoms for all our targets is at most 1.1%—a modest price for
the programmability it provides.

4.4.3 Compiling Domino algorithms to Banzai machines
We now consider every target from Table 4.4 and every data-plane algorithm from Table 4.3 to
determine if the algorithm can run at the line rate of a particular Banzai machine. Because every
target is uniquely identified by its stateful atom type, we use the name of the stateful atom to refer
to the target itself.
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Algorithm Most
expressive
atom
required

Stages Max.
atom-
s/stage

Ingress
or
Egress
Pipeline?

Amount of stateful memory
proportional to?

Guard

Bloom filter Read/Write 4 3 Either (Size of bloom filter array)
* (# of hash functions)

Match all packets

Heavy
hitters

RAW 10 9 Either (Size of sketch array) * (#
of hash functions)

Match all packets

Flowlet
switching

PRAW 6 2 Ingress Size of flowlet table Match all packets

RCP PRAW 3 3 Egress Constant: 3 scalar integers
(total number of bytes, sum
of RTTs, number of pack-
ets)

Match all packets

Sampled
NetFlow

IfElseRAW 4 2 Either Constant: 1 scalar integer
for the counter

Match all packets

HULL Sub 7 1 Egress Number of output ports Match on output
port

AVQ Nested 7 3 Ingress Number of output ports Match on output
port

Priorities for
weighted fair
queueing

Nested 4 2 Ingress Number of flows Match on output
port

DNS TTL
change
tracking [84]

Nested 6 3 Ingress Number of DNS records
tracked

Match all DNS
packets

CONGA Pairs 4 2 Ingress Number of destination
ToRs

Match all packets

CoDel Doesn’t
map

15 3 Egress Number of output ports or
number of output queues

Match on output
port or output
queue

Table 4.5: Compiling Domino algorithms to Banzai machines with different atoms

We say an algorithm can run at line rate on a Banzai machine if every codelet within the
data-plane algorithm can be mapped (§4.3.3) to either the stateful or stateless atoms provided by the
Banzai machine. Because our stateful atoms are arranged in a containment hierarchy, we list the
most expressive stateful atom/target required for each data-plane algorithm in Table 4.5.6

As Table 4.5 shows, the choice of stateful atom determines what algorithms can run on a router.
For instance, with only the ability to read or write state, only the Bloom filter algorithm can run
at line rate, because it only requires the ability to test and set membership bits. Adding the ability
to increment state (the RAW atom) permits heavy hitter detection to run at line rate, because it

6Most expressive in the sense that we do not need a more expressive atom to run this algorithm.
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employs a count-min sketch that is incremented on each packet. One example of an algorithm that
cannot be supported by any of our atoms is CoDel, which requires a square root operation that is
not provided by any of our atoms.

Table 4.5 also lists where each algorithm runs (ingress or egress), the algorithm’s memory
requirements for storing state, and guards (§4.2.3) for each algorithm. We explain each of these
three columns below.

An algorithm may run either on the ingress pipeline (e.g., load balancing algorithms like flowlet
switching), egress pipeline (e.g., active queue management algorithms like CoDel), or both (e.g.,
packet sampling algorithms like sampled NetFlow). An algorithm’s location depends on what
information the algorithm needs to execute and what other router functionality depends on this
algorithm. For instance, CoDel needs access to a packet’s queueing delay, which is only available
after the packet is dequeued from the scheduler and sent to the egress pipeline. On the other hand,
flowlet switching is a load balancing algorithm that determines the next hop for a packet (and
hence the output port). Because the output port determines which output queue the packet must
be enqueued into, it needs to be determined in the ingress pipeline, before the packet enters the
scheduler.

Different algorithms require different amounts of memory to store the state associated with the
algorithm. For instance, the amount of stateful memory is proportional to the size of each array
and the number of arrays (hash functions) in the case of heavy hitter detection and Bloom filters.
On the other hand, the amount of stateful memory is proportional to the number of output ports
for algorithms that run independently at each output port (e.g., HULL, AVQ) or proportional to the
number of output queues for algorithms that run independently at each output queue (e.g., CoDel).

The guard column specifies how packets are selected for execution by an algorithm’s packet
transaction. For instance, the heavy hitter detection algorithm runs a single packet transaction on
all packets, while the DNS TTL change tracking algorithm runs a single packet transaction on all
DNS packets. To implement CoDel, the router needs to run a separate instance of CoDel’s packet
transaction for either each output port or each output queue, depending on whether the CoDel
algorithm is running on a single queue for each output port or independently on multiple queues for
each output port. In the case of CoDel, the guard selects packets by their output port or output queue
and runs the appropriate instance of the same CoDel packet transaction on the selected packet.

4.4.4 Generality or future proofness of atoms
One concern with designing atoms using the trial-and-error method described in §4.4.2 is the
potential for “overfitting:” the atoms only work for the algorithms that inspired the design of these
atoms and do not generalize to new and unseen algorithms. The main argument for a programmable
router is the ability to change its functionality without hardware redesign. However, if the atoms
need to change with every new algorithm, this argument no longer holds.7

7Router instruction sets, and hence atoms, will evolve with time. For instance, §6.2.7 describes a new atom we
added for scalable and programmable measurement. However, to justify a programmable router, the rate at which atoms
need to change should be slower than the rate at which new algorithms are developed.

8The HULA algorithm requires some coordination between the ingress and egress pipelines to ensure the link
utilization is available in the ingress. This coordination can be achieved by occasionally creating a fake packet to carry
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Algorithm Guard Most
expressive
atom
required

HULA probe processing logic [140]8 Match all HULA probe packets Pairs
HULA forwarding logic [140] Match all data packets PRAW
BLUE increase logic [109] Match all packets whose en-

queue queue depth exceeds a
threshold

PRAW

BLUE decrease logic [109] Match all packets where the link
utilization is low

Sub

FTP monitoring [71] Match all packets PRAW
HashPipe (first stage) [192] Match all packets IfElseRAW
HashPipe (second and subsequent stages) [192] Match only packets that make it

past the first stage
Pairs

Checking for frequent domain name changes for a
given IP address [71]

Match all DNS packets PRAW

Detect first packet of a flow (Table 6.2) Match packets belonging to a
particular flow

PRAW

Counting packet reordering within a TCP connection
(Table 6.2)

Match packets belonging to a
particular flow

PRAW

Heavy hitter detection [71] Match packets with the TCP
SYN flag set

Pairs

Spam detection [71] Match all packets Pairs
Stateful firewall [71] Match all packets PRAW
Superspreader detection [71] Match all packets NestedIf

Table 4.6: The atoms in Table 4.4 generalize to new and unanticipated use cases.

To evaluate the generality of our atoms, we wrote a new set of algorithms in Domino after
freezing our set of atoms to the set in Table 4.4. Using the Domino compiler, we again evaluated
the most expressive atom required to run each of these algorithms at the router’s line rate.

The results, shown in Table 4.6, suggest that the atoms we have designed are general enough to
support several unanticipated use cases. However, for many of these algorithms, we had to expend a
considerable amount of effort in manually rewriting these algorithms so that our compiler would
compile them to our frozen atoms. This is because our current compiler is not intelligent enough to
carry out these rewrites automatically. We illustrate this problem using an example drawn from the
BLUE queue management algorithm [109].

Rewriting algorithms so that they compile. The BLUE algorithm increments a packet marking
probability whenever the queue exceeds a certain size or on a packet drop. However, BLUE adds

information from one pipeline to another, but comes at the cost of the link utilization being slightly out of date at
any given time. However, a slightly stale value of the link utilization doesn’t severely affect the performance of the
forwarding algorithm.
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some hysteresis to ensure that the marking probability doesn’t change too frequently. It does so
by checking that a certain amount of time has elapsed since the last increment. The code for this
probability increment is given below:

if (p.now - last_update > FREEZE_TIME) {
p_mark = p_mark + DELTA1;
last_update = p.now;

}

Unfortunately, in the above form, the BLUE algorithm cannot be compiled to the PRAW atom.
The conditional check in the PRAW atom only allows a piece of state to be compared to another
packet field or constant, i.e., only checks of the form 𝐴 {> / < / == /! =} 𝐵. The conditional
check above is the of the form 𝐴− 𝐵 > 𝐶, which is beyond the PRAW atom. However, we can
manually rewrite the algorithm to precompute p.now - FREEZE_TIME in a previous stage:

p.tmp = p.now - FREEZE_TIME;
if (p.tmp > last_update) {

p_mark = p_mark + DELTA1;
last_update = p.now;

}

This algorithm does compile, because the conditional check is of the form supported by the
PRAW atom. Detecting and performing such precomputation is beyond our compiler’s current
abilities, requiring us to assist the compiler by manually rewriting code in some cases.

Algorithms that are not supported by our atoms. When evaluating the generality of our atoms, we
found two classes of algorithms that are not supported by any of our atoms. We describe these
classes below.

One class of algorithms requires operations on real numbers. Our earlier example, CoDel,
belongs to this class because it computes an inverse square root to decide when to next drop a packet.
A second example is PIE [173], which computes an enqueue drop probability using a sequence
of multiply and divide operations. A third example is Core Stateless Fair Queueing [194], which
requires real-valued multiply and divide operations to estimate the fair share rate and aggregate
arrival rate at a router. Other examples include Approximate Fair Dropping [172] and PERC [133].
We should note that these algorithms were not explicitly designed with hardware in mind, and it is
possible that they can be modified to accommodate the constraints of high-speed hardware without
losing performance. It may also be sufficient to use fixed-point or integer arithmetic instead of
floating point arithmetic for some of these operations. We leave these investigations to future work.

The other class of unsupported algorithms falls outside the boundary of our atoms, as determined
by the SKETCH-based code generator within the Domino compiler (§4.3.3). An example is the
two-color three-rate meter [44] (trTCM), which does not compile to Pairs, our most expressive
atom. We have found that explaining why an algorithm cannot compile to a target with a particular
atom is challenging. Below, we describe our initial attempts at explaining why an algorithm does
not compile.
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Explaining why algorithms do not compile. So far, to explain why an algorithm does not compile,
we have had to manually pare down an algorithm until we are left with a problematic “core” of the
algorithm that does not compile to the underlying atom. We show an example of this procedure
applied to trTCM.

trTCM marks packets with one of three colors depending on whether the packet’s rate falls
above a peak rate (red), between a peak and committed rate (orange), or below a committed rate
(green). Its code is shown below, where tp and tc are two token buckets filling at the peak and
committed rate respectively, and last_time is the last time either of the two buckets was updated.

if (tp < pkt.size) {
// exceeds peak rate (PIR) (red)
pkt.color = 1;

} else if (tc < pkt.size) {
// exceeds commitited, but not peak (orange)
pkt.color = 2;
tp = tp - pkt.size;

} else {
// within both peak and committed rates (green)
pkt.color = 3;
tp = tp - pkt.size;
tc = tc - pkt.size;

}

// Refill logic
tp = tp + PIR * (pkt.time - last_time);
if (tp > PBS) tp = PBS;

tc = tc + CIR * (pkt.time - last_time);
if (tc > CBS) tc = CBS;

last_time = pkt.time;

Figure 4-11: Domino code for two-color three-rate meter

We repeatedly pared down the algorithm and removed last_time, tp, and pkt.color.9 We were
left with the code snippet below that still does not compile to the Pairs atom.

However, paring down just a little bit further leads us to a code snippet that does compile to the
Pair atom:

Based on these observations, we conjecture that trTCM does not compile because it requires
one more conditional check than is supported by the Pairs atom. We admit that it would be helpful
to have a more precise explanation along with suggestions on how to fix trTCM so that it compiles.

9This paring down process is quite ad hoc at this point.
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if (PBS < pkt.size) {
} else if (tc < pkt.size) {
} else {

tc = tc - pkt.size;
}

tc = tc + CIR * (pkt.time);
if (tc > CBS) tc = CBS;

Figure 4-12: Uncompilable core of trTCM

if (tc < pkt.size) {
} else {

tc = tc - pkt.size;
}

tc = tc + CIR * (pkt.time);
if (tc > CBS) tc = CBS;

Figure 4-13: Slightly simpler version of Figure 4-12 that does compile

Our method of paring down an algorithm to find a non-compilable subset of the algorithm is
similar to how some SAT solvers provide an unsatisfiable core [155] when an input boolean formula
is unsatisfiable. This unsatisfiable core is a subset of the clauses in the input boolean formula that
is still unsatisfiable and helps a user understand why a particular input formula is unsatisfiable.
Because our SKETCH-based code generator uses a SAT solver internally [193], we hope to draw
on algorithms for finding unsatisfiable cores [155] to automate the paring down process in Domino.

4.4.5 Lessons for programmable routers
To conclude our evaluation, we distill some lessons for designing programmable routers.

Atoms that allow modifications to a single state variable support many algorithms. The algo-
rithms from Bloom filters through DNS TTL Change Tracking in Table 4.5 can run at line rate using
the Nested Ifs atom that modifies a single state variable.

But, some algorithms modify a pair of state variables atomically. An example is CONGA; we
reproduce CONGA’s relevant code snippet below:

if (p.util < best_path_util[p.src]) {
best_path_util[p.src] = p.util;
best_path[p.src] = p.path_id;

} else if (p.path_id == best_path[p.src]) {
best_path_util[p.src] = p.util;
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}

Here, best_path (the path id of the best path for a particular destination) is updated conditioned
on best_path_util (the utilization of the best path to that destination)10 and vice versa. These
two state variables cannot be separated into different stages and still guarantee a packet transaction’s
semantics because they are mutually dependent on each other. The Pairs atom, where the update to
a state variable is conditioned on a predicate of a pair of state variables, allows CONGA to run at a
router’s line rate.

Atom design is constrained by timing, not area. Atoms are affected by two factors: their area and
their timing, i.e., the delay on the critical path of the atom’s combinational circuit. For the few
hundred atoms that we require, atom area is insignificant (< 2%) relative to chip area. Further, even
for future atoms that are larger, area may be controlled by provisioning fewer atom instances.

However, atom timing is critical. Table 4.4 shows a 3.4 × range in minimum critical-path delay
(i.e., the lowest achievable critical path on a particular standard-cell library) between the simplest
and the most complex atoms. This increase can be explained by looking at the simplified circuit
diagrams for the first three atoms (Table 4.7), which show an increase in circuit depth with atom
complexity.

Because the clock frequency of a circuit is at least as small as the reciprocal of the critical-path
delay, a more complex atom results in a lower clock frequency and a lower line rate. Although all
our atoms have a minimum critical-path delay under 1 ns (1 GHz), it is conceivable that they can be
extended with functionality that causes the atom to violate timing at 1 GHz.

In summary, for a router designer, the critical path of atoms is the most important metric
to optimize. The most programmable routers will have the highest density of useful stateful
functionality squeezed into a critical path budget of 1 clock cycle.

4.5 Summary
This chapter focused on the hardware and software techniques required for the problem of pro-
gramming stateful algorithms on a high-speed router. Our solution to this problem resulted in three
new contributions. Our first contribution was Domino, an imperative domain-specific language that
allows programmers to write packet-processing code using packet transactions, which are sequential
code blocks that are atomic and isolated from other such code blocks. Our second contribution
was Banzai, which is a machine model based on programmable router architectures [25, 60, 3].
Banzai models the essential computational elements of a programmable router and extends them
with the ability to perform programmable high-speed state manipulation. Our third contribution was
the Domino compiler, which compiles packet transactions to hardware configurations for Banzai
targets.

As part of our evaluation (§4.4), we showed that Domino offers a concise and natural model to
program stateful algorithms (Table 4.3). We designed a set of 7 atoms (Table 4.4) and showed that
they can be used to express a variety of stateful algorithms (Table 4.5). Furthermore, these atoms

10p.src is the address of the host originating this message, and hence the destination for the host receiving it and
executing CONGA.

73



Atom Circuit Min.
delay
(ps)

Read/Write

pkt.f1

Const
2-to-1
 Mux

x

176

ReadAddWrite
(RAW)

pkt.f1

Const
Adder x

x

0

2-to-1
 Mux

2-to-1
 Mux

316

Predicated
ReadAddWrite
(PRAW)

pkt.f1

Const
Adder

2-to-1
 Mux

RELOP

pkt.f2

pkt.f1

Const
3-to-1
 Mux

pkt.f2

x

x

x
0

2-to-1
 Mux

x
0

3-to-1
 Mux

2-to-1
 Mux

393

Table 4.7: An atom’s minimum critical-path delay (i.e., , the lowest possible critical-path delay on
a particular standard cell library) increases with circuit depth. Mux is a multiplexer. RELOP is
a relational operation (>, <, ==, !=). x is a state variable. pkt.f1 and pkt.f2 are packet fields.
Const is a constant operand.

generalized to new and unanticipated use cases that were programmed after the design of these
atoms was frozen (Table 4.6). These results suggest that it possible to program a wide variety of
stateful algorithms at high speeds using the right combination of hardware (atoms) and programming
models (packet transactions).

74



Chapter 5

PIFOs: Programmable Packet Scheduling

Packet scheduling is the task of picking the next packet to transmit on a router’s outgoing links. The
research literature is replete with scheduling algorithms [99, 180, 150, 186, 68] tailored to different
network performance objectives (e.g., fairness, low flow completion times, low tail latencies, etc.).
However, today’s fastest routers provide only a small menu of scheduling algorithms: typically, a
combination of Deficit Round Robin (DRR) [186], strict priority scheduling, and traffic shaping.
A network operator can change parameters (e.g., weights in DRR, or rate limits in traffic shaping)
in these algorithms. But, an operator cannot change the core logic in an existing algorithm, nor
program a new one, without building new router hardware.

This chapter develops hardware primitives and software programming models for programmable
packet scheduling in high-speed routers. With a programmable packet scheduler, network operators
could customize scheduling algorithms to application requirements, e.g., minimizing flow comple-
tion times [68] using Shortest Remaining Processing Time (SRPT) [183], allocating bandwidth
flexibly across flows or tenants [131, 179] using Weighted Fair Queueing [99] or minimizing tail
packet delays using Least Slack Time First [150]. With a programmable packet scheduler, router
vendors could implement scheduling algorithms as programs running on a programmable router
chip, making it easier to verify and modify these algorithms compared to baking in the same
algorithms into a chip as rigid hardware.

We begin this chapter by deconstructing packet scheduling (§5.1). First, we observe that
all scheduling algorithms make two basic decisions: in what order packets should be scheduled
and when they should be scheduled, corresponding to work-conserving and non-work-conserving
algorithms respectively. Second, we observe that for many scheduling algorithms, these two
decisions can be made when a packet is enqueued. These observations suggest a natural hardware
primitive for packet scheduling: a Push In First Out Queue (PIFO) [94]. A PIFO is a priority
queue that allows elements to be pushed into an arbitrary position based on an element’s rank (the
scheduling order or time),1 but always dequeues elements from the head.

We then develop a PIFO-based programming model for scheduling (§5.2) with two key ideas.
First, we allow an operator programming the scheduler to set a packet’s rank in a PIFO by supplying

1When the rank denotes the scheduling time, the PIFO implements a calendar queue; we distinguish between PIFOs
and priority queues for this reason.
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a small program for computing packet ranks (§5.2.1). Coupling this program with a single PIFO
allows the operator to program any scheduling algorithm where the relative scheduling order of
buffered packets does not change with future packet arrivals. Second, operators can compose PIFOs
together in a tree to program several hierarchical scheduling algorithms that violate this relative
ordering property (§5.2.2 and §5.2.3).

We find that a PIFO-based scheduler lets us program many scheduling algorithms (§5.3), e.g.,
Weighted Fair Queueing [99], Token Bucket Filtering [58], Hierarchical Packet Fair Queueing [76],
Least-Slack Time-First [150], the Rate-Controlled Service Disciplines [214], and fine-grained
priority scheduling (e.g., Shortest Job First). Until now, any high speed implementations of these
algorithms—if they exist at all—have been baked into the router’s hardware. We also describe the
limits of the PIFO abstraction (§5.3.5) by presenting examples of scheduling algorithms that cannot
be programmed using PIFOs.

To evaluate the hardware feasibility of PIFOs, we implemented a hardware design for PIFOs
in Verilog (§5.4). We synthesized this design to an industry standard 16-nm standard-cell library
(§5.5). The main operation in our design is sorting an array of PIFO elements at the router’s line
rate to determine the next packet to be dequeued. To implement this sort, traditionally considered
hard [157, 186], we exploit two observations. One, most scheduling algorithms schedule across
flows, with packet ranks increasingly monotonically within each flow. Hence, we only need to sort
the head (earliest) packets of all flows to dequeue from a PIFO. Two, transistor scaling now makes
it feasible to sort a surprisingly large number of packets (in this case, the head packets in a PIFO) at
high speed.

We evaluate our hardware design (§5.5) and find that it is feasible to build a programmable
scheduler, which

• supports 5-level hierarchical scheduling, where the scheduling algorithms at each level are
programmable;

• runs at a clock frequency of 1 GHz—sufficient for a single-pipeline 64-port shared-memory
router with a line rate of 10 Gbit/s on each port;

• uses only 4% additional chip area compared to a shared-memory router that supports only a
small menu of scheduling algorithms; and

• has the same buffer size as a typical shared-memory router in a datacenter (~60K packets,
~1K flows) [18].

C++ code for a hardware reference model of our programmable scheduler and Verilog code for
our hardware design are available at http://web.mit.edu/pifo/.

5.1 Deconstructing scheduling
We observe that any scheduling algorithm makes two basic decisions: in what order and when
should packets leave the router, broadly corresponding to work-conserving and non-work-conserving
schedulers respectively. Scheduling algorithms only differ in how the order and departure time are
computed. Further, in many cases, the order or departure time can be determined when the packet
is enqueued. To see why, we look at three popular packet-scheduling algorithms: pFabric [68],
Weighted Fair Queueing (WFQ) [99], and traffic shaping [58]. We then extract similarities between
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these three algorithms to provide intuition for a programming model for packet scheduling.

5.1.1 pFabric
pFabric [68] is a recent datacenter transport design that attempts to minimize average flow com-
pletion time by scheduling packets according to their remaining flow size at each router, i.e., it
implements the SRPT scheduling algorithm at each router [183].2 For each packet, end hosts insert
the remaining flow size as a packet field. At each router, packets are dequeued in increasing order
of their remaining flow size.

5.1.2 Weighted Fair Queueing
Weighted Fair Queueing (WFQ) provides weighted max-min bandwidth allocation across flows
sharing a link. Numerous implementations of WFQ exist, including Start-Time Fair Queueing
(STFQ) [118] and Deficit Round Robin [186]. For concreteness, we consider STFQ.3

STFQ computes a virtual start time (p.start) for each packet using the algorithm below.

1 On enqueue of packet p of flow f:
2 --------------------------------------------
3 if f in T
4 p.start = max(virtual_time, T[f].last_finish)
5 else
6 p.start = virtual_time
7 T[f].last_finish = p.start + p.length / f.weight
8

9 On dequeue of packet p:
10 ---------------------------------
11 virtual_time = p.start

Here, last_finish is a state variable maintained for each flow in table T that tracks the virtual
finish time of its latest packet. virtual_time is a queue-wide state variable updated on each
dequeue. Packets are scheduled in increasing order of their virtual start time (p.start).

5.1.3 Traffic shaping
Besides packet order, some non-work-conserving scheduling algorithms determine the time at
which packets depart from a queue. Traffic shaping is a canonical example and is used to limit
flows to a desired rate. A shaper has two parameters: a shaping rate, 𝑟, and a burst allowance, 𝐵.
The standard implementation uses a token bucket [58], which is incremented at a rate 𝑟, subject
to a cap of 𝐵 tokens. A packet is transmitted immediately if the bucket has enough tokens when
it is enqueued; otherwise, it has to wait until sufficient tokens accumulate. Transmitted packets
decrement the token bucket by the packet size.

2There are two variants of pFabric [68], with and without starvation prevention. We consider the one without
starvation prevention.

3The original WFQ implementation [99] is similar to STFQ, but uses a more complex virtual time calculation.
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Alternatively, the transmission time of each packet can be calculated on enqueue as follows:

1 tokens = min(tokens + r * (now - last_arrival), B)
2 if p.length <= tokens
3 p.send_time = now
4 else
5 p.send_time = now + (p.length - tokens) / r
6 tokens = tokens - p.length
7 last_arrival = now

Here, tokens and last_arrival are two state variables, initialized to 𝐵 and an initial time
respectively. While a standard token bucket has only positive token counts, tokens can fall below
zero in the algorithm above. It is easy to show that the transmission times calculated are still identical
to those of the standard token bucket. With this alternative algorithm shown above, packets shaped
by a token bucket are transmitted in increasing order of their transmission times (p.send_time).

5.1.4 Summary
The schedulers presented above (pFabric, WFQ, and traffic shaping) determine the order or time of
departure of a packet using a single number computed at enqueue time. For pFabric, this number is
the remaining flow size and is inserted by an end host tracking the number of remaining bytes for
each flow. For WFQ, it is the virtual start time computed by the router. For token bucket shaping, it
is the wall-clock departure time computed by the router. This ability to determine scheduling order
or time at enqueue unifies a variety of diverse scheduling algorithms, and it is at the heart of our
programming model for packet scheduling.

5.2 A programming model for packet scheduling
Our programming model builds on the observation we made in the previous section: the scheduling
order or time for many schedulers can be determined at enqueue. It has two components:

1. The Push In First Out Queue (PIFO) [94], which maintains the scheduling order or scheduling
time for enqueued elements. A PIFO is a priority queue that allows elements to be enqueued
into an arbitrary position based on the element’s rank (ranks could reflect either scheduling
order or time), but dequeues elements from the head. Elements with a lower rank are dequeued
first; if two elements have the same rank, the element enqueued earlier is dequeued first.

2. The computation of an element’s rank before it is enqueued into a PIFO. We model this
computation as a packet transaction (§4.2), an atomically executed block of code that is
executed once for each element before enqueueing it in a PIFO.

We note that scheduling with the PIFO abstraction does not require packets to be stored in
per-flow queues.

We now describe the three main abstractions in our programming model. First, we show how
to use a scheduling transaction to program simple work-conserving scheduling algorithms using
a single PIFO (§5.2.1). Second, we generalize to a scheduling tree to program hierarchical work-

78



1 f = flow(p) # compute flow from packet p
2 if f in last_finish:
3 p.start = max(virtual_time, last_finish[f])
4 else: # p is first packet in f
5 p.start = virtual_time
6 last_finish[f] = p.start + p.length/f.weight
7 p.rank = p.start

Figure 5-1: Scheduling transaction for STFQ. p.x refers to a packet field x in packet p. y refers to a
state variable that is persisted on the router across packets, e.g., last_finish and virtual_time
in this snippet. p.rank denotes the packet’s computed rank.

conserving scheduling algorithms (§5.2.2). Third, we augment nodes of this tree with a shaping
transaction to program non-work-conserving scheduling algorithms (§5.2.3).

5.2.1 Scheduling transactions

A scheduling transaction is a block of code associated with a PIFO that is executed once for
each packet before the packet is enqueued. The scheduling transaction computes the packet’s
rank, which determines its position in the PIFO. Scheduling transactions can be used to program
work-conserving scheduling algorithms. In particular, a single scheduling transaction and PIFO
are sufficient to specify any scheduling algorithm where the relative scheduling order of packets
already present in the buffer does not change with the arrival of future packets.

WFQ, described earlier (§5.1.2), is one example. It achieves weighted max-min allocation of link
capacity across flows sharing a link. We define a flow to be any set of packets sharing common values
for specific packet fields. Approximations to WFQ4 include Deficit Round Robin (DRR) [186],
Stochastic Fairness Queueing (SFQ) [157], and Start-Time Fair Queueing (STFQ) [118]. We
consider STFQ here, and show how to program it using the scheduling transaction in Figure 5-1.

Before a packet is enqueued, STFQ computes a virtual start time for that packet (p.start
in Figure 5-1) as the maximum of the virtual finish time of the previous packet in that packet’s
flow (last_finish[f] in Figure 5-1) and the current value of the virtual time (virtual_time
in Figure 5-1), a state variable that tracks the virtual start time of the last dequeued packet across all
flows.5 Packets are scheduled in order of increasing virtual start times, which is the packet’s rank in
the PIFO.

5.2.2 Scheduling trees

Scheduling algorithms that require changing the relative order of buffered packets when a new
packet arrives cannot be programmed using a single scheduling transaction and PIFO. An important

4An approximation is required because the original WFQ algorithm [99] has a complex virtual time calculation.
5§5.5.5 discusses how this state variable can be accessed on the enqueue side.
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root
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WFQ_Root

p.class == Left,

WFQ_Left

p.class == Right,

WFQ_Right

(b) Scheduling tree

1 f = flow(p) # see caption below
2 if f in last_finish:
3 p.start = max(virtual_time,

last_finish[f])
4 else:
5 p.start = virtual_time
6 last_finish[f] = p.start + p.length

/ f.weight
7 p.rank = p.start

(c) Scheduling transaction for WFQ_Root, WFQ_Left,
and WFQ_Right.

Figure 5-2: Programming HPFQ using PIFOs. “Left” and “Right” are classes. A, B, C, and D are
flows. Within each tree node in the scheduling tree, the first line is the packet predicate and the
second is the scheduling transaction. All three nodes execute the same code for the scheduling
transaction except for their flow() function, which returns a packet’s flow/class. For WFQ_Root, it
returns the packet’s class: Left/Right. For WFQ_Left and WFQ_Right, it returns the packet’s flow:
A/B or C/D.

class of such algorithms are hierarchical schedulers that compose multiple scheduling policies at
different levels of the hierarchy. We introduce a scheduling tree for such algorithms.

To illustrate a scheduling tree, consider Hierarchical Packet Fair Queueing (HPFQ) [76], a
recursive variant of fair queueing. HPFQ first divides link capacity fairly between classes, then
recursively between sub classes in each class, all the way down to the leaf nodes. Figure 5-2a
provides an example; the number on each child indicates its weight relative to its siblings in its
parent’s fair scheduler. HPFQ cannot be realized using a single scheduling transaction and PIFO
because the relative scheduling order of packets that are already buffered can change with future
packet arrivals. Section 2.2 of the HPFQ paper [76] provides an example illustrating how this can
happen.

HPFQ can, however, be realized using a tree of PIFOs, with a scheduling transaction attached to
each PIFO in the tree. To see how, observe that HPFQ executes WFQ at each level of the hierarchy,
with each node using WFQ among its children. As discussed in §5.2.1, a single PIFO encodes
the current scheduling order for WFQ, i.e., the scheduling order if there are no further arrivals.
Similarly, a tree of PIFOs (Figure 5-3), where each PIFO’s elements are either packets or references
to other PIFOs, can be used to encode the current scheduling order of HPFQ and other hierarchical
scheduling algorithms. To determine this scheduling order, we inspect the root PIFO to determine
the next child PIFO to schedule. Then, we recursively inspect the child PIFO to determine the next
grandchild PIFO to schedule, until reaching a leaf PIFO that determines the next packet to schedule.

The current scheduling order of the PIFO tree can be modified as packets are enqueued, by
executing a scheduling transaction at each node in the PIFO tree. This is our second programming
abstraction: a scheduling tree. Each node in this tree is a tuple with two attributes. First, a packet
predicate that specifies which packets execute that node’s scheduling transaction before enqueueing

80



P1P2

LRRL

PIFO-L

P3P4

PIFO-R

This tree encodes

the order

L P3

R P1

R P2

LP4

i.e., P3, P1, P2, P4

PIFO-Root

Figure 5-3: PIFO trees encode current scheduling order for hierarchical schedulers.
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(b) Scheduling tree

1 tokens = tokens + r * (now -
last_time)

2 if (tokens > B):
3 tokens = B
4 if (p.length <= tokens):
5 p.send_time = now
6 else:
7 p.send_time = now + (p.length -

tokens) / r
8 tokens = tokens - p.length
9 last_time = now

10 p.rank = p.send_time

(c) Shaping transaction for TBF_Right.

Figure 5-4: Programming Hierarchies with Shaping using PIFOs. The third line within each tree
node in the scheduling tree is the shaping transaction. The scheduling transactions for WFQ_Right,
WFQ_Left, and WFQ_Root are identical to Figure 5-2.

an element into that node’s PIFO; this element is either a packet or a reference to a child PIFO of
the node. Second, a scheduling transaction that specifies how the rank is computed for elements
(packet or PIFO references) that are enqueued into the node’s PIFO. Figure 5-2b shows an example
for HPFQ.

When a packet is enqueued into a scheduling tree, it executes one transaction at each node
whose packet predicate matches the arriving packet. These nodes form a path from a leaf to the root
of the tree and the transaction at each node on this path updates the scheduling order at that node.
One element is enqueued into the PIFO at each node on the path from the leaf to the root. At the leaf
node, that element is the packet itself; at the other nodes, it is a reference to the next PIFO on the
path towards the leaf. Packets are dequeued in the order encoded by the tree of PIFOs (Figure 5-3).

5.2.3 Shaping transactions

So far, we have only considered work-conserving scheduling algorithms. Shaping transactions
allow us to program non-work-conserving scheduling algorithms. Non-work-conserving algorithms
differ from work-conserving algorithms in that they decide the time at which packets are scheduled

81



as opposed to the scheduling order. As an example, consider the algorithm shown in Figure 5-4a,
which extends the previous HPFQ example with the requirement that the Right class be limited to
5 Mbit/s. We refer to this example as Hierarchies with Shaping.

To motivate our abstraction for non-work-conserving algorithms, recall that a PIFO tree encodes
the current scheduling order, by walking down the tree from the root PIFO to a leaf PIFO to
schedule packets. With this encoding, a PIFO reference can be scheduled only if it resides in a PIFO
and there is a chain of PIFO references from the root PIFO to that PIFO reference. To program
non-work-conserving scheduling algorithms, we provide the ability to defer when a PIFO reference
is enqueued into the PIFO tree, and hence is available for scheduling.

To defer enqueues into the PIFO tree, we augment nodes of the scheduling tree with an optional
third attribute: a shaping transaction that is executed on all packets matched by the node’s packet
predicate. The shaping transaction on a node determines when a reference to the node’s PIFO is
available for scheduling in the node’s parent’s PIFO. The shaping transaction is implemented using
a separate shaping PIFO at the child—distinct from the scheduling PIFO at all nodes—that holds
references to the child’s scheduling PIFO until they are released to the parent’s scheduling PIFO.
The shaping transaction uses the wall-clock departure time as the rank for the shaping PIFO, unlike
the scheduling transaction that uses the relative scheduling order as the rank.

Once a reference to the child’s scheduling PIFO has been released to the parent’s scheduling
PIFO from the child’s shaping PIFO, it is scheduled by executing the parent’s scheduling transaction
and enqueueing it in the parent’s scheduling PIFO. If a node has no shaping transaction, references
to that node’s scheduling PIFO are immediately enqueued into its parent’s scheduling PIFO with no
deferral. The dequeue logic during shaping still follows Figure 5-3: dequeue recursively from the
root until we schedule a packet.

Figure 5-4c shows an example of a shaping transaction that defers enqueues based on a Token
Bucket Filter (TBF) with a rate-limit of 𝑟 and a burst allowance 𝐵. Here, the packet’s wall clock
departure time (p.send_time), is used as its rank in the shaping PIFO. Figure 5-4b shows how
to use this shaping transaction to program Hierarchies with Shaping: the TBF shaping transaction
(TBF_Right) determines when PIFO references for Right’s scheduling PIFO are released to Root’s
scheduling PIFO.

Timing of operations during shaping. We now describe the timing of operations during shaping in
greater detail. When a packet is enqueued in a tree of PIFOs, it executes a scheduling transaction
at the leaf node whose predicate matches this packet. It then continues upward towards the root
executing scheduling transactions along the path, until it reaches the first node that also has a
shaping transaction attached to it. Figure 5-5 shows the operations that occur at this node, Child,
and its parent, Parent, to implement shaping.

Two transactions are executed at Child: the original scheduling transaction to push an element
into Child’s scheduling PIFO (step 1a in Figure 5-5) and a shaping transaction to push an element
𝑅 (step 1b), which is a reference to Child’s scheduling PIFO, into Child’s shaping PIFO. After 𝑅 is
pushed into Child’s shaping PIFO, further transactions for this packet are suspended until 𝑅’s rank,
the wall-clock time 𝑇 , is reached.

At 𝑇 , 𝑅 will be dequeued from Child’s shaping PIFO and enqueued into Parent’s scheduling
PIFO (step 2), making it available for scheduling at Parent. The rest of the packet’s path to the root
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Figure 5-5: Child’s shaping transaction (1b) defers enqueue into Parent’s scheduling PIFO (2) until
time T. Blue arrows show enqueue paths. Red arrows show dequeue paths.

is now resumed starting at Parent. This suspend-resume process can occur multiple times if there
are multiple nodes with shaping transactions along a packet’s path from its leaf to the root.

5.3 The expressiveness of PIFOs

In addition to the three examples from §5.2, we now provide several more examples of scheduling
algorithms that can be programmed using our programming model (§5.3.1 through §5.3.4) and also
describe the limitations of our programming model (§5.3.5).

5.3.1 Least Slack-Time First

Least Slack-Time First (LSTF) [150, 161] schedules packets at each router in increasing order of
packet slacks, i.e., the time remaining until each packet’s deadline. Packet slacks are initialized at
an end host or edge router and are decremented by the wait time at each router’s queue. We can
program LSTF using a simple scheduling transaction:

1 p.rank = p.slack + p.arrival_time

The addition of the packet’s arrival time to the slack already carried in the packet ensures that
packets are dequeued in order of what their slack would be at the time of dequeue, not what their
slack time is at the time of enqueue. Then, after packets are dequeued, we subtract the time at which
the packet is dequeued from the packet’s slack, which has the effect of decrementing the slack by
the wait time at the router’s queue. This subtraction can be achieved by programming the egress
pipeline to decrement one header field by another using the techniques from Chapter 4.
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5.3.2 Stop-and-Go Queueing

1 if (now >= frame_end_time):
2 frame_begin_time = frame_end_time
3 frame_end_time = frame_begin_time + T
4 p.rank = frame_end_time
5

Figure 5-6: Shaping transaction for Stop-and-Go Queueing.

Stop-and-Go Queueing [117] is a non-work-conserving algorithm that provides bounded delays
to packets using a framing strategy. Time is divided into non-overlapping frames of equal length T,
where every packet arriving within a frame is transmitted at the end of the frame, smoothing out any
burstiness in traffic patterns induced by previous hops.

The shaping transaction in Figure 5-6 can be used to program Stop-and-Go Queueing. frame_begin_time
and frame_end_time are two state variables that track the beginning and end of the current frame
in wall-clock time. When a packet is enqueued, its departure time is set to the end of the current
frame. Multiple packets with the same departure time are sent out in first-in first-out order, as
guaranteed by a PIFO’s semantics for breaking ties with equal ranks (§5.2).

5.3.3 Minimum rate guarantees
A common scheduling policy on many routers today is providing a minimum rate guarantee to
a flow, provided the sum of such guarantees does not exceed the link capacity. A minimum rate
guarantee can be programmed using PIFOs with a two-level PIFO tree, where the root of the tree
implements strict priority scheduling across flows. Flows below their minimum rate are scheduled
preferentially to flows above their minimum rate. Then, at the next level of the tree, the PIFOs
implement the First In First Out (FIFO) discipline for each flow, by using the packet’s arrival time
as its rank.

When a packet is enqueued, we execute a scheduling transaction corresponding to the FIFO
discipline at its leaf node, setting its rank to the wall-clock time on arrival. At the root, a PIFO
reference (the packet’s flow identifier) is pushed into the root PIFO using a rank that reflects whether
the flow is above or below its rate limit after the arrival of the current packet. To determine this,
we run the scheduling transaction in Figure 5-7 that uses a token bucket (the state variable tb) that
can be filled up until BURST_SIZE to decide if the arriving packet puts the flow above or below
min_rate.

Note that a single PIFO node with the scheduling transaction in Figure 5-7 is not sufficient. It
causes packet reordering within a flow: an arriving packet can cause a flow to move from a lower to a
higher priority and, in the process, leave before low priority packets from the same flow that arrived
earlier. The two-level tree solves this problem by attaching priorities to transmission opportunities
for a specific flow, instead of attaching priorities to specific packets. Now, if an arriving packet
causes a flow to move from low to high priority, the next packet scheduled from this flow is the
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1 # Replenish tokens
2 tb = tb + min_rate * (now - last_time)
3 if (tb > BURST_SIZE):
4 tb = BURST_SIZE
5

6 # Check if we have enough tokens
7 if (tb > p.size):
8 p.over_min = 0 # under min. rate
9 tb = tb - p.size

10 else:
11 p.over_min = 1 # over min. rate
12

13 last_time = now
14 p.rank = p.over_min
15

Figure 5-7: Scheduling transaction for minimum rate guarantees.

earliest packet of that flow chosen in FIFO order, not the packet that just arrived.

5.3.4 Other examples
We now briefly describe several more scheduling algorithms that can be programmed using PIFOs.

1. Fine-grained priority scheduling. Many algorithms schedule the packet with the lowest
value of a field initialized by the end host. These algorithms can be programmed by setting
the packet’s rank to the appropriate field. Examples of such algorithms and the fields they
use are: strict priority scheduling (IP TOS field), Shortest Flow First (flow size), Shortest
Remaining Processing Time (remaining flow size), Least Attained Service (bytes received for
a flow), and Earliest Deadline First (time until a deadline).

2. Service-Curve Earliest Deadline First (SC-EDF) [182] schedules packets in increasing
order of a deadline computed from a flow’s service curve, which specifies the service a flow
should receive over any given time interval. We can program SC-EDF using a scheduling
transaction that sets a packet’s rank to the deadline computed by the SC-EDF algorithm.

3. Rate-Controlled Service Disciplines (RCSD) [214] such as Jitter-EDD [203] and Hierar-
chical Round Robin [136] are a class of non-work-conserving schedulers. This class of
schedulers can be implemented using a combination of a rate regulator to shape traffic and
a packet scheduler to schedule the shaped traffic. An RCSD algorithm can be programmed
using PIFOs by programming the rate regulator using a shaping transaction and the packet
scheduler using a scheduling transaction.

4. Incremental deployment of programmable scheduling. Operators may wish to use pro-
grammable scheduling only for a subset of their traffic. This can be programmed as a
hierarchical scheduling algorithm, with one FIFO class dedicated to legacy traffic and an-
other to experimental traffic. Within the experimental class, an operator could program any
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scheduling tree, e.g., WFQ, LSTF, HPFQ.

5.3.5 Limitations of the PIFO programming model

Changing the scheduling order of all packets of a flow. A tree of PIFOs can enable some algo-
rithms (e.g., HPFQ in §5.2.2) where the relative scheduling order of buffered packets changes in
response to new packet arrivals. However, it does not permit arbitrary changes to the scheduling
order of buffered packets. In particular, it does not support changing the scheduling order for all
buffered packets of a flow when a new packet from that flow arrives.

An example of an algorithm that needs this capability is pFabric [68]. pFabric introduces
“starvation prevention” to schedule the packets of the flow with the shortest remaining size in FIFO
order, to prevent packet reordering within a flow. To see why this is beyond the capabilities of
PIFOs, consider the sequence of arrivals below, where pi(j) represents a packet from flow i with
remaining size j. The remaining size is the number of unacknowledged bytes in a flow.

1. Enqueue p0(7).
2. Enqueue p1(9), p1(8).
3. The scheduling order is: p0(7), p1(9), p1(8).
4. Enqueue p1(6).
5. The new order is: p1(9), p1(8), p1(6), p0(7).
Specifying these semantics are beyond the capabilities of PIFOs.6 For instance, adding a level

of hierarchy with a PIFO tree does not help. Suppose we programmed a PIFO tree implementing
FIFO at the leaves and picking among flows at the root based on the remaining flow size. This
would result in the scheduling order p1(9), p0(7), p1(8), p1(6), after enqueueing p1(6). The problem
is that there is no way to change the scheduling order for multiple references to flow 1 in the root
PIFO by enqueueing only one reference to flow 1.

A single PIFO can, however, implement pFabric without starvation prevention, which is identical
to the Shortest Remaining Processing Time (SRPT) discipline (§5.3.4). It can also implement the
Shortest Flow First (SFF) discipline (§5.3.4), which performs almost as well as pFabric [68].

Traffic shaping across multiple nodes in a scheduling tree. Our programming model attaches a
single shaping and scheduling transaction to a tree node. This lets us enforce rate limits on a single
node, but not across multiple nodes.

As an example, PIFOs cannot express the following policy: WFQ on a set of flows A, B, and C,
with the additional constraint that the aggregate throughput of A and B combined does not exceed
10 Mbit/s. One work around is to implement this as HPFQ across two classes C1 and C2, with C1
containing A and B, and C2 containing C alone. Then, we can enforce the rate limit of 10 Mbit/s
on C1 as in Figure 5-4. However, this is not equivalent to our desired policy. More generally, our
programming model for programmable scheduling establishes a one-to-one relationship between
the scheduling and shaping transactions, which excludes some scheduling algorithms.

Output rate limiting. The PIFO abstraction enforces rate limits using a shaping transaction, which

6This is ironic because we started this project to program pFabric on a high-speed router, but have ended up being
able to do almost everything but that!
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Figure 5-8: A router with a single pipeline. Combinational logic and memory are shared across all
ports, both in the ingress and egress pipelines and in the scheduler.

determines a packet or PIFO reference’s scheduling time before it is enqueued into a PIFO. The
shaping transaction permits rate limiting on the input side, i.e., before elements are enqueued. An
alternate form of rate limiting is on the output, i.e., by limiting the rate at which elements are
scheduled.

To illustrate the difference between input and output rate limiting, consider a scheduling
algorithm with two priority queues, LO and HI, where LO is to be rate limited to 10 Mbit/s. To
program this using input rate limiting, we would use a shaping transaction to impose a 10 Mbit/s
rate limit on LO and a scheduling transaction to implement strict priority scheduling between LO
and HI. Now, assume packets from HI starve LO for a long period of time. During this time, packets
from LO, after leaving the shaping PIFO, accumulate in the PIFO shared with HI. Now, if there are
suddenly no more HI packets, all packets from LO are transmitted at the router’s line rate, and are
no longer rate limited to 10 Mbit/s until all instances of LO are drained out of the PIFO shared with
HI. Input rate limiting still provides long-term rate guarantees, while output rate limiting provides
short-term guarantees as well.

5.4 Design

We now present a hardware design for a programmable scheduler based on PIFOs. As discussed
earlier (Chapter 3), the number of packet processing pipelines depends on the aggregate capacity of
the router. For our PIFO design, we focus on a 64-port single-pipeline router with each port running
at 10 Gbit/s. Here, a single pipeline handles the aggregate processing requirements of all ports at
minimum packet size, i.e., 64 10 Gbit/s ports each transmitting 64 byte packets. This translates into
~1 billion packets per second, after accounting for minimum inter-packet gaps, or a 1 GHz clock
frequency for the pipeline. Figure 5-8 reviews the architecture of such a router.

We first describe how scheduling and shaping transactions can be implemented (§5.4.1). Then,
we show how a tree of PIFOs can be realized using a full mesh of PIFO blocks by appropriately
interconnecting these blocks (§5.4.2). We also describe how a compiler could automatically
configure this mesh from a scheduling tree (§5.4.3).
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Figure 5-10: A single PIFO block. Enqueue operations execute transactions in the atom pipeline
before enqueueing elements into a logical PIFO. Dequeue operations dequeue elements from logical
PIFOs before looking up their next hop in the lookup table within each PIFO block.

5.4.1 Scheduling and shaping transactions

To program and implement scheduling and shaping transactions, we use Domino (Chapter 4).
Domino allows us to express these transactions using Domino’s domain-specific language. We then
use the Domino compiler to compile the transactions down to a pipeline of Banzai atoms. One of
the examples used to evaluate Domino in §4.4 is the STFQ transaction from Figure 5-1. Specifically,
Table 4.5 shows that the STFQ transaction can be run at 1 GHz on a router pipeline with the Pairs
atom.

Similarly, we could use the Domino compiler to compile other scheduling and shaping transac-
tions to an atom pipeline. For example, the transactions for Token Bucket Filtering (Figure 5-4c),
minimum rate guarantees (§5.3.3), Stop-and-Go queueing (§5.3.2), and LSTF (§5.3.1), can all be
expressed as Domino programs. They can then be compiled to a router pipeline with a sufficiently
expressive atom. An important restriction in Domino is the absence of loops, which precludes
rank computations containing a loop with an unbounded iteration count. We have not, however,
encountered a scheduling or shaping transaction requiring this capability.

5.4.2 The PIFO mesh

We lay out PIFOs physically as a full mesh (Figure 5-9) of PIFO blocks (Figure 5-10). Each PIFO
block supports multiple logical PIFOs. These logical PIFOs correspond to PIFOs for different
output ports or different classes in a hierarchical scheduling algorithm (e.g., the Left and Right class
in Figure 5-2), which share physical resources such as memory and combinational logic required
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Figure 5-12: Compiling Hierarchies with Shaping (Figure 5-4) to a PIFO mesh. Same comments as
Figure 5-11 apply.

for a PIFO. This is analogous to multiple virtual machines being multiplexed on top of a single
physical machine.

We expect a small number of PIFO blocks in a typical router (e.g., fewer than five) because each
PIFO block corresponds to a different level of a hierarchical scheduling tree, and most practical
hierarchical scheduling algorithms we know of do not require more than 2 or 3 levels of hierarchy.
As a result, a full mesh between these blocks is feasible (§5.5.3 has more details).

PIFO blocks run at 1 GHz and contain an atom pipeline to execute scheduling and shaping trans-
actions before enqueueing into a logical PIFO. In every clock cycle, each PIFO block supports one
enqueue and dequeue operation on a logical PIFO residing within that block (shaping transactions
require more than one operation per clock cycle and are discussed in §5.4.4). We address a logical
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PIFO within a block with a logical PIFO ID.
The interface to a PIFO block is:

1. Enqueue an element (packet or reference to another PIFO) given a logical PIFO ID, the
element’s rank, and some metadata that will be carried with the element such as the packet
length required for STFQ’s rank computation. The enqueue returns nothing.

2. Dequeue from a specific logical PIFO ID within the block. The dequeue returns either a
packet or a reference to another PIFO.

After a dequeue, besides transmitting a packet, a PIFO block may communicate with another
PIFO block for two reasons:

1. To dequeue a logical PIFO in another block, e.g., when dequeueing a sequence of PIFOs from
the root to a leaf of a scheduling tree to transmit packets.

2. To enqueue into a logical PIFO in another block, e.g., when enqueueing a packet that has just
been dequeued from a shaping PIFO.

We configure these post-dequeue operations using a small lookup table, which looks up the “next
hop” following a dequeue. This lookup table specifies an operation (enqueue, dequeue, transmit),
the PIFO block for the next operation, and any arguments the operation needs.

5.4.3 Compiling from a scheduling tree to a PIFO mesh
A programmer should not have to manually configure a PIFO mesh. Instead, a compiler would
translate from a scheduling tree to a PIFO mesh configuration implementing that tree. We have not
yet prototyped this compiler, but we illustrate how it would work using HPFQ (Figure 5-2) and
Hierarchies with Shaping (Figure 5-4).

The compiler first converts the scheduling tree to a logical PIFO tree that specifies the enqueue
and dequeue operations on each logical PIFO. Figures 5-11a and 5-12a show the logical PIFO tree
for the scheduling trees in Figures 5-2 and 5-4 respectively. It then overlays this tree over a PIFO
mesh by assigning every level of the tree to a PIFO block and configuring the lookup tables to
connect PIFO blocks as required by the tree. Figure 5-11b shows the PIFO mesh for Figure 5-2,
while Figure 5-12b shows the PIFO mesh for Figure 5-4.

If a particular level of the tree has more than one enqueue or dequeue from another level, which
arises in the presence of shaping transactions (§5.4.4), we allocate new PIFO blocks to respect the
constraint that any PIFO block provides only one enqueue and dequeue operation per clock cycle.
For instance, Figure 5-12b has an additional PIFO block containing TBF_Right alone. Finally, we
use the Domino compiler to compile scheduling and shaping transactions.

5.4.4 Challenges with shaping transactions
Each PIFO block supports one enqueue and dequeue operation per clock cycle. This suffices for any
algorithm that only uses scheduling transactions (work-conserving algorithms) because, for such
algorithms, each packet needs at most one enqueue and one dequeue at each level of its scheduling
tree, and we map the PIFOs at each tree level to a different PIFO block.

However, shaping transactions pose additional challenges. Consider Hierarchies with Shaping
(Figure 5-12a). When the shaping transaction enqueues elements into TBF_Right, these elements
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will be released into WFQ_Root at a future time 𝑇 . The external enqueue into WFQ_Root may
also happen at 𝑇 , if a packet arrives exactly at 𝑇 . This creates a conflict because there are two
enqueue operations in the same clock cycle. Conflicts may also occur on dequeues. For instance, if
TBF_Right shared its PIFO block with another logical PIFO, dequeue operations to the two logical
PIFOs could occur at the same time because TBF_Right can be dequeued at any arbitrary wall-clock
time.

In a conflict, only one of the two operations can proceed. We resolve this conflict in favor of
scheduling PIFOs. Shaping PIFOs are used for rate limiting flows to a rate lower than the output
port’s line rate. Therefore, they can afford to be delayed by a few clocks until there are no conflicts.
By contrast, delaying scheduling decisions of a scheduling PIFO would mean that the router would
idle and not satisfy its line-rate guarantee on the port the scheduling PIFO belongs to.

As a result, shaping PIFOs only get best-effort service. There are workarounds to this. One
is overclocking the pipeline at (say) 1.25 GHz instead of 1 GHz, providing spare clock cycles for
such best-effort processing of shaping PIFOs. Another is to provide multiple ports to a PIFO block
to support multiple operations every clock. These techniques are commonly used in routers for
background tasks such as reclaiming buffer space, and can be applied to the PIFO mesh as well.

5.5 Hardware Implementation

This section describes the hardware implementation of a PIFO-based programmable scheduler. We
discuss performance requirements for a single PIFO block (§5.5.1), the implementation of a single
PIFO block (§5.5.2), and the full-mesh interconnect between PIFO blocks (§5.5.3). Finally, we
estimate the additional chip area incurred by our design (§5.5.4).

5.5.1 Performance requirements for a PIFO block

Our goal is a programmable scheduler competitive with routers such as the Broadcom Trident
II [18], used in many datacenters today. Based on the Trident II, we target 1000 flows that can
be flexibly allocated across logical PIFOs. We target a 12 MByte packet buffer size [40] with
a cell size7 of 200 bytes. In the worst case, every packet is a single cell. Therefore, up to 60K
packets/elements per PIFO block can be spread out over multiple logical PIFOs.

Based on these requirements, our baseline design targets a PIFO block that supports 64K packets
and 1024 flows that can be shared across 256 logical PIFOs. These 256 logical PIFOs could support
up to 256 output ports at the root level of a scheduling hierarchy. At the intermediate levels, the
logical PIFOs could support up to 256 classes spread out across all output ports. Further, we target
a 16-bit rank field and a 32-bit metadata field (e.g., p.length in Figure 5-1) for our PIFO block.
We put 5 such blocks together into a 5-block PIFO mesh that can support up to 5 levels of hierarchy
in a scheduling algorithm, sufficient for all practical hierarchical schedulers we know of.

7Packets in routers are allocated in small units called cells.

91



5.5.2 A single PIFO block
A PIFO block supports 2 operations: an enqueue that inserts an element into a logical PIFO within
the block and a dequeue to remove the head of a logical PIFO within the block. We first consider
two strawman designs for a PIFO block: a flat sorted array and a heap. We show how neither meets
our requirements. We then describe our implementation of a PIFO block. We start with a PIFO
block supporting a single logical PIFO and then show how it easily extends to support multiple
logical PIFOs in the same block.

One strawman hardware implementation of a single PIFO is a flat sorted array. In this im-
plementation, an incoming element would be compared against all array elements in parallel to
determine a location for the new element, and then inserted there by shifting the array. However,
each comparison needs one comparator circuit; supporting 64K parallel comparators is infeasible in
hardware.

Another hardware implementation for a PIFO, which is essentially a priority queue, is a heap in
hardware. For instance, P-heap is a pipelined binary heap scaling to 4-billion entries [79, 80]. A
capacity of 4 billion is far more than what we need (64K). However, each P-heap supports traffic
belonging to a single 10 Gbit/s input port in an input-queued router; there is a separate P-heap
instance for each port [79]. Having a separate P-heap per port incurs prohibitive area overhead on
a single-pipeline shared-memory router, where the packet buffer and scheduling logic are shared
across all ports to reduce area overhead. We also found it challenging to overlay multiple logical
PIFOs over a single physical P-heap, which would have allowed the same physical P-heap to be
shared across ports.

In contrast to the two strawman designs, our design for the PIFO exploits two domain-specific
characteristics. First, the packet buffers on routers used in datacenters today are much smaller (tens
of megabytes) than those in deep-buffered core routers (hundreds of megabytes) in the past. This
permits a simpler, albeit less scalable, design relative to heaps because the design needs to support
far fewer entries.

Second, there is considerable structure in the pattern of ranks within a PIFO. Nearly all practical
scheduling algorithms group packets into flows or classes, e.g., based on traffic type, ports, or
addresses. They then schedule a flow’s packets in FIFO order because packet ranks increase across
a flow’s consecutive packets to prevent packet reordering within a flow. Thus, a PIFO needs to only
sort across the head packets of all flows, as opposed to all packets in the buffer.8

This motivates a design with two parts (Figure 5-13):
1. A flow scheduler that picks the next element to dequeue based on the ranks of the head

(earliest) elements of all flows. The flow scheduler is effectively a PIFO consisting of the
head elements of all flows.

2. A rank store, a FIFO bank that stores the ranks of elements beyond the head for each flow in
FIFO order.

This decomposition reduces the number of elements requiring sorting from the number of
packets (64K) to the number of flows (1024). Maintaining a flat sorted array of 1024 elements turns
out to be much more feasible in today’s transistor technology.

8Last-In First-Out (LIFO) is a counterexample. We can handle LIFO by creating a new flow for every packet, so
long as there are fewer than 1024 packets (flows) in the buffer at any time.
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Figure 5-13: Block diagram of PIFO block with a flow scheduler and a rank store. Logical PIFOs
and metadata are not shown for simplicity.

During an enqueue, an element (both rank and metadata) is appended to the end of the appropriate
FIFO in the rank store. For a flow’s first element, we bypass the rank store and directly push it into
the flow scheduler. To permit enqueues into this PIFO block, we also supply a flow ID argument to
the enqueue operation. During dequeues, we dequeue the element with the earliest rank among the
head elements of all flows in the flow scheduler. We then insert the next element after the head for
the flow that was just dequeued.

The FIFO bank needed for the rank store is a well understood hardware design. Such FIFO
banks are used to buffer packet payloads in router queues and substantial engineering effort has
gone into optimizing them. As a result, we focus our discussion here on the flow scheduler alone.

The flow scheduler. The flow scheduler sorts an array of flows using the ranks of the head elements
of all flows. It supports one enqueue and one dequeue to its enclosing PIFO block every clock cycle,
which translates into the following operations on the flow scheduler every clock cycle.

1. Enqueue operation: Inserting a flow into the flow scheduler when the flow goes from empty
to non-empty.

2. Dequeue operation: Removing a flow from the flow scheduler that empties once it is scheduled,
(or) removing and reinserting a flow into the flow scheduler with the rank of the next element
if the flow is still backlogged.

The operations above require the flow scheduler to internally support two kinds of operations
every clock cycle.

1. Push up to two elements into the flow scheduler: one each for an enqueue’s insert and a
dequeue’s reinsert.

2. Pop one element: for the removal of a flow because of a dequeue.
These internal operations access all of the flow scheduler’s elements in parallel. To facilitate this,
we implement the flow scheduler in flip flops, unlike the rank store, which is in SRAM.

The flow scheduler is organized in hardware as a sorted array, where a push is implemented by
executing the three steps below (Figure 5-14).

1. Compare the incoming rank against all ranks in the array in parallel using a comparator. This
produces a bit mask of comparison results indicating if the incoming rank is greater/less than
an array element’s rank.

2. Find the first 0-to-1 transition in this bit mask, using a priority encoder. The location of this
transition determines the index to push into.
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3. Push the element into this index, by shifting the array.
A pop is implemented by shifting the head element out of the sorted array.

So far, we have focused on a flow scheduler implementation handling a single logical PIFO. We
can extend this to handle multiple logical PIFOs backed by the same underlying physical hardware.
To do so, we keep elements sorted by rank, regardless of the logical PIFO they belong to; hence,
the push logic does not change. To pop from a specific logical PIFO, we compare the dequeue’s
logical PIFO ID against all elements to find elements with that logical PIFO ID alone. Among these
elements, we find the first using a priority encoder, and remove this element by shifting the array.
The rank store implementation does not change when introducing logical PIFOs; however, we do

94



require that a flow belong to exactly one logical PIFO.
Recall that to support one enqueue and one dequeue every clock cycle, the flow scheduler needs

to support 2 pushes and 1 pop every clock cycle. To concurrently issue 2 pushes and 1 pop every
clock cycle, we provision 3 parallel digital circuits (Figure 5-14). Both the push and pop require 2
clock cycles to complete and need to be pipelined to maintain the required throughput (Figure 5-15).
For pushes, the first stage of the pipeline executes the parallel comparison and priority encoder steps
to determine an index; the second stage pushes the element into the array using the index. Similarly,
for pops, the first stage executes the equality check (for logical PIFO IDs) and priority encoder steps
to compute an index; the second stage pops the head element out of the array using the index.

Our implementation meets timing at 1 GHz and supports up to one enqueue/dequeue operation
on a logical PIFO within a PIFO block every clock cycle. Because a reinsert operation requires a pop,
followed by an access to the rank store for the next element, followed by a push, our implementation
supports a dequeue from the same logical PIFO only once every 4 clock cycles. This is because
if a dequeue is initiated in clock cycle 1, the pop for the dequeue completes in 2, the rank store is
accessed in 3, and the push is initiated in 4. This makes clock cycle 5 the earliest time to reissue
a dequeue. This restriction is inconsequential in practice. A dequeue every 4 clock cycles from
a logical PIFO is sufficient to service the highest link speed today, 100 Gbit/s, which requires a
dequeue at most once every 5 clock cycles for a minimum packet size of 64 bytes. Dequeues to
distinct logical PIFO IDs are still permitted every clock cycle.

5.5.3 Interconnecting PIFO blocks
An interconnect between PIFO blocks allows PIFO blocks to enqueue into and dequeue from other
blocks. Because the number of PIFO blocks is small, we provide a full mesh between them. For a
5-block PIFO mesh as in our baseline design, this requires 5*4 = 20 sets of wires between PIFO
blocks. Each set carries all the inputs required for specifying an enqueue and dequeue operation on
a PIFO block.

We now calculate the size of the inputs required to specify enqueue and dequeue operations. For
our baseline design (§5.5.1), for an enqueue, we require a logical PIFO ID (8 bits), the element’s
rank (16 bits), the element meta data (32 bits), and the flow ID (10 bits). For a dequeue, we
need a logical PIFO ID (8 bits) and wires to store the dequeued element’s metadata field (32 bits).
Combining both enqueue and dequeue, this adds up to 106 bits per set of wires, or 2120 bits for
the mesh. This is a small number of wires for an entire chip. For example, RMT’s match-action
pipeline uses 4000 1-bit wires between a a pair of pipeline stages to move its 4K packet header
vector between stages [86].

5.5.4 Area overhead
Because we target a single-pipeline router, the scheduling logic is shared across all ports and a single
PIFO mesh services an entire router. Therefore, to estimate the area overhead of a programmable
scheduler, we estimate the area overhead of a single PIFO mesh. Our overhead does not have to
be multiplied by the number of ports and is the same for two single-pipeline routers with equal
aggregate packet rates, e.g., a 6-port 100G router and a 60-port 10G router.
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To determine the area of a PIFO mesh, we compute the area of a single PIFO block and multiply
it by the number of blocks because the area of the interconnect itself is negligible (§5.5.3). For
a single block’s area, we separately estimate areas for the rank store, atom pipelines, and flow
scheduler. We ignore the area of the small next-hop lookup tables. We estimate the rank store’s area
by using SRAM estimates [50] and the atom pipeline’s area using the individual atom area numbers
from Table 4.4. We estimate the flow scheduler’s area by implementing it in Verilog [51] and
synthesizing it to a gate-level netlist in a 16-nm standard cell library using the Cadence Encounter
RTL Compiler [6]. The RTL Compiler also verifies that the flow scheduler meets timing at 1 GHz.

Overall, our baseline design consumes about 7.35 mm2 of chip area (Table 5.1). This is about
3.7% of the chip area of a router chip, using the minimum chip area estimate of 200 mm2 provided
by Gibb et al. [116]. In return for this 3.7%, we get a significantly more flexible packet scheduler
than current routers, which provide fixed two or three-level hierarchical scheduling. Our 3.7%
area overhead is similar to the overhead for other programmable router functions, e.g., 2% for
programmable parsing [116] and 15% for programmable header processing [86].

Component Area in mm2

Router chip 200–400 [116]
Flow Scheduler 0.224 (from synthesis)
SRAM (1 Mbit) 0.145 [50]
Rank store 64 K * (16 + 32) bits * 0.145 mm2 / Mbit = 0.445
Next pointers for linked lists in dynam-
ically allocated rank store

64 K * 16 bit pointers * 0.145 = 0.148

Free list memory for dynamically allo-
cated rank store

64 K * 16 bit pointers * 0.145 = 0.148

Head, tail, and count memory for each
flow in the rank store

0.1476 (from synthesis)

One PIFO block 0.224 + 0.445 + 0.148 + 0.148 + 0.1476 = 1.11 mm2

5-block PIFO mesh 5.55
300 atoms spread out over the 5-block
PIFO mesh for rank computations

6000 µm2* 300 = 1.8 mm2 (§5.4.1, Table 4.4)

Overhead for 5-block PIFO mesh (5.55 + 1.8) / 200.0 = 3.7 %

Table 5.1: A 5-block PIFO mesh needs 3.7% additional chip area relative to a baseline router.

Varying the flow scheduler’s parameters from the baseline. The flow scheduler has four parame-
ters: rank width, metadata width, number of logical PIFOs, and number of flows. Among these,
increasing the number of flows has the most impact on whether the flow scheduler meets timing at 1
GHz. This is because the flow scheduler uses a priority encoder, whose size is the number of flows
and whose critical path delay increases with the number of flows. With other parameters set to their
baseline values, we vary the number of flows to determine the eventual limits of a flow scheduler
with today’s transistor technology (Table 5.2), and find that we can scale to 2048 flows while still
meeting timing at 1 GHz.

The remaining parameters affect the area of a flow scheduler, but have little effect on meeting
timing at 1 GHz. For instance, starting from the baseline design of the flow scheduler that takes up
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# of flows Area
(mm2)

Meets timing at 1
GHz?

256 0.053 Yes
512 0.107 Yes
1024 0.224 Yes
2048 0.454 Yes
4096 0.914 No

Table 5.2: The flow scheduler’s area increases with the number of flows. The flow scheduler meets
timing until 2048 flows.

0.224 mm2, increasing the rank width to 32 bits increases it to 0.317 mm2, increasing the number
of logical PIFOs to 1024 increases it to 0.233 mm2, and increasing the metadata width to 64 bits
increases it to 0.317 mm2. In all cases, the flow scheduler continues to meet timing.

5.5.5 Additional implementation concerns

Coordination between enqueue and dequeue. When computing packet ranks on enqueue, some
scheduling algorithms access state modified on packet dequeues. An example is STFQ (§5.2.1)
that accesses the virtual_time variable when computing a packet’s virtual start time. This
enqueue-dequeue coordination can be implemented in two ways. One is shared state that can
be accessed on both enqueue and dequeue, similar to queue occupancy counters. Another is
to periodically synchronize the enqueue and dequeue views of the same state, potentially by
creating and recirculating a packet carrying this information from the dequeue to the enqueue
pipeline. For STFQ, the degree of short-term fairness is directly correlated with how up-to-date the
virtual_time information on the enqueue side is.

Buffer management. Our design focuses on programmable scheduling and does not manage the
allocation of a router’s data buffer across flows. Buffer management can use static buffer limits for
each flow. The limits can also be dynamic, e.g., RED [111] and dynamic buffer sizing [93].

In a single-pipeline shared-memory router, buffer management is orthogonal to scheduling, and
is implemented using counters that track flow occupancy in a shared buffer. Before a packet is
enqueued into the scheduler, if any counter exceeds a static or dynamic threshold, the packet is
dropped. A similar design for buffer management could be used with a PIFO-based scheduler as
well.

Priority Flow Control. Priority Flow Control (PFC) [42] is a standard that allows a router to send
a pause message to an upstream router requesting it to cease transmission of packets belonging
to particular flows. PFC can be integrated into our hardware design by excluding certain flows
in the flow scheduler during the dequeue operation if they have been paused because of a PFC
pause message. These flows can be included again when a PFC resume message is received. This
exclusion-inclusion process can be accomplished by using a bitmask to indicate which flows are
currently excluded or included and ANDing with this bitmask when dequeueing from the flow
scheduler.
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5.6 Summary
Existing research into programmable and fast routers has looked at programming the router’s
parser [116] and its match-action pipeline [86]. But, so far, it has been considered off-limits to
program the packet scheduler—in part because the desired algorithms are so varied, and because
the scheduler sits at the heart of the shared packet buffer where timing requirements are tightest. It
has been widely assumed too hard to find a useful abstraction that can also be implemented in fast
hardware.

The results in this chapter suggest a promising abstraction for programmable packet scheduling.
Our abstraction exploits the fact that in many practical schedulers, the relative order of packets
that are already buffered does not change in response to new packet arrivals. Put differently, when
a packet arrives, it can be pushed into the right location based on a packet priority (push in), but
packets are always dequeued from the head (first out). This observation suggests a natural primitive
for programmable scheduling called a Push In First Out Queue (PIFO). A PIFO is a priority queue
where packets are pushed in based on a rank field, and the next packet to be dequeued is the packet
with the earliest rank.

A single PIFO expresses many schedulers, e.g., token bucket shaping, weighted fair queueing,
and strict priority scheduling. Further, PIFOs can be combined to express hierarchical schedulers.
Finally, PIFOs are feasible in hardware: a hardware design for a programmable 5-level hierarchical
scheduler costs less than 4% additional chip area.
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Chapter 6

Marple: Programmable and Scalable
Network Measurement

Effective performance monitoring of large networks is crucial to quickly localize problems like
high queueing latency [23], TCP incast [202], and load imbalance across network links [65]. A
common approach to network monitoring is to collect information from the end host network
stack [209, 196, 166] or to use end-to-end probes [120] to diagnose performance problems. While
end hosts provide application context, they lack visibility to localize performance problems at links
deep inside the network. For example, using end host approaches alone, it is challenging to localize
queue buildup to a particular router or pinpoint traffic causing the queue buildup, forcing operators
to infer the network-level root causes indirectly [120].

Router-based monitoring could allow operators to diagnose problems with more direct visibility
into performance statistics. However, traditional router mechanisms like sampling [8, 47], mirror-
ing [10, 124, 215], and counting [96, 153] are quite restrictive. Sampling and mirroring miss events
of interest as it is infeasible to collect information on all packets, while counters only track traffic
volume statistics. None of these mechanisms provides relevant performance data, like queueing
delays.

Some upcoming technologies recognize the need for better performance monitoring using
routers. In-band network telemetry [23] writes queueing delays experienced by a packet on the
packet itself, allowing end hosts to localize delay spikes. The Tetration chip [11] provides a flow
cache that measures flow-level performance metrics. These metrics are useful, but they are exposed
at a fixed granularity (e.g., per 5-tuple), and the metrics themselves are fixed. For example, the list
of exposed metrics includes flow-level latency and packet size variation, but not latency variation,
i.e., jitter.

Operator requirements are constantly changing, and redesigning hardware for every new re-
quirement is expensive. We believe that the trajectory of adding fixed-function router monitoring
piecemeal is unsustainable. Instead, we advocate building performance monitoring primitives that
can be flexibly reused for a variety of monitoring needs.

In this chapter, we apply language-directed hardware design to the problem of flexible per-
formance monitoring, inspired by early efforts on designing hardware to support high-level lan-
guages [156, 100, 200]. Specifically, we first design a language that can express a broad variety of
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Figure 6-1: Operators issue Marple queries. These are compiled into router programs for pro-
grammable routers augmented with our new programmable key-value store. Routers stream results
from this query to collection servers that also house the backing store for the key-value store.

performance monitoring use cases. We then design high-speed router hardware primitives in service
of this language. By designing hardware to support an expressive language, we believe the resulting
hardware design can support a wide variety of current and future performance monitoring needs.

Figure 6-1 provides an overview of our performance monitoring system. To use the system,
an operator writes a query in a domain-specific language called Marple, either to implement a
long-running monitor for a statistic (e.g., detecting TCP timeouts), or to troubleshoot a specific
problem (e.g., incast [202]) at hand. The query is compiled into a router program that runs on the
network’s programmable routers, augmented with new router hardware primitives that we design
in service of Marple. The routers stream results out to collection servers, where the operator can
retrieve query results. We now briefly describe the three components of our system: the query
language, the router hardware, and the query compiler.

Performance query language (§6.1). Marple uses familiar functional constructs like map, filter,
groupby, and zip for performance monitoring. Marple provides the abstraction of a stream
that contains performance information for every packet at every queue in the network (§6.1.1).
Programmers can focus their attention on traffic experiencing interesting performance using filter

(e.g., packets with high queueing latencies), aggregate information across packets in flexible
ways using groupby (e.g., compute a moving average over queueing latency per flow), compute
new stateless quantities using map (e.g., binning a packet’s timestamp into an epoch), and detect
simultaneous performance conditions using zip (e.g., when the queue depth is large and the number
of connections in the queue is high).

Hardware design for performance queries (§6.2). A naive implementation of Marple might stream
every packet’s metadata from the network to a central location and run streaming queries against
it. Modern scale-out data-processing systems support ~100K–1M operations per second per
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core [4, 21, 125, 2, 48], but processing every single packet (assuming a relatively large packet size
of 1 KB) from a single 1 Tbit/s router would need ~100M operations per second—2–3 orders of
magnitude more than what existing systems support.

Instead, we leverage high-speed programmable routers [86, 60, 3, 25] as first-class citizens in
network monitoring, because they can programmatically manipulate multi-Tbit/s packet streams.
Early filtering and flexible aggregation on routers drastically reduce the number of records per
second streamed out to a standard data-processing system running on the collection server.

While programmable routers support many of Marple’s stateless language constructs that modify
packet fields alone (e.g., map and filter), they do not support aggregation of state across packets
for a large number of flows (i.e., groupby). To support flexible aggregations over packets, we design
a programmable key-value store in hardware (§6.2), where the keys represent flow identifiers and
the values represent the state computed by the aggregation function. This key-value store must
update values at the rate of 1 packet per clock cycle (at 1 GHz [86, 7]) and support millions of
keys/flows. Unfortunately, neither SRAM nor DRAM is simultaneously fast and dense enough to
meet both requirements.

We split the key-value store into a small but fast on-chip cache in SRAM and a larger but slower
off-chip backing store in DRAM. Traditional caches incur variable write latencies due to cache
misses; however, line-rate packet forwarding requires deterministic latency guarantees. Our design
accomplishes this by never reading back a value into the cache if it has already been evicted to the
backing store. Instead, it treats a cache miss as the arrival of a packet from a new flow. When a flow
is evicted, we merge the evicted flow’s value in the cache with the flow’s old value in the backing
store. Because merges occur off the critical packet processing path and only during evictions, the
backing store can be implemented in software on a separate collection server or on off-chip DRAM
on the router.

While it is not always possible to merge an aggregation function without losing accuracy, we
characterize a class of affine aggregation functions, which we call linear-in-state, for which accurate
merging is possible. Many useful aggregation functions are linear-in-state, e.g., counters, predicated
counters (e.g., count only TCP packets that saw timeouts), exponentially weighted moving averages,
and functions computed over a finite window of packets. We design a router instruction to support
linear-in-state functions, finding that it easily meets timing at 1 GHz, while occupying modest
silicon area.

Query compiler (§6.3). We implement a compiler that takes Marple queries and compiles them into
router configurations for two targets (§6.3): (1) the P4 behavioral model [37], an open source pro-
grammable software router that can be used for end-to-end evaluations of Marple on Mininet [149],
and (2) Banzai [188], a simulator for high-speed programmable router hardware that can be used to
experiment with different instruction sets. The Marple compiler detects linear-in-state aggregations
in input queries and successfully targets the linear-in-state router instruction that we add to Banzai.

Evaluation (§6.4). We show that Marple can express a variety of useful performance monitoring
examples, like detecting and localizing TCP incast and measuring the prevalence of out-of-order
TCP packets. Marple queries require between 4 and 11 pipeline stages, which is modest for a
32-stage router pipeline [86]. We evaluate our key-value store’s performance using trace-driven
simulations. For a 64 Mbit on-chip cache, which occupies about 10% of the area of a 64×10-Gbit/s
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Construct Description
pktstream Stream of packet performance metadata.
filter(R, pred) Output tuples in R satisfying predicate pred.
map(R, [exprs], Evaluate expressions, [exprs], over fields of R,

[fields]) emitting tuples with new fields, [fields].
groupby(R, Evaluate function fun over the input stream R

[fields], fun) partitioned by fields, producing tuples on emit().

zip(R, S) Merge fields in incoming R and S tuples.

Table 6.1: Summary of Marple language constructs.

router chip, we estimate that the cache eviction rate from a single top-of-rack router can be handled
by a single 8-core server running Redis [43]. We evaluate Marple’s usability through two Mininet
case studies that use Marple to troubleshoot high tail latencies [61] and measure the distribution of
flowlet sizes [65]. Marple is open source and available at http://web.mit.edu/marple.

6.1 The Marple Query language
This section describes the Marple query language. §6.2 then covers the router implementation of
the language constructs, while §6.3 describes the compiler. Marple provides the abstraction of a
network-wide stream of performance information. The tuples in the stream contain performance
metadata, such as queue lengths and timestamps when a packet entered and departed queues, for
each packet at each queue in the network. Network operators write queries on this stream as if the
entire stream is processed by a single hypothetical server running the query. In reality, the compiler
partitions the query across the network and executes each part on individual routers.

Marple programs process the performance stream using familiar functional constructs (filter,
map, groupby, and zip), all of which take streams as inputs and produce a stream as output. This
functional language model is expressive enough to support diverse performance monitoring use
cases, but still simple enough to implement in high-speed hardware. Marple’s language constructs
are summarized in Table 6.1.

6.1.1 Packet performance stream
As part of the base input stream, which we call pktstream, Marple provides one tuple for each
packet at each queue with the following fields.

(router, qid, hdrs, uid, tin, tout, qsize)

router and qid denote the router and queue at which the packet was observed. A packet may
traverse multiple queues even within a single router, so we provide distinct fields. The regular packet
headers (Ethernet, IP, TCP, etc.) are available in the hdrs set of fields, with a uid that uniquely
determines a packet.1

The packet performance stream provides access to a variety of performance metadata: tin and
tout denote the enqueue and dequeue timestamps of a packet, while qsize denotes the queue depth

1It is usually possible to use a combination of the 5-tuple and IP ID field as the uid.
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when a packet is enqueued. It is beneficial to have two timestamps to detect co-habitation of the
queue by packets belonging to different flows. Additionally, it is beneficial to have a queue size,
since we cannot always determine the queue size from the two timestamps: a link may service
multiple queues, and the speed at which any specific queue drains may not be known.

Tuples in pktstream are processed in order of packet dequeue time (tout), because this is the
earliest time at which all tuple fields in pktstream are known.2 If a packet is dropped, tout and
qsize are infinity. Tuples corresponding to dropped packets may be processed in an arbitrary
order.

6.1.2 Restricting packet performance metadata of interest
Consider the example of tracking packets that experience high queueing latencies at a specific queue
(Q) and router (S). This is expressed by the query:

result = filter(pktstream, qid == Q and router == S
and tout - tin > 1ms)

As shown above, the filter operator restricts the user’s attention to those tuples with the
relevant performance metadata. A filter has the form filter(R, pred) where R is some stream
containing performance metadata (e.g., pktstream), and the filter predicate pred may involve
packet headers, performance metadata, or both. The result of a filter is another stream that
contains only tuples satisfying the predicate.

6.1.3 Computing stateless functions over packets
Marple lets users compute functions of the fields available in the incoming stream, to express new
quantities of interest. A simple example is rounding packet timestamps to an ‘epoch’:

result = map(pktstream, [tin/epoch_size], [epoch]);

The map operator evaluates the expression tin/epoch_size, written over the fields available
in the tuple stream, and produces a new field epoch. The general form of this construct is map(R,
[expression], [field]) where a list of expressions over fields in the input stream R creates a
list of new fields in the map output stream.

6.1.4 Aggregating statefully over multiple packets
Marple allows aggregating statistics over multiple tuples at user-specified granularities. For example,
the following query counts packets belonging to each transport-level flow (i.e., 5-tuple):

result = groupby(pktstream, [5tuple], count)
def count([c], []):
c = c + 1;

2We assume clock synchronization to let us compare tin and tout values from different routers. Without
synchronization, the programmer can still write queries that do not compare time-valued fields tin and tout across
routers.
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Here, the groupby partitions the incoming pktstream into substreams based on the transport
5-tuple, and then applies the aggregation function count to count the number of tuples in each
substream.

Marple allows users to write flexible order-dependent aggregation functions over the tuples of
each substream. For example, a user can track latency spikes for each connection by maintaining an
exponentially weighted moving average (EWMA) of queueing latencies:

result = groupby(pktstream, [5tuple, router], ewma);
def ewma([avg], [tin, tout]):
avg = ((1-alpha)*avg) + (alpha*(tout-tin));

Here the aggregation function ewma evolves an EWMA avg using the current value of avg and
incoming packet timestamps. Unlike the previous count example, the EWMA aggregation function
depends on the order of packets being processed, i.e., the order of their 𝑡𝑜𝑢𝑡 values.

groupbys take the general form groupby(R, [aggFields], fun), where the aggregation func-
tion fun operates over tuples sharing attributes in a list aggFields of headers and performance
metadata. This construct is inspired by folds in functional programming [132]. Such order-
dependent folds are challenging to express in existing query languages. For instance, SQL only
allows order-independent commutative aggregations (e.g., count, average, sum).

The aggregation function fun is written in an imperative form, with two arguments: (1) a list of
state variables that represent the value(s) being aggregated across packets and (2) a list of relevant
incoming tuple fields that are used in the aggregation function. Each statement in fun can be an
assignment to an expression (x = ...), a branching statement (if pred {...} else {...}), or
a special emit() statement that controls the output stream of the groupby. Below, we show an
example of an aggregation that detects a new connection:

result = groupby(pktstream, [5tuple], new_flow);
def new_flow([fcount], []):
if fcount == 0:
fcount = 1
emit()

The output of a groupby is a stream containing the aggregation fields (e.g., 5-tuple) and the
aggregated values (e.g., fcount). The output stream contains only tuples for which the emit()

statement is encountered when executing the aggregation function. For example, the output stream
of new_flow consists of the first packet of every new transport-level connection. If the function has
no emit()s, the user can still read the aggregated fields and their current aggregated state values as
a table.

6.1.5 Chaining together multiple queries
Because all Marple constructs produce and consume streams, Marple allows users to write queries
that take in the results of previous queries as inputs. A stream of tuples flows from one query to the
next, and each query may modify information in the incoming tuple or even drop the tuple entirely.
For example, the program below tracks the size distribution of flowlets, i.e., bursts of packets from
the same 5-tuple separated by more than a fixed time amount delta.
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fl_track = groupby(pktstream, [5tuple], fl_detect);
def fl_detect([last_time, size], [tin]):

if (tin - last_time > delta):
emit()
size = 1

else:
size = size + 1

last_time = tin

The function fl_detect detects new flowlets using the last time a packet from the same flow
was seen. Because of the emit() statement’s location, the flowlet size from fl_track is only
streamed out to other operators when the first packet of a new flowlet is encountered.

fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

The map fl_bkts bins the flowlet size emitted by fl_track into a bucket index, which is used
to count the number of flowlets in the corresponding bucket in fl_hist.

6.1.6 Joining results across queries
Marple provides a zip operator that “joins” (in the database sense of the word) the results of two
queries to check whether two conditions hold simultaneously. Consider the example of detecting
the fan-in of packets from many connections into a single queue, characteristic of TCP incast [202].
This can be checked by combining two distinct conditions: (1) the number of active flows in a queue
over a short interval of time is high and (2) the queue occupancy is large.

A user can first compute the number of active flows over the current epoch using two aggrega-
tions:

R1 = map(pktstream, [tin/epoch_size], [epoch]);
R2 = groupby(R1, [5tuple, epoch], new_flow);
R3 = groupby(R2, [epoch], count);

The number of active flows in this epoch can be combined with the queue occupancy information
in the original packet stream through the zip operator:

R4 = zip(R3, pktstream);
result = filter(R4, qsize > 100 and count > 25);

The result of a zip operation over two input streams is a single stream containing tuples that
are a concatenation of all the fields in the two streams, whenever both input streams contain valid
tuples processed from the same original packet tuple. A zip is a special kind of stream join where
the result can be computed without having to synchronize the two streams, because tuples of both
streams originate from pktstream. The result of the zip can be processed like any other stream:
the filter in the result query checks the two incast conditions above.

We did not find a need for more general joins akin to joins in streaming query languages like
CQL [72]. Streaming joins have semantics that can be quite complex and may produce large results,
i.e., 𝑂(#𝑝𝑘𝑡𝑠2). Hence, Marple restricts users to simple zip joins.
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We show several examples of Marple queries in Table 6.2. For instance, Marple can express
measurements of simple counters, TCP reordering of various forms, high-loss connections, flows
with high end-to-end network latencies, and TCP fan-in.

6.1.7 Restrictions on Marple queries
Some aggregations are challenging to implement over a network-wide stream. For example,
consider an EWMA over some packet field across all packets seen anywhere in the entire network,
while processing packets in the order of their tout values. Even with clock synchronization, this
aggregation is hard to implement because it requires us to either (1) coordinate between routers or
(2) stream all packets to a central location. Both of these alternatives impose significant overheads;
hence, we disallow such queries.

Marple’s compiler rejects queries with aggregations that need to process multiple packets at
multiple routers in order of their tout values. Concretely, we only allow aggregations that relax
one of these three conditions, and thus either

1. operate independently on each router, in which case we naturally partition queries by router
(e.g., a per-flow EWMA of queueing latencies on a particular queue belonging to a particular
router), or

2. operate independently on each packet, in which case we have the packet perform the coordi-
nation by carrying the aggregated state to the next router on its path (e.g., a rolling average
link utilization seen by the packet along its path), or

3. are associative and commutative, in which case independent router-local results can be
combined in any order to produce a correct overall result for the network, e.g., a count of how
many times packets from a flow appeared throughout the network. In this case, we rely on the
programmer to annotate the aggregation function with the assoc and comm keywords.

6.2 Scalable Aggregation at a Router’s Line Rate
How should routers implement Marple’s language constructs? We require instructions on routers
that can aggregate packets into per-flow state (groupby), transform packet fields (map), stream only
packets matching a predicate (filter), or merge packets that satisfy two previous queries (zip).

Of these four language constructs, three (map, filter, and zip) are stateless: they operate on
packet fields alone and do not modify router state. Such stateless manipulations are already supported
by emerging programmable routers that support programmable packet header processing [86, 60,
25, 3]. On the other hand, the groupby construct needs to maintain and update router state on a
per-flow basis.

Stateful manipulation on a router for a groupby is challenging for two reasons. First, it needs to
be fast: the time budget to update state before the next packet arrives at a router can be as low as 1
ns (Chapter 4). Second, it needs large memories: the router needs to maintain state proportional to
the number of aggregated records (e.g., per flow), which may grow unbounded with time.

However, memories can either be fast and small (SRAM) or slow and large (DRAM). To address
this mismatch, we turn to the standard technique of caching. We build a two-level programmable
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Figure 6-2: Marple’s key-value store vs. a traditional cache

key-value store in hardware, where the keys represent aggregation fields (e.g., the five tuple) and the
values represent the state being updated by the aggregation function (e.g., a packet or byte counter).
To address both the fast and large requirements, our key-value store has a ‘split’ design. A small
and fast on-chip key-value store on the router’s on-chip SRAM processes packets at the router’s line
rate. This on-chip key-value store serves as a cache for a large and slow off-chip backing store in
DRAM that can hold a large number of flows.

In traditional cache designs, cache misses require accessing off-chip DRAM with non-deterministic
latencies [102] to read out the stored state. Because the aggregation operation requires us to read
the value in order to update it, the entire state update operation incurs non-deterministic latencies
in the process. This results in stalls in the router pipeline. Unfortunately, pipeline stalls affect the
ability to provide guarantees on line-rate packet processing (10–100 Gbit/s) on all router ports.

To avoid such non-determinism, we design our key-value store to process packets at the router’s
line rate even on cache misses (Figure 6-2). Instead of stalling the pipeline waiting for a result from
DRAM, we treat the incoming packet as the first packet from a new flow and initialize the flow’s
state to an initial value. Subsequent packets from the same flow are aggregated within the newly
created flow entry in the key-value store, until the flow is evicted. When the flow is eventually
evicted, we merge the flow’s value just before eviction with its value in the backing store using a
merge function, and write the merged result to the backing store.

In our design, the router only writes to the backing store during evictions, which is off the
critical path of packet processing. Importantly, it never reads from the backing store during cache
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misses, which is on the critical path of packet processing. This helps us avoid non-deterministic
latencies. The backing store may be stale relative to the on-chip cache if there have been no recent
evictions. We remedy this by forcing periodic evictions.

To merge a flow’s new aggregated value in the cache with its old value in the backing store,
the cache needs to maintain and send auxiliary state to the backing store during evictions. A naive
usage of auxiliary state is to store relevant fields from every packet of a flow, so that the backing
store can simply run the aggregation function over all the newly received packets when merging.
However, in a practical implementation, the auxiliary state should be bounded in size and not grow
with the number of packets in the flow.

Over the next four subsections, we describe two classes of queries that are mergeable with a
small amount of auxiliary state (§6.2.1 and §6.2.2), discuss queries that are not mergeable (§6.2.4),
and provide a general condition for mergeability that unifies the two classes of mergeable queries
and separates them from non-mergeable queries (§6.2.5).

6.2.1 The associative condition
A simple class of mergeable aggregations is the class of associative functions. Suppose the
aggregation function on state 𝑠 is 𝑠 = 𝑜𝑝(𝑠, 𝑓), where 𝑜𝑝 is an associative operation and 𝑓 is a
packet field. Then, if 𝑜𝑝 has an identity element 𝐼3 and a flow’s default value on insertion is 𝑠0 = 𝐼 ,
it is easy to show that this function can be merged using the function 𝑜𝑝(𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔, 𝑠𝑐𝑎𝑐ℎ𝑒), where
𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔 and 𝑠𝑐𝑎𝑐ℎ𝑒 are the value in the backing store and the value just evicted from the cache,
respectively. The associative condition allows us to merge aggregation functions like addition, max,
min, set union, and set intersection.

6.2.2 The linear-in-state condition
Consider the EWMA aggregation function, which maintains a moving average of queueing latencies
across all packets within a flow. The aggregation function updates the EWMA 𝑠 as follows:

𝑠 = (1− 𝛼) · 𝑠+ 𝛼 · (𝑡𝑜𝑢𝑡 − 𝑡𝑖𝑛)

We initialize 𝑠 to 𝑠0. Suppose a flow 𝐹 is evicted from the on-chip cache for the first time and
written to the backing store with an EWMA of 𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔.4

The first packet from 𝐹 after 𝐹 ’s first eviction is processed like a packet from a new flow in
the on-chip cache, starting with the state 𝑠0. Assume that 𝑁 packets from 𝐹 then hit the on-chip
cache, resulting in the EWMA going from 𝑠0 to 𝑠𝑐𝑎𝑐ℎ𝑒. Then, the correct EWMA 𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (i.e., for
all packets seen up to this point) satisfies:

𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − (1− 𝛼)𝑁𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑠𝑐𝑎𝑐ℎ𝑒 − (1− 𝛼)𝑁𝑠0

𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑠𝑐𝑎𝑐ℎ𝑒 + (1− 𝛼)𝑁(𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑠0)

3An identity element 𝐼 for an operation 𝑜𝑝 is an element such that 𝑜𝑝(𝑠, 𝐼) = 𝑠∀𝑠.
4When a flow is first evicted, it does not need to be merged.

108



Therefore, the correct EWMA can be obtained by: (1) having the on-chip cache store (1 − 𝛼)𝑁

as auxiliary state for each flow after each update, and (2) adding (1− 𝛼)𝑁(𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑠0) to 𝑠𝑐𝑎𝑐ℎ𝑒
when merging 𝑠𝑐𝑎𝑐ℎ𝑒 with 𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔.

We can generalize this example. Let p be a vector with the headers and performance metadata
from the last 𝑘 packets of a flow, where 𝑘 is an integer determined at query compile time (§6.3.3).
We can merge any aggregation function with state updates of the form 𝑆 = 𝐴(p) · 𝑆 + 𝐵(p),
where 𝑆 is the state, and 𝐴(p) and 𝐵(p) are functions of the last 𝑘 packets. We call this condition
the linear-in-state condition and say that 𝐴(p) and 𝐵(p) are functions of bounded packet history.

We say that an aggregation function is linear-in-state if, for every variable in the function, the
state update satisfies the linear-in-state condition. A query is linear-in-state if all its aggregation
functions are linear-in-state. Merging queries that are linear-in-state requires the router to store the
first 𝑘 and most recent 𝑘 packets for the key since it (re)appeared in the key-value store; Appendix A
describes the merge procedure for such queries in detail.

We now explain why the requirement of bounded packet history is important using real queries.
Consider the TCP non-monotonic query from Table 6.2, which counts the number of packets with
sequence numbers smaller than the maximum sequence number seen so far. The aggregation can be
expressed as:

count = count + (maxseq > tcpseq) ? 1 : 0

While the update superficially resembles 𝐴(p) ·𝑆+𝐵(p), the coefficient 𝐵(p) is a function of
maxseq, the maximum sequence number so far. This could be arbitrarily far back in the stream, and
hence 𝐵 here is not a function of bounded packet history. Intuitively, since 𝐵(p) is not a function
of bounded packet history, the auxiliary state required to merge count is large. We formalize this
intuition in §6.2.5.

In contrast, the slightly modified TCP out-of-sequence query from Table 6.2 is linear-in-state
because it can be written as:

count = count + (lastseq > tcpseq) ? 1 : 0

lastseq, the previous packet’s sequence number, depends only on the last 2 packets: the current
and the previous packet. Here, 𝐴(p) and 𝐵(p) are functions of bounded packet history, with 𝑘 = 2.
This is in contrast to maxseq, which depends on all packets seen so far.

6.2.3 Scalable aggregation functions
A groupby with no emit() and a linear-in-state (or associative) aggregation function can be
implemented scalably without losing accuracy. Examples of such aggregations from Table 6.2
include tracking successive packets within a TCP connection that are out-of-sequence and counting
the number of TCP timeouts per connection.

If a groupby uses an emit() to pass tuples to another query, it cannot be implemented scalably
even if its aggregation function is linear-in-state or associative. An emit() outputs the current
state of the aggregation function, which assumes the current state is always available in the router’s
on-chip cache. This is only possible if flows are never evicted, effectively shrinking the key-value
store to its on-chip cache alone.
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6.2.4 Handling non-scalable aggregations
While the linear-in-state and associative conditions capture several aggregation functions and enable
a scalable implementation, there are two practical classes of queries that we cannot scale: (1) queries
with aggregation functions that are neither associative nor linear-in-state and (2) queries where the
groupby has an emit() statement.

An example of the first class is the TCP non-monotonic query discussed earlier. An example of
the second class is the flowlet size histogram query from Table 6.2, where the first groupby emits
flowlet sizes, which are grouped into buckets by the second groupby.

There are workarounds for non-scalable queries. One is to rewrite queries to remove emit()s.
For instance, we can rewrite the loss rate query (Table 6.2) to independently record the per-flow
counts for dropped packets and total number of packets in separate key-value stores. An operator
can then consult both key-value stores every time they need the loss rate. Each key-value store can
be scaled, but the implementation comes at a transient loss of accuracy relative to precisely tracking
the loss rate after every packet using a zip. Second, an operator may be content with flow values
that are accurate for each time period between two evictions, but not across evictions (Figure 6-9b).
Third, an operator may want to run a query to collect data until the on-chip cache fills up and then
stop data collection. Fourth, if the number of keys is small enough to fit in the cache (e.g., if the key
is an application type), the system can provide accurate results without evicting any keys.

6.2.5 A unified condition for mergeability
We now present a unified condition that separates mergeable functions from non-mergeable ones.
Informally, mergeable aggregation functions are those that maintain auxiliary state linear in the size
of the function’s programmer-supplied state. This characterization also has the benefit of unifying
the associative and linear-in-state conditions. We introduce some notation (§6.2.5.1, §6.2.5.2, and
Figure 6-3) before presenting our formal results (§6.2.5.3).

6.2.5.1 Notation

A programmer supplies an aggregation function 𝑓 . 𝑓 takes as inputs an 𝑛-bit state vector and a 𝑝-bit
packet header vector and returns an updated 𝑛-bit state vector. 𝑓 captures incremental computations
over packet streams, such as a count of packets or an EWMA of packet latencies. 𝑓 can only
represent incremental computations where the size of state is fixed and does not grow with the
length of the packet stream. For example, 𝑓 can not represent a median over the packet stream,
which requires the aggregation function to maintain a log of all packets seen so far.

Given 𝑓 , we want two implementation functions.
1. An incremental implementation function 𝑔, which stores and updates both the state of 𝑓 and

any auxiliary state required to carry out the merge. Suppose that the state used by 𝑔 is 𝑛′ ≥ 𝑛
bits. 𝑛′ − 𝑛 is the size of auxiliary state.

2. A merge implementation function 𝑚 that can merge results from running 𝑔 over separate
packet streams.

We are interested in the question: can we merge two results from running 𝑔 on two packet
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𝑓 : {0, 1}𝑛 × {0, 1}𝑝 → {0, 1}𝑛(programmer’s incremental computation)

𝑔 : {0, 1}𝑛′ × {0, 1}𝑝 → {0, 1}𝑛′
(implementation’s incremental computation)

𝑚 : {0, 1}𝑛′ × {0, 1}𝑛′ → {0, 1}𝑛′
(implementation’s merge operation)

ℎ : {0, 1}𝑛′ → {0, 1}𝑛(transform implementation state to programmer state)
𝑠0 ∈ {0, 1}𝑛(programmer’s start state)

𝑠′0 ∈ {0, 1}𝑛
′
(implementation’s start state)

𝑚(𝑠′0, 𝑠
′) = 𝑠′ ∀𝑠 ∈ {0, 1}𝑛(𝑠′0 is an identity for 𝑚)

(𝑔,𝑚, ℎ, 𝑠′0) merges (𝑓, 𝑠0) if the 3 conditions below hold
𝑠0 = ℎ(𝑠′0)(implementation’s start equals programmer’s start)

(6.1)

𝑓(𝑓(𝑓(𝑠0, 𝑃1), 𝑃2), . . . , 𝑃𝑛) = ℎ(𝑔(𝑔(𝑔(𝑠′0, 𝑃1), 𝑃2), . . . , 𝑃𝑛)) ∀𝑛 ∈ N 𝑃1, 𝑃2, . . . , 𝑃𝑛 ∈ {0, 1}𝑝
(6.2)

ℎ(𝑔(𝑔(𝑔(𝑠′0, 𝑃1), 𝑃2), . . . , 𝑃𝑖+𝑗)) = ℎ(𝑚(𝑔(𝑔(𝑔(𝑠′0, 𝑃1), 𝑃2), . . . , 𝑃𝑖),

𝑔(𝑔(𝑔(𝑠′0, 𝑃𝑖+1), 𝑃𝑖+2), . . . , 𝑃𝑖+𝑗)))

∀𝑖, 𝑗 ∈ N 𝑃1, 𝑃2, . . . , 𝑃𝑖+𝑗 ∈ {0, 1}𝑝 (6.3)

Figure 6-3: Formal notation for understanding mergeability

streams into one result, so that it is equivalent to running 𝑓 on the concatenated stream, while
keeping the size of the auxiliary state small?

We say that a merge function successfully merges an aggregation function if Equations 6.1, 6.2,
and 6.3 hold. We use the notation 𝑓(𝑠, {𝑝1, . . . 𝑝𝑘}) to denote the composition of 𝑓 over a sequence
of packets.

6.2.5.2 The closure graph

We introduce the directed closure graph of 𝑓 , denoted 𝐺(𝑓). Suppose that at some point during the
aggregation, the programmer specified state is 𝑠. After running through some additional packets,
that state is updated to 𝑠′. If 𝑠 is known, then computing 𝑠′ is straightforward: simply execute the
aggregation 𝑓 on all the packets seen in the interim. However, if 𝑠 is not known, we can instead use
the packets seen to compute a function that tells us how to get from a symbolic state 𝑠 to the final
desired state 𝑠′. That is, given a sequence of packets {𝑝𝑘}, we can compute an iterated function
𝑓𝑖𝑡𝑒𝑟 ∈ {0, 1}𝑛 → {0, 1}𝑛, such that for any state 𝑠, 𝑓𝑖𝑡𝑒𝑟(𝑠) = 𝑓(𝑠, {𝑝𝑘}).

For an empty sequence, the corresponding iterated function is the identity function. Our goal is
to store some compact representation of the iterated function in the on-chip key-value store as part
of the auxiliary state. Conceptually, this iterated function is updated with each new packet that is
seen, so that when a key is evicted from the on-chip key-value store, an identifier for the updated
iterated function is sent to the backing store. The backing store then applies this iterated function to

111



the state 𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔 stored from a previous eviction to get the new value.
How does one update the iterated function stored on the router? The vertices of the closure

graph of 𝑓 are iterated functions 𝑓𝑖𝑡𝑒𝑟, and we let |𝐺(𝑓)| indicate the number of vertices. Since there
are a finite number of functions {0, 1}𝑛 → {0, 1}𝑛, the size of the graph is bounded. Each vertex
has an outgoing edge corresponding to every possible packet. For a given packet 𝑝, the iterated
function 𝑓𝑖 has an edge to the iterated function 𝑓𝑗 satisfying 𝑓(𝑓𝑖(𝑠), 𝑝) = 𝑓𝑗(𝑠) for all 𝑠.

The closure graph thus has the following property: given a sequence of packets {𝑝1, . . . 𝑝𝑘},
start at the identity function and, on the packet # 𝑖 in the sequence, follow the edge corresponding to
packet 𝑝𝑖. The ending vertex of this process is the iterated function that captures the effect of this
packet sequence on any starting state. We say that this ending vertex is the result of updating the
iterated function by the given sequence of packets. Conceptually, to update the iterated function
stored on the router given a new packet, we simply follow the edge labeled with that packet.

The size of the closure graph (i.e., the number of vertices) indicates the number of bits of
auxiliary state that are needed for a merge. For efficiently mergeable functions, the size of the
closure graph is small. This is because the router needs to tell the backing store what update to
perform on the value it currently has. Each iterated function in the closure graph is a possible
update, so the router needs to convey at least log |𝐺(𝑓)| auxiliary bits for the merge to be possible.

As an example, consider a simple counter, where 𝑓(𝑠, 𝑝) = 𝑠 + 1 and 𝑠0 = 0. If the counter
has 𝑛 bits, the closure graph is a ring of size 2𝑛, where vertex 𝑖 represents the iterated function
𝑓𝑖𝑡𝑒𝑟(𝑠) = 𝑠+ 𝑖. Note that all edges from vertex 𝑖 point to vertex 𝑖+ 1. For every observed packet,
the router walks one step further around the ring. This is implemented efficiently via adding 1 to an
𝑛-bit counter. After 𝐾 packets, the iterated function on the router is 𝑠+ 𝑘, where 𝑘 = 𝐾 mod 2𝑛.
Upon merging, this is sent to the backing store, which then knows to add 𝑘 to the existing backing
store value.

6.2.5.3 Proofs of theorems

Theorem 6.2.1. A merge function exists to successfully merge an aggregation function 𝑓 , provided
it can use up to 𝑛2𝑛 auxiliary bits.

Proof. We can represent each iterated function 𝑓𝑖𝑡𝑒𝑟 in 𝑛2𝑛 bits, using a list of 2𝑛 𝑛−bit numbers.
This list enumerates the output of the iterated function on every possible input, i.e., the 𝑘th item in
the list is 𝑓𝑖𝑡𝑒𝑟(𝑘). The router stores this representation. For each new packet 𝑝, the router computes
the update to each item 𝑘 in the list: 𝑓𝑖𝑡𝑒𝑟(𝑘)→ 𝑓(𝑓𝑖𝑡𝑒𝑟(𝑘), 𝑝). Upon a merge, the router sends this
representation to the backing store, which can then evaluate 𝑓𝑖𝑡𝑒𝑟(𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔), where 𝑠𝑏𝑎𝑐𝑘𝑖𝑛𝑔 is the
value stored in the backing store.

In general, requiring 𝑛2𝑛 bits is typically infeasible for even moderate values of 𝑛. This is
where the linear-in-state and associative conditions come in. We show that either of these conditions
requires only 𝑂(𝑛) auxiliary bits of space.

Theorem 6.2.2. Aggregation functions that are either linear-in-state or associative have a merge
function that uses only 𝑂(𝑛) auxiliary bits.
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Proof. The associative condition is trivial: by definition, no auxiliary bits are required because
the merge function simply applies the original aggregation function on the values in the cache and
the backing store. Hence, we focus on the linear-in-state condition. Suppose 𝑓 is an aggregation
function that is linear-in-state, i.e., 𝑓(S, 𝑝) = A(𝑝) · S+B(𝑝), where S is a state vector, and A,B
are matrices depending only on the incoming packet. Then:

𝑓(S0, {𝑝1, . . . , 𝑝𝑘}) = A(𝑝𝑘) . . .A(𝑝1) · S0 +C(𝑝1, 𝑝2, . . . , 𝑝𝑘) ≡ A′ · S0 +C(𝑝1, . . . , 𝑝𝑘)

Here, C is some function of only the packets 𝑝1 through 𝑝𝑘. A′ is a composition of the A
matrices for the observed packets. The router keeps track of A′ and C, which requires 𝑂(𝑛𝑑2)
space, where 𝑑 is the dimension of the state vector, and each dimension requires 𝑛 bits of storage.
These matrices are sent to the backing store upon eviction, at which point the merge operation
computes the new backing store value:

S𝑑 ← C(𝑝1, . . . , 𝑝𝑘) +A′ · S𝑑

It’s easy to verify that this is the proper merge procedure.

However, there are some functions that are not mergeable with so few auxiliary bits. One
example is the TCP-non-monotonic aggregation function:

def nonmt(maxseq, count, tcpseq):
if maxseq > tcpseq:
count = count + 1

else:
maxseq = tcpseq

nm_q = groupby(pktstream, 5tuple, nonmt);

Theorem 6.2.3. The TCP-non-monotonic function requires at least 𝑛2𝑛 auxiliary bits to merge.

Proof. Two pieces of state must be stored: the max sequence number and the count. For simplicity,
we assume each piece of state requires 𝑛 bits. We present a family of packet sequences, such that
there is an injection from the packet sequences to the vertices in the closure graph of 𝑓 . In other
words, starting from the identity, updating the identity iterated function by each sequence in this
family will result in a distinct iterated function.

Consider a family of packet sequences parameterized by a tuple (𝑎0, 𝑎1, . . . 𝑎2𝑛−1): the sequence
consists of 𝑎𝑖 packets with sequence number 𝑖, in increasing order of 𝑖. For each such tuple,
performing an update 𝑈 of the identity iterated function by the sequence for that tuple results in the
following final iterated function:

𝑈(𝑎0, . . . , 𝑎2𝑛−1) = 𝑓𝑖𝑡𝑒𝑟 such that 𝑓𝑖𝑡𝑒𝑟(𝑥, 𝑦) =

(︃
2𝑛 − 1, (𝑦 +

𝑥−1∑︁
𝑖=0

𝑎𝑖) mod 2𝑛

)︃

where 𝑥 and 𝑦 are the max sequence number and count, respectively. To see why this is the case,
recall that the iterated function is taking some previous max seq. number and count and trying to

113



update it by the packet sequence. If the max sequence number was 𝑥 = 𝑘 before, then the count
will increase by the number of packets with sequence number < 𝑘, which is

∑︀𝑘−1
0 𝑎𝑖.

Lemma 6.2.3.1. 𝑈 is an injection.

Proof. If (𝑎0, . . . , 𝑎2𝑛−1) ̸= (𝑎′0, . . . , 𝑎
′
2𝑛−1), then there is some 𝑘 (including 𝑘 = 0) such that

𝑎𝑘 ̸= 𝑎′𝑘 but 𝑎𝑗 = 𝑎′𝑗 for all 𝑗 < 𝑘. Let 𝑈(𝑎0, . . . , 𝑎2𝑛−1) = 𝑓𝑖𝑡𝑒𝑟 and 𝑈(𝑎′0, . . . , 𝑎
′
2𝑛−1) = 𝑓 ′

𝑖𝑡𝑒𝑟.
Then, for any 𝑦:

𝑓𝑖𝑡𝑒𝑟(𝑘 + 1, 𝑦)− 𝑓 ′
𝑖𝑡𝑒𝑟(𝑘 + 1, 𝑦) =

(︃
0,

𝑘∑︁
𝑖=0

𝑎𝑖 −
𝑘∑︁

𝑖=0

𝑎′𝑖

)︃
= (0, 𝑎𝑘 − 𝑎′𝑘) ̸= (0, 0)

Hence, 𝑓𝑖𝑡𝑒𝑟 ̸= 𝑓 ′
𝑖𝑡𝑒𝑟, making 𝑈 an injection.

There are 2𝑛2
𝑛 such packet sequences because each packet sequence is represented by a 2𝑛

element tuple, where each element is 𝑛 bits. This means that the closure graph has at least 2𝑛2𝑛

distinct vertices, and thus the number of auxiliary bits needed is at least log 2𝑛2𝑛 = 𝑛2𝑛.

Now we turn to the question: given an aggregation function, how easy is it to compute a merge
function that uses the smallest number of auxiliary bits? Since we know that the smallest number
of bits is log |𝐺(𝑓)|, we can construct 𝐺(𝑓). Constructing 𝐺(𝑓) is extremely inefficient, but is
possible.

Theorem 6.2.4. Given an aggregation function 𝑓 , we can demonstrate a algorithm to compute a
merge function using the smallest number of auxiliary bits.

Proof. To construct the closure graph, we start with a single node representing the identity function.
Starting at this node 𝑓0, we enumerate all 𝑝-bit values for a single packet 𝑃 , and compute the
updated iterated function 𝑓𝑃 satisfying 𝑓𝑃 (𝑠) = 𝑓(𝑓0(𝑠), 𝑃 ) for all 𝑠. If this iterated function has
not been seen yet, we create a new node for it. We join two nodes by an edge labeled with the
packet value that causes the transition between those two nodes and repeat this process from each
newly created node until all edges out of a node lead back to existing nodes5.

There are 2𝑛2
𝑛 possible iterated functions. We assume that given an iterated function, it is

possible to find that function in the existing partial closure graph in time 𝑂(𝑛2𝑛), the number of
bits needed to represent the number of iterated functions in the worst case. Then, since we must
enumerate every possible 𝑝-bit packet the total runtime is:

𝑂(# iters · # packets · # time to test if function has been seen) = 𝑂
(︀
2𝑛2

𝑛 · 2𝑝 · 𝑛2𝑛
)︀

This algorithm is hopeless in practice. However, a polynomial time algorithm is unlikely.
We demonstrate a hardness result by considering a decision version of this problem: given an

5We need a way to check node equality, i.e., function equality. We do this by a brute force check on all inputs to
both nodes/functions.
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aggregation function 𝑓 and merge function 𝑚, does 𝑚 successfully merge 𝑓 for all possible packet
inputs? This problem is probably simpler than finding a merge function with the smallest number of
auxiliary bits because it supplies a candidate merge function 𝑚 as an input, instead of searching for
the best merge function. Yet, even this problem turns out to be co-NP-hard.

Before we launch into the hardness proof, we must limit the scope of the problem. “All possible
packet inputs” includes packet sequences of arbitrary length. However, we can restrict ourselves to
sequences up to 2𝑛 packets.

Theorem 6.2.5. To determine whether 𝑚 merges 𝑓 on every packet sequence, it is sufficient to
consider packet sequences up to length 2𝑚𝑎𝑥(𝑛,𝑛′).

Proof. We show it is sufficient to check equation 6.2 on packet streams of length 𝐿 <= 𝑀 =
2𝑚𝑎𝑥(𝑛,𝑛′). This check fails only if there is a stream 𝑃𝑓𝑎𝑙𝑠𝑒 of length 𝐿 > 𝑀 that falsifies equation 6.2.
However, there must then also be a smaller stream 𝑃𝑠𝑚𝑎𝑙𝑙 of length 𝐿′ <= 𝑀 that falsifies
equation 6.2.

To see why, let’s say packet 𝐴 within 𝑃𝑓𝑎𝑙𝑠𝑒 first falsifies equation 6.2. If 𝐴′𝑠 position within
𝑃𝑓𝑎𝑙𝑠𝑒 is less than or equal to 𝑀 , the substream up to and including 𝐴 is 𝑃𝑠𝑚𝑎𝑙𝑙. If not, running 𝑓
repeatedly on the substream of packets until 𝐴 will result in some state value 𝑠 being repeated twice,
after seeing (say) packets 𝑃1 and 𝑃2. We can remove all packets after 𝑃1 and before 𝑃2, creating a
shorter stream that still falsifies 6.2. This process can be repeated until the stream length is less than
or equal to 𝑀 . This will eventually happen because there will always be a repeated state value by
the pigeon-hole principle because the number of packets in a sequence of length 𝑀 is greater than
the number of distinct states.

Now we know that checking whether 𝑚 successfully merges 𝑓 is decidable because we can
check packet sequences up to length 𝑀 , instead of the infinite set of all possible packet sequences.
However, it is intractable unless 𝑃 = 𝑁𝑃 .

Theorem 6.2.6. Given a merge function 𝑚 and aggregation function 𝑓 , verifying that 𝑚 successfully
merges 𝑓 is co-NP hard.6

Proof. Given (𝑓, 𝑠0) and (𝑔,𝑚, ℎ, 𝑠′0), we define the decision problem 𝑀𝐸𝑅𝐺𝐸(𝑓, 𝑠0, 𝑔,𝑚, ℎ, 𝑠′0),
which outputs whether (𝑔,𝑚, ℎ, 𝑠′0) merges (𝑓, 𝑠0). Recall that (𝑔,𝑚, ℎ, 𝑠′0) merges (𝑓, 𝑠0) if
Equations 6.1, 6.2, and 6.3 are satisfied. We’ll show that 𝑀𝐸𝑅𝐺𝐸 is co-NP-hard by reducing
𝑇𝐴𝑈𝑇𝑂𝐿𝑂𝐺𝑌 (a known co-NP-complete decision problem) to 𝑀𝐸𝑅𝐺𝐸.

An instance of 𝑇𝐴𝑈𝑇𝑂𝐿𝑂𝐺𝑌 is a boolean function 𝑡. The output is 1 when 𝑡 is a tautology, 0
otherwise. 𝑇𝐴𝑈𝑇𝑂𝐿𝑂𝐺𝑌 (𝑡) can be reduced to7 𝑀𝐸𝑅𝐺𝐸(𝑠⊕ 𝑡′, 0, 𝑠⊕ 𝑡′, 𝑂𝑅, 𝐼, 0),8where

1. 𝑠 ∈ {0, 1}
2. 𝑡 : {0, 1}𝑝 → {0, 1}
3. 𝑂𝑅 is the boolean OR function on two bools.
4. 𝐼 is the identity function.

6co-NP is made up of problems that are complements of problems in NP.
7This is a polynomial many-to-one reduction or a Karp reduction.
8t’(P) = (NOT t(P))
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First, we observe that 𝑀𝐸𝑅𝐺𝐸(𝑠 ⊕ 𝑡′, 0, 𝑠 ⊕ 𝑡′, 𝑂𝑅, 𝐼, 0) decides whether statement 6.4 is
true:

𝑡′(𝑃1)⊕ 𝑡′(𝑃2)⊕ . . . 𝑡′(𝑃𝑖+𝑗) = (𝑡′(𝑃1)⊕ 𝑡′(𝑃2) . . . 𝑡
′(𝑃𝑖))𝑂𝑅(𝑡′(𝑃𝑖+1)⊕ 𝑡′(𝑃𝑖+2) . . . 𝑡

′(𝑃𝑖+𝑗))
(6.4)

∀𝑖, 𝑗 ∈ N 𝑃1, 𝑃2, . . . , 𝑃𝑖+𝑗 ∈ {0, 1}𝑝

Next, we prove a lemma that shows the reduction from 𝑇𝐴𝑈𝑇𝑂𝐿𝑂𝐺𝑌 to 𝑀𝐸𝑅𝐺𝐸.

Lemma 6.2.6.1. Statement 6.4 is true iff 𝑡′(𝑃 ) = 0 ∀𝑃 .

Proof. Let’s suppose 𝑡′(𝑃 ) = 0 ∀𝑃 . It is easy to see that statement 6.4 reduces to 0 on both the
LHS and RHS. If on the other hand, 𝑡′(𝑃 *) = 1 for some 𝑃 *. Then, we set:

1. 𝑖 = 1
2. 𝑗 = 2𝑘 − 1
3. 𝑃1 = 𝑃2 = · · · = 𝑃𝑖+𝑗 = 𝑃 *

The LHS is an XOR over an even number of 1s, which is 0. The RHS is an OR of 1 and something
else, which is 1. So, we have found one setting of the quantified variables that falsifies statement 6.4.

It is straightforward to see how 𝑇𝐴𝑈𝑇𝑂𝐿𝑂𝐺𝑌 (𝑡(𝑃 )) reduces to 𝑀𝐸𝑅𝐺𝐸(𝑠 ⊕ 𝑡′, 0, 𝑠 ⊕
𝑡′, 𝑂𝑅, 𝐼, 0), showing that 𝑀𝐸𝑅𝐺𝐸 is co-NP-hard.

The practical implication of this result is that there is unlikely to be a general and efficient
procedure to find a merge function that can merge an arbitrary aggregation function using the
smallest amount of auxiliary state. Thus, identifying specific classes of functions (e.g., linear-in-
state and associative) and checking if an aggregation function belongs to these classes is probably
the best that we can hope to do.

6.2.6 Related work on distributed aggregations
Our linear-in-state characterization is related to distributed aggregation in large-scale data analyt-
ics [181, 211]. The goal of distributed aggregation is to compute an aggregate (e.g., count) of a
list of items in a distributed fashion, instead of processing the entire list serially. In distributed
aggregation, different portions of the list are aggregated independently and the partial results are
combined together, potentially improving performance relative to serial aggregation.

The connection between distributed aggregation and the linear-in-state characterization is as
follows: the merge procedure can be seen as combining the results of two independent aggregations
on two halves of a list. Further, this merge procedure can be performed recursively by computing
the aggregation on each half of the list in a distributed fashion, i.e., using a merge function that
combines results from partial aggregations on quarters of the list.

The simplest class of aggregations that permit efficient distributed aggregation are those that are
both commutative and associative [211]. The associative condition is consistent with the associative
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class of merge functions above. In addition, the commutative condition is required for distributed
aggregation because there is no guarantee on the order in which the two halves of the list will be
processed, unlike our merge procedure, which still requires the packet sequence to be processed
serially.

The SYMPLE system [181] extends distributed aggregation to include functions that are neither
commutative nor associative. SYMPLE works by dividing the list to be aggregated into multiple
segments. The aggregation is computed starting from the initial state on the first segment. For the
second and subsequent segments, the initial state at the start of the segment is the aggregated state
after aggregating the list up to the previous segment. Hence, the segment’s initial state is unknown
until the previous segment is aggregated.

To break this dependency on the previous segment, SYMPLE computes the aggregations on the
second and subsequent lists symbolically. The result of this is a concrete aggregated state value for
the first segment, and a set of symbolic expressions/functions for the remaining segments. These
symbolic expressions/functions are conceptually identical to the iterated functions used in our proof
constructs. They map an unknown and symbolic initial state at the beginning of the segment to the
final state at the end of the segment, given the concrete list values seen in that segment.

To facilitate symbolic computation, SYMPLE restricts the set of operations that can be carried
out in distributed aggregation. For instance, SYMPLE allows a state variable to be multiplied by a
constant, but not another state variable. SYMPLE also does not allow division operations on state
variables. We observe that these restrictions on operations on state variables are consistent with the
restrictions on state variables in a linear-in-state aggregation function. However, we leave a precise
characterization of the similarities and differences between the expressiveness of SYMPLE and
linear-in-state aggregations to future work.

6.2.7 Hardware feasibility

We optimize our stateful hardware design for linear-in-state queries and break it down into five
components. Each component is well-known; our main contribution is putting them together to
implement stateful queries. One important design choice for a router designer is how much memory
to provision for the on-chip cache, which we evaluate in §6.4. We now discuss each component in
detail.

The on-chip cache is a hash table where each row in the hash table stores keys and values
for a certain number of flows. If a packet from a new flow hashes into a row that is full, the least
recently used flow within that row is evicted. Each row has 8 flows and each flow stores both its
key and value.9 Our choice of 8 flows is based on 8-way L1 caches, which are very common in
processors [28]. This cache eviction policy is close to an ideal but impractical policy that evicts the
least recently used (LRU) flow across the whole table (§6.4).

Within a router pipeline stage, the on-chip cache has a logical interface similar to an on-chip
hash table used for counters: each packet matches entries in the table using a key extracted from the
packet header, and the corresponding action (i.e., increment) is executed by the router. An on-chip

9The LRU policy is actually implemented across 3-bit pointers that point to the keys and values in a separate memory.
So we shuffle only the 3-bit pointers to implement the LRU policy, not the entire key and value.
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hash table may be used as a path to incrementally deploying a router cache for specific aggregations
(e.g., increments), on the way to supporting more general actions and cache eviction logic in the
future.

The off-chip backing store is a scale-out key-value store such as Redis [43] running on
dedicated collection servers within the network. As §6.4 shows, the number of measurement
servers required to support typical eviction rates from the router’s on-chip cache is small, even for a
64×100-Gbit/s router.

Maintaining packet history. Before a packet reaches the pipeline stage with the on-chip cache,
we use the preceding stages to precompute 𝐴(p) and 𝐵(p) (the functions of bounded packet
history) in the state-update operation 𝑆 = 𝐴(p) · 𝑆 +𝐵(p). Our current design only handles the
case where 𝑆, 𝐴(p), and 𝐵(p) are scalars.

Say 𝐴(p) and 𝐵(p) depend on packet fields from the last 𝑘 packets. Then, these preceding
pipeline stages act like a shift register and store fields from the last 𝑘 packets. Each stage contains
a read/write register, which is read by a packet arriving at that stage, carried by the packet as a
header, and written into the next stage’s register. Once values from the last 𝑘 packets have been
read into packet fields, 𝐴(p) and 𝐵(p) can be computed with stateless instructions provided by
programmable router architectures [86, 188].

Carrying out the linear-in-state operation. Once 𝐴(p) and 𝐵(p) are known, we use a
multiply-accumulate (MAC) instruction [32] to compute 𝐴(p) ·𝑆 +𝐵(p). This instruction is very
cheap to implement: our circuit synthesis experiments show that a MAC instruction meets timing at
1 GHz and occupies about 2000 µm2 in a recent 32 nm transistor library. A router chip with an area
of a few hundred mm2 [116] can easily support a few hundred MAC instructions.

Queries that are not linear-in-state. We use the set of stateful instructions developed in
Domino (Table 4.4) for queries that are not linear-in-state. Our evaluations show that these
instructions are sufficient for our example queries that are not linear-in-state (Table 6.2).

6.3 Query compiler
We compile Marple queries to two targets: the P4 behavioral model [37], configured by emitting
P4 code [36], and the Banzai machine model, configured by emitting Domino code (Chapter 4).
In both cases, the emitted code configures a router pipeline, where each stage is a match-action
table or our key-value store. Our compiler does not consider the problem of reconfiguring the router
pipeline on the fly as queries change.

A preliminary pass of the compiler over the input query converts the query to an abstract syntax
tree (AST) of functional operators (Figure 6-5a). The compiler then:

1. produces router-local ASTs from a global AST (§6.3.1);
2. produces P4 and Domino pipeline configurations from router-local ASTs (§6.3.2); and
3. recognizes linear-in-state aggregation functions and sets up auxiliary state required to merge

such functions for a scalable implementation (§6.3.3). To scalably implement associative
aggregation functions (§6.2.1), we use the programmer annotation assoc to determine if an
aggregation is associative.

We use the query shown in Figure 6-4 as a running example to illustrate the details in the
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def oos_count([count, lastseq], [tcpseq, payload_len]):
if lastseq != tcpseq:
count = count + 1
emit()

lastseq = tcpseq + payload_len

tcps = filter(pktstream, proto == TCP
and (router == S1 or router == S2));

tslots = map(pktstream, [tin/epoch_size], [epoch]);
joined = zip(tcps, tslots);
oos = groupby(joined,

[5tuple, router, epoch],
oos_count);

Figure 6-4: Running example for Marple compiler (§6.3).

compiler. The query counts the number of out-of-sequence TCP packets over each time epoch,
measured independently at two routers S1 and S2 in the network.

6.3.1 Network-wide to router-local queries
The compiler partitions a network-wide query written over all packets at all queues in the network
(§6.1) into router-local queries, which are then transformed into router-specific configurations.
We achieve this in two steps. First, we determine the stream location, i.e., the set of routers that
contribute tuples to a stream, for the final output stream of query. For instance, the output stream
of a query that filters by router id 𝑠 has a stream location equal to the singleton set 𝑠. Second, we
determine how to partition queries with aggregation functions written over the entire network into
router-local queries.

Determining stream location for the final output stream. To start with, the stream location of
pktstream is the set of all routers in the network. The stream location of the output of a filter

is the set of routers implied by the filter’s predicate. We evaluate the set of routers contributing
tuples to the output of a filter operation through basic syntactic checks of the form router ==

X on the filter predicate. We combine router sets for boolean combinators (or and and) inside
filter predicates using set union and intersection respectively. The stream location of the output of
a zip operator is the intersection of the stream locations of the two inputs. Stream locations are
unchanged by the map and groupby operators.

The stream locations for the running example are shown in Figure 6-5b. The stream location of
pktstream is the set of all network routers, but is restricted to just S1 and S2 by the filter in the
query (left branch). This location is then propagated to the root of the AST through the zip operator
in the query.

Partitioning network-wide aggregations. As described in §6.1, we only permit aggregations
that satisfy one of three conditions: (1) they operate independently on each router, (2) operate
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Figure 6-5: Abstract Syntax Tree (AST) manipulations for the running example (§6.3). (a) Operator
AST. (b) Stream location (set of routers). (c) Stream router-partitioned (boolean).

independently on each packet, or (3) are associative and commutative. We describe below how
we check the first condition, failing which we check the last two conditions syntactically: either
the groupby aggregates by uid (condition 2) or contains programmer annotations assoc and comm

(condition 3).
To check if an aggregation operates independently on each router, we label each AST node

with a boolean attribute, router-partitioned, corresponding to whether the output stream has been
partitioned by the router at which it appears. Intuitively, if a stream is router-partitioned, we allow
packet-order-dependent aggregations over multiple packets of that stream; otherwise, we do not.

Determining and propagating router-partitioned through an AST is straightforward. The base
pktstream is not router-partitioned. The filter and zip operators produce a router-partitioned
stream if their output only appears at a single router. The groupby produces a router-partitioned
stream if it aggregates by router. In all other cases, the operators retain the operands’ router-
partitioned attribute.

The router-partitioned attributes for our running example are shown in Figure 6-5c. The filter

produces output streams at two routers, hence is not router-partitioned. The groupby aggregates by
router and hence is router-partitioned.

After the partitioning checks have succeeded, we are left with a set of independent router-local
ASTs corresponding to each router location that the AST root operator appears in, i.e., S1, S2.

6.3.2 Query AST to pipeline configuration
This compiler pass first generates a sequence of operators from the router-local query AST of §6.3.1.
This sequence of operators is then used in the same order to generate a router pipeline configuration.
There are two aspects that require care when constructing a pipeline structure: (1) the pipeline
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should respect read-write dependencies between different streams, and (2) repeated subqueries
should not be re-executed by creating additional pipeline stages.

We generate a sequence of operators through a post-order traversal of the query AST, which
guarantees that the operands of a node are added into the pipeline before the operator in the node,
thereby respecting read-write dependencies. Further, we deduplicate subquery results from the
pipeline to avoid repeating stages in the final output. For the running example, the algorithm
produces the sequence of operators: tcps (filter) → tslots (map) → joined (zip) → oos

(groupby).
Next, the compiler emits P4 code for a router pipeline from the operator sequence. The filter

and zip configuration just involves checking a predicate and setting a “valid” bit on the packet
metadata. The map configuration assigns a packet metadata field to the computed expression. The
groupby configuration uses a P4 register that is indexed by the aggregation fields. The state located
at a particular register index is updated through a P4 action representing the aggregation function.

To target the Banzai machine model (§4.1), the Marple compiler emits imperative code fragments
for each pipeline stage and then concatenates these fragments together into a single Domino program.
The Domino compiler then takes this program and compiles it to a pipeline of Banzai atoms.

6.3.3 Handling linear-in-state aggregations

We now consider the problems of detecting if an aggregation function is linear-in-state and setting up
auxiliary state for such linear-in-state aggregation functions (Figure 6-6). Recall that an aggregation
function is linear-in-state if the updates to all state variables within the aggregation function can be
written as 𝑆 = 𝐴(p) · 𝑆 +𝐵(p)). A general solution to this problem is challenging because the
aggregation function can take varied forms. For instance, the assignment 𝑆 = 𝑆2−1

𝑆−1
is linear-in-state,

but detecting that it is linear-in-state needs the compiler to perform algebraic simplifications.
We take a pragmatic approach and sacrifice completeness, but still cover useful functions.

Specifically, we only detect linear-in-state state updates through simple syntactic pattern matching
in the compiler (i.e., without any algebraic transformations). Despite these simplifications, the
Marple compiler correctly identifies all the linear-in-state aggregations in Table 6.2 and targets the
multiply-accumulate atom that we added to the Banzai pipeline.

To describe how linear-in-state detection works, we introduce some terminology. Recall that
an aggregation function takes two arguments (§6.1): a list of state variables (e.g., a counter) and a
list of tuple fields (e.g., the TCP sequence number). We use the term variable in this subsection to
refer to either a state variable or a tuple field. These are the only variables that can appear within
the body of the aggregation function.10

We carry out a three-step procedure, summarized in Figure 6-6. First, for each variable in an
aggregation function, we assign a history. This history tells us how many previous packets we need
to look at to determine a variable’s value accurately (history = 1 means the current packet). For
instance, for the value of a byte counter, we need to look back to the beginning of the packet stream
(history =∞), while for a variable that tracks the last TCP sequence number we need to only look

10Marple supports local variables within the function body, but the more general algorithm is not materially different
from the simpler version we present here.
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Figure 6-6: Steps for compiling linear-in-state updates.

back to the previous packet (history = 2). Consistent with the definition of history, constants are
assigned a history of 0, and variables in the tuple field list are assigned a history of 1. For state
variables, we use Algorithm 1 to determine each variable’s history.

Second, once each variable has a history, we look at the history of each state variable 𝑠. If
the history of 𝑠 is a finite number 𝑘, then 𝑠 only depends on the last 𝑘 packets. In this case, the
state update for 𝑠 is trivially linear-in-state, by setting 𝐴 to 0 and 𝐵 to the aggregation function
itself.11 If 𝑠 has an infinite history, we use syntactic pattern matching to check if the update to 𝑠 is
linear-in-state.

Third, if all state variables have linear-in-state state updates, the aggregation function is linear-
in-state. For such linear-in-state aggregations, we generate the auxiliary state that permits merging
of the aggregation function (§6.2). If not, we use the set of stateful atoms developed in Domino
(Table 4.4) to implement the aggregation function. We now describe each of the three steps in detail.

Determining history of state variables. We now describe Algorithm 1 that assigns a history to
every state variable. To motivate this algorithm, observe that if all assignments to a state variable
only use variables that have a finite history, then the state variable itself has a finite history. For
instance, in Figure 6-4, right after it is assigned, lastseq has a history of 1 because it only depends
on the current packet’s fields tcpseq and payload_len. To handle branching in the code, i.e., if
(predicate) {...} statements, we generalize this observation. A state variable has finite history
if (1) it has finite history in all its assignments in all branches of the program, and (2) each branching
condition predicate itself only depends on variables with a finite history.

Concretely, COMPUTEHISTORY (line 2) assigns each variable a history corresponding to an
upper bound on the number of past packets that the state variable depends on. We track the history
separately for each branching context, i.e., the sequence of branches enclosing any statement.12 The
algorithm starts with a default large pessimistic history (i.e., an approximation to∞) for each state
variable (line 1), and performs a fixed-point computation (lines 3–20), repeatedly iterating over the
statements in the aggregation function (line 7–16).

For each assignment to a state variable in the aggregation function, the algorithm updates
the history of that state variable in the current branching context (lines 7–9). For each branch in
the aggregation function, the algorithm maintains a new branching context and a history for the

11More precisely, the parts of the aggregation function that update 𝑠.
12Currently, Marple forbids multiple if ... else statements at the same nesting level; hence, the enclosing

branches uniquely identify a code path through the function. This restriction is not fundamental; the more general form
can be transformed into this form.
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branching context itself (lines 10–14). At the end of each iteration, the algorithm increments each
variable’s history to denote that the variable is one packet older (line 18). The algorithm returns a
conservative history 𝑘 for each state variable, including possibly max_bound (line 1) to reflect an
infinite history.

Algorithm 1 Determining history of all state variables
1: hist = {state = {true: max_bound}} ◁ Init. hist. for all state vars.
2: function COMPUTEHISTORY(fun)
3: while hist is still changing do ◁ Run to fixed point.
4: hist← {}
5: ctx← true ◁ Set up outermost context.
6: ctxHist← 0 ◁ History value of ctx.
7: for stmt in fun do
8: if stmt == state = expr then
9: hist[state][ctx]← GETHIST(ctx, expr, ctxHist)

10: else if stmt == if predicate then
11: save context info (restore on branch exit)
12: newCtx← ctx and predicate
13: ctxHist← GETHIST(ctx, newCtx, ctxHist)
14: ctx← newCtx
15: end if
16: end for
17: for ctx, var in hist do ◁ Make history one pkt older.
18: hist[var][ctx]← min(hist[var][ctx] + 1, max_bound)
19: end for
20: end while
21: end function
22: function GETHIST(ctx, ast, ctxHist)
23: for xi ∈ LEAFNODES(ast) do
24: hi = hist[xi][ctx]
25: end for
26: return max(h1, ... , hn, ctxHist)
27: end function

Determining if a state variable’s update is linear-in-state. For each state variable 𝑆 with an infinite
history, we check whether the state updates are linear-in-state as follows: (1) each update to 𝑆 is
syntactically affine, i.e., 𝑆 ← 𝐴 · 𝑆 +𝐵 with either 𝐴 or 𝐵 possibly zero; and (2) 𝐴, 𝐵 and every
branch predicate depend on variables with a finite history. This approach is sound, but incomplete:
it misses linear-in-state updates such as 𝑆 = 𝑆2−1

𝑆−1
.

Determining auxiliary state. For each state variable with a linear-in-state update, we initialize four
pieces of auxiliary state for a newly inserted key:13 (1) a running product 𝑆𝐴 = 1; (2) a packet

13This can happen either when a key first appears or reappears following an eviction.
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counter 𝑐 = 0; (3) an entry log, consisting of relevant fields from the first 𝑘 packets following
insertion; and (4) an exit log, consisting of relevant fields from the last 𝑘 packets seen so far. After
the counter 𝑐 crosses the packet history bound 𝑘, we update 𝑆𝐴 to 𝐴 · 𝑆𝐴 each time 𝑆 is updated.
This update to 𝑆𝐴 can also be implemented using the same multiply-accumulate atom. When the
key is evicted, we send 𝑆𝐴 along with the entry and exit logs to the backing store for merging (see
Appendix A).

6.4 Evaluation

We evaluate Marple in three ways. In §6.4.1, we quantify the number of Banzai atoms required for
Marple queries. In §6.4.2, we quantify the memory size vs. eviction rate tradeoff for the key-value
store. In §6.4.3 and §6.4.4, we describe two case studies that use Marple compiled to the P4
behavioral model running on Mininet: debugging microbursts [130] and computing flowlet size
distributions.

6.4.1 Hardware compute resources

Table 6.2 shows several Marple queries. Next to each query, we show (1) whether all its aggregations
are linear-in-state, (2) whether it can be scaled by merging correctly with a backing store, and (3)
the router resources required, measured through the pipeline depth (number of stages), pipeline
width (maximum number of parallel computations per stage), and the number of Banzai atoms (total
number of computations).

Table 6.2 shows that many useful queries contain only linear-in-state aggregations, and many of
them can be implemented scalably (§6.2.2). Notably, the flowlet size histogram and lossy connection
queries are not scalable despite being linear-in-state, since they contain emit() statements. In
§6.2.4, we showed how to rewrite some of these queries (e.g., lossy connections) to scale, at the
cost of losing some accuracy.

We compute the pipeline’s depth and width by compiling each query to Banzai using the
Domino compiler. When compiling each query, Banzai is supplied with a single stateless atom
type, which perform binary operations (arithmetic, logic, and relational) on pairs of packet fields,
and a stateful atom type depending on the type of the query. For the linear-in-state queries, we
use the multiply-accumulate atom as the stateful atom, while for the other operations, we use the
NestedIf atom (Table 4.4). As expected, all the linear-in-state queries compile to a pipeline with the
multiply-accumulate atom; for all the queries that are not linear-in-state, the NestedIf atom turns
out to be sufficiently expressive.

The computational resources required for Marple queries are modest. All queries in Table 6.2
require a pipeline shorter than 11 stages. This is feasible, e.g., the RMT architecture offers 32
stages [86]. Further, functionality other than measurement can run in parallel in each stage because
the number of atoms required per stage is at most 6, while programmable routers provide a few 100
parallel instructions per stage (e.g., RMT provides 224 [86]).

124



Example Query code Description Linear Scales? Pipe Pipe # of
in state? depth width atoms

Packet counts def count([cnt], []): cnt = cnt + 1; emit() Count packets per source IP. Yes Yes 5 2 7
result = groupby(pktstream, [srcip], count);

EWMA over latencies def ewma([avg], [tin, tout]): Maintain a moving EWMA over Yes Yes 6 4 11
avg = (1-alpha)*avg + (alpha)*(tout-tin) packet latencies per flow.

ewma_q = groupby(pktstream, [5tuple], ewma);

TCP out-of-sequence def oos([lastseq, cnt], [tcpseq, payload_len]): Count the number of packets per Yes Yes 7 4 14
if lastseq != tcpseq: cnt = cnt + 1 connection arriving with a sequence
lastseq = tcpseq + payload_len number that is non-consecutive with

oos_q = groupby(pktstream, [5tuple], oos); the last packet.
TCP non-monotonic def nonmt([maxseq, cnt], [tcpseq]): Count the number of packets per No No 5 2 6

if maxseq > tcpseq: cnt = cnt + 1 connection with sequence numbers
else: maxseq = tcpseq lower than the maximum so far.

nm_q = groupby(pktstream, [5tuple], nonmt);

Flowlet size def fl_detect([last_time, size], [tin]): Compute a histogram over the Yes No 11 6 31
histogram if tin - last_time > delta: lengths of flowlets. This statistic is

emit(); size = 1 useful to evaluate network load
else: size = size + 1 balancing schemes, e.g., [65].
last_time = tin

R1 = groupby(pktstream, [5tuple], fl_detect);

fl_hist = groupby(R1, [size], count);

High E2E latency def sum_lat([e2e_lat], [tin, tout]): Capture packets experiencing high Yes Yes 5 3 8
e2e_lat = e2e_lat + tout - tin end-to-end queueing latency, by

e2e = groupby(pktstream, [uid], sum_lat); adding time spent in the queue at
high_e2e = filter(e2e, e2e_lat > 10); each hop.

Count concurrently def new_flow([cnt], []): Count the number of active No No 4 3 10
active connections if cnt == 0: emit(); cnt = 1 connections in a queue over a

R1 = map(pktstream, [tin/128], [epoch]); period of time (“epoch”).
R2 = groupby(R1, [5tuple, epoch], new_flow);

num_conns = groupby(R2, [epoch], count);

TCP incast R3 = zip(num_conns, pktstream); Detect when many connections use No No 7 4 14
ic_q = filter(R3, qin > 100 and cnt < 25); a long queue. Uses the query above.

Lossy connections total = groupby(pktstream, [5tuple], count); Compute packet loss rate per Yes No 8 4 19
R1 = filter(pktstream, tout == infinity); connection, reporting connections
lost = groupby(R1, [5tuple], count); with packet drop rate higher than
Z = zip(total, lost); a threshold p.

lc_q = filter(Z, lost.cnt > p*total.cnt);

TCP timeouts def timeout([cnt], [last_time, tin]): Count the number of timeouts for Yes Yes 8 3 15
timediff = tin - last_time each TCP connection, by checking
if timediff > 280ms and timediff < 320ms: for packet inter-arrival times
cnt = cnt + 1 around 300 ms (retransmission

last_time = tin timer).
to_q = groupby(pktstream, [5tuple], timeout);

Table 6.2: Examples of performance queries. We report that a query scales to a large number of keys
either if (1) there are no stateful updates involved, or (2) all its stateful updates are linear-in-state
and there are no emit()s. We use Domino [188] to report the hardware resources, i.e., atom count
and pipeline depth and width. Linear-in-state queries use the multiply-accumulate atom (§6.2);
others use a NestedIf atom [188] that supports updates predicated on the state value itself.

6.4.2 Memory and bandwidth overheads

In this section, we answer the following questions:
1. What is a good size for the on-chip key value store?
2. What are the eviction rates to the backing store?
3. How accurate are queries that are not mergeable?

Experimental setup. We simulate a Marple query over three unsampled packet traces: two traces
from 10 Gbit/s core Internet routers, one from Chicago (~150M packets) from 2016 [54] and one
from San Jose (~189M packets) from 2014 [53]; and a 2.5 hour university data-center trace (~100M
packets) from 2010 [77]. We refer to these traces as Core16, Core14, and DC respectively.

We evaluate the impact of memory size on cache evictions for a Marple query that aggregates by
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Figure 6-7: Eviction ratios to the backing store.

5-tuple. As discussed in §6.2.7, our hardware design uses an 8-way LRU cache. We also evaluate
two other geometries for the cache: a hash table, which evicts the incumbent key upon a collision,
and a fully associative LRU. Comparing our 8-way LRU with other hardware designs demonstrates
the tradeoff between hardware complexity and eviction rate.

Eviction ratios. Each evicted key-value pair is streamed to a backing store. This requires the
backing store to process packets as quickly as they are evicted, which depends on the incoming
packet rate and the eviction ratio, i.e., the ratio of evicted packets to incoming packets. The eviction
ratio depends on the geometry of the on-chip cache, the packet trace, and the cache size measured
by the number of key-value pairs the cache can store. Hence, we measure eviction ratios over (1)
the three geometries for the Core16 trace (Figure 6-7b), (2) the three traces using the 8-way LRU
geometry (Figure 6-7a), and (3) for caches sizes between 216 (65K) and 221 (2M) key-value pairs.

Figure 6-7b shows that a full LRU has the lowest eviction ratios, since the entire LRU must
be filled before an eviction occurs. However, the 8-way associative cache is a good compromise.
It avoids the hardware complexity of a full LRU while coming within 2% of its eviction ratio.
Figure 6-7a shows that the DC trace has the lowest eviction ratios. This is because it has much
fewer unique keys than the other two traces and these keys are less likely to be evicted.

The reciprocal of the eviction ratio is the reduction in server data collection load relative to
a per-packet collector that processes per-packet information from routers. For example, for the
Core14 trace with a 219 key-value pair cache, the server load reduction is 25×, corresponding to an
eviction ratio of 4%.

Eviction rates. Eviction ratios are agnostic to specifics of the router, such as link speed, link
utilization, and on-chip cache size in bits. To translate eviction ratios in evictions per packet to
eviction rates in evictions per second, we first compute the average packet size (700 Bytes) and link
utilization (30%) from the Core16 trace.

Next, we estimate the on-chip cache size for a 64×10-Gbit/s router and a 64×100-Gbit/s
router. On a 64×10-Gbit/s router, SRAM densities are ≈ 3–4 𝑀𝑏𝑖𝑡/𝑚𝑚2 [1], and the smallest router
chips occupy 200 mm2 [115]. Therefore, a 64 Mbit cache in SRAM costs around 10% additional
area, which we believe is reasonable. For recent 64×100-Gbit/s routers [5], SRAM densities are
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Query State size Eviction rate at Eviction rate at
(bits) 64×10-Gbit/s 64×100-Gbit/s

(packets/s) (packets/s)
Packet count 32 1.0M (34×) 4.29M (81×)
Lossy connections 64 1.08M (32×) 5.18M (66×)
TCP out-of-sequence 128 1.21M (28×) 6.72M (52×)
Flowlet size 160 1.26M (27×) 7.17M (48×)
histogram (Stage 1)

Figure 6-8: Eviction rates and reduction in collection server load for queries from Table 6.2. Each
key-value pair occupies the listed state size plus 104 bits for a 5-tuple key. The 10-Gbit/s and
100-Gbit/s routers have a 64 Mbit and 256 Mbit cache, respectively.

≈ 7𝑀𝑏𝑖𝑡/𝑚𝑚2 [50], and the routers occupy ≈ 500 mm2,14 making a 256 Mbit cache (7.3% area
overhead) a reasonable target.

Given a query with an aggregation, we divide these cache sizes in bits by the size of the
aggregation’s key-value pair to get the cache size in terms of the number of key-value pairs. We
then look up this number in Figure 6-7 to get the eviction ratio for that query. We then translate this
eviction ratio to an eviction rate using the network utilization and packet size mentioned earlier.

Eviction rates for some sample queries are shown in Figure 6-8. For a 64×10-Gbit/s router with
a 64 Mbit cache, we observe eviction rates of≈ 1M packets per second. For a 64×100-Gbit/s router
with a 256 Mbit cache and the same average packet size and utilization, the eviction rates can reach
7.17M packets per second. Relative to a per-packet collector, Marple reduces the server load by
25–80×.

The eviction rates for both the 10 Gbit/s and 100 Gbit/s routers are under 10M packets per
second, well within the capabilities of multi-core scale-out key-value stores [21, 125, 2], which
typically handle 100K–1M operations per second per core. For instance, for a single 64×10-Gbit/s
router running an aggregation with a 64-bit state size, a single 8-core server is sufficient to handle
the eviction rate of 1.08M packets per second. For a single 64×100-Gbit/s router running the same
aggregation, the eviction rate goes up to 5.18M packets per second, requiring four such servers.

Generalizing to other scenarios. Figure 6-7 also generalizes to multiple aggregations and aggre-
gations of different state sizes. First, coarsening the aggregation key by picking a subset of the
5-tuple reduces the eviction ratio, since there are fewer keys in the working set. We believe that the
5-tuple may well be the most fine-grained and still practically useful aggregation level; hence, our
results show the worst-case eviction ratios for a single groupby. Second, variations in the size of
the groupby value simply result in a different number of key-value pairs for a given memory size.
Third, running multiple groupby queries with the same number of key-value pairs, and aggregating
by the same key, results in synchronized evictions across all queries. Hence, the eviction ratios can
be read off Figure 6-7 at the correspondingly reduced memory size.

Accuracy of non-mergeable queries. Queries that are neither linear-in-state nor associative cannot
be merged in the backing store. If a key from such a query is evicted multiple times, Marple cannot
guarantee its correctness and marks it as invalid. However, these keys’ values are still valid if they
are either never evicted or are evicted once and never reappear. Hence, we define a query’s accuracy
as the fraction of keys with valid values over the query’s lifetime.

14S. Chole. Cisco Systems. Private communication. June 2017.

127



Figure 6-9a shows query accuracy using the three traces, with the DC trace being near-perfect
since it has fewer unique keys, and hence, evictions. If the query is run over a shorter time interval,
its accuracy is typically higher, since the cache may not be full and a smaller fraction of keys are
evicted. Figure 6-9b shows this tradeoff for a range of cache sizes and geometries using the Core16
trace. Shortening the query from 5 minutes to 1 minute boosts accuracy by 10%.
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Figure 6-9: Query accuracy for non-mergeable aggregations.

6.4.3 Case study #1: Debugging microbursts
To demonstrate Marple in practice, we present a case study of diagnosing microbursts, which are
spikes in latency caused by bursty transmissions of packets into a queue. Our setup in Mininet [149]
consists of four hosts (h1, h2, h3, h4) and two routers (S1, S2) in a dumbbell topology. Router
S1 is connected to h1 and h3, and S2 to h2 and h4. The routers are connected via a single link and
programmed in P4 [37] with queries compiled by Marple.

Host h2 repeatedly downloads a 1MB object over TCP from h1. Meanwhile, h3 sends h4

bursts of UDP traffic, which h4 acks. Suppose a network operator notices the irregular latency
spikes for the downloads (Figure 6-10a) caused by these bursts of UDP traffic. However, the
operator does not know what is causing these bursts. To diagnose the problem, she suspects a queue
buildup in the routers and measures the queue depths seen by the traffic by writing: result =

filter(pktstream, srcip == h1 and dstip == h2).

The results are streamed out on each packet to a collection server. After plotting the queue
sizes, she notices spikes in queue size at egress port 3 on the router (Figure 6-10b) matching the
periodicity of the latency spikes. To isolate the responsible flow(s), she divides the traffic into
“bursts,” which she defines as a series of packets separated by a gap of at least 800ms, as determined
from the gap between latency spikes. She issues the following Marple query:

def burst_stats([last_time, nburst, time], [pkts, tin]):
if tin - last_time > 800000:

nbursts++;
emit();

else:
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Figure 6-10: Microburst case study measurements

src→ dst protocol # Bursts Time (𝜇s) # Packets
h3:34573→ h4:4888 UDP 19 8969085 6090
h4:4888→ h3:34573 UDP 18 10558176 5820
h1:1777→ h2:58439 TCP 1 72196926 61584
h2:58439→ h1:1777 TCP 1 72248749 33074

Figure 6-11: Per-flow burst statistics from Marple

time = time + tin - last_time;
pkts = pkts + 1;
last_time = tin;

result = groupby(R1, 5tuple, burst_stats)

She runs the query for 72 seconds and sees the result in Figure 6-11. She concludes, correctly,
that UDP traffic between h3 and h4 is responsible for the latency spikes. There are 18 UDP bursts,
with an average packet size of 320 packets and average duration of 472 ms, which matches our
emulation setup.

Marple’s flexibility makes this diagnosis simple. By contrast, localizing the root cause of
microbursts with existing monitoring approaches is challenging. Packet sampling and packet
captures would miss microbursts because of heavy undersampling. Packet counters from routers
would have disguised the bursty nature of the offending UDP traffic. Finally, probing from end
hosts would not be able to localize queues with bursty contending flows.

Marple builds on In-band Network Telemetry [23, 61] (INT) that exposes queue lengths at
routers. However, Marple’s on-router aggregation goes beyond INT’s ability to report queue sizes
and latencies. For instance, Marple can determine contending flows at the problematic queue through
a customized query to measure bursts, without prior knowledge of those flows. In comparison,
a pure INT-based solution may require a network operator to manually identify flows that could
contend at the problematic queue, and then collect data from the INT end hosts for those flows.
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Figure 6-12: CDF of flowlet sizes for different flowlet thresholds.

6.4.4 Case study #2: Flowlet size distributions
We demonstrate another use case for Marple: computing the flowlet size distribution as a function of
the flowlet threshold, the time gap above which consecutive packets are considered to be in different
flowlets. This analysis has many practical uses, e.g., for configuring flowlet-based load balancing
strategies [65, 201]. In particular, the performance of the LetFlow [201] load balancing algorithm
depends heavily on the distribution of flowlet sizes.

Our setup uses Mininet with a single router connecting five hosts: a single client and four servers.
Flow sizes are drawn from an empirical distribution computed from a trace of a real datacenter [69].
The router runs the “flowlet size histogram” query from Table 6.2 for six values of delta, the
flowlet threshold.

Figure 6-12 shows the CDF of flowlet sizes for various values of delta. Note that the actual
values of delta are a consequence of the bandwidth allowed by the Mininet setup; a datacenter
deployment would likely use much lower delta values.

6.5 Summary
Performance monitoring is a crucial part of the upkeep of any large system. Marple’s whole network
visibility and query language demystify network performance for applications, enabling operators
to quickly diagnose problems. We want network operators to query for whatever they need, and
not be constrained by limited router feature sets. Marple presents a step forward in enabling
fine-grained and programmable network monitoring, putting the network operator—and not the
router vendor—in control of the network.
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Chapter 7

Limitations

We now discuss limitations of the systems presented in this dissertation. We begin with limitations
that are common to all three systems. We then discuss limitations of each individual system.

7.1 Limitations common to all three systems

7.1.1 Lack of silicon implementations

None of our three systems has a hardware implementation in silicon. This is a problem that arises
whenever a new system requiring hardware modifications needs to be evaluated. Designing a new
chip can take a few years, and it requires both a significant financial investment and access to a
large team of engineers.

As a result, we evaluated the three systems in this dissertation using a combination of simulation
to check correctness and synthesis experiments to evaluate area overheads of new hardware designs.
We briefly considered an FPGA implementation on the NetFPGA platform [216], but decided
against it because the relative areas consumed by router subsystems on an FPGA may not accurately
reflect the relative area consumptions on a router chip.

Instead, we paid careful attention to keeping our hardware designs simple, and reused standard
hardware designs (e.g., LRU caches and First In First Out Queues) wherever possible. To allow a
router chip designer to leverage our results, we clearly specified the interfaces between the different
hardware blocks in our design.

There is still value to an FPGA implementation, which we hope to explore in future work. First,
an FPGA implementation allows us to check the correctness of the same Verilog code that we use
for synthesis experiments, especially to test correctness when interfacing a router with the external
world. Second, an FPGA implementation can serve as a vehicle for end-to-end evaluation of ideas,
much like our Mininet evaluation (§6.4.3). Third, the development of new FPGA technology
that allows clock rates of up to 1 GHz [151] suggests a way to prototype hardware at near-ASIC
speeds while benefiting from the reconfigurability of an FPGA. Note that, even with such high
speed FPGAs, an ASIC design of the hardware would still be required for large-scale commercial
production of the hardware design. This is because, relative to an ASIC, an FPGA consumes more
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power, occupies more chip area, and has a higher unit price.

7.1.2 Lack of completeness theorems
We do not have a formal characterization of what can and cannot be done by each system. While
we have examples of algorithms that cannot be expressed by each system, it would be ideal to have
a “completeness” theorem that states that all algorithms within a class (and within that class alone)
can be expressed using a particular system. Such theorems would also give a formal assurance of a
system being “future proof” so long as a new algorithm falls within a particular class of algorithms.
An example of such a theorem is the equivalence of finite-state machines and regular expressions,
which states that any regular expression—whether a regular expression that is known today or a
regular expression that shows up in the future—can be expressed using a finite-state machine.

7.1.3 Lack of a user study
One way to empirically study the “future proofness” of a programming abstraction is to freeze the
abstraction and then run a user study with new programmers who have never seen the abstraction
before. We have not been able to carry out a such a user study because the concept of programming
the data plane of a high speed network is relatively new and has not seen widespread adoption yet.

At the same time, some of our results suggest that our abstractions and primitives may be
general. For instance, as mentioned earlier, the atoms developed in Domino (Chapter 4) supported
unanticipated use cases that were developed after the atom designs were frozen (Table 4.6). Similarly,
we did not anticipate the rate-controlled service disciplines (RCSD) as a use case for PIFOs when
first designing PIFOs, but later found that PIFOs could express the RCSD class (§5.3). Finally, the
atomic semantics of packet transactions are now part of the P4 language (§8.1), suggesting that the
packet transaction abstraction might be quite general and natural.

7.1.4 Supporting routers with multiple pipelines
As discussed earlier (§4.1), throughout this dissertation, we assume a router architecture with a
single ingress pipeline and a single egress pipeline shared across all ports. These pipelines can be
made to run at a clock rate of up to 1 GHz, which at the minimum packet size of 64 bytes, translates
into an aggregate capacity of ~640 Gbit/s, after accounting for minimum inter-packet gaps [86].

To scale beyond this aggregate capacity, a router needs multiple parallel pipelines, each devoted
to a subset of the router’s ports. This has implications for all our designs, which we discuss below.

Domino. In Domino, state is local to an atom, and hence to the pipeline stage containing that
atom. In a single pipeline router, a pipeline stage can see all the packets arriving at the router. This
allows the pipeline stage to maintain and update the state consistently, e.g., a counter that counts the
number of bytes received across all ports.

In a multi-pipeline router, no single pipeline sees all packets, so the state in a pipeline stage
can only be updated by packets belonging to ports assigned to that pipeline. This may suffice for
some applications, e.g., per-port state that is maintained in each pipeline, which does not need to be
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accessed from other pipelines.
For simple stateful operations like global, router-wide, counters, the associativity of addition

allows us to update the state separately in each pipeline and combine it through addition later.
However, we know of no general mechanism to combine pipeline-local state into a single, global,
router-wide state value in a manner that emulates a single-pipeline router. Using a single state value
that is accessed by multiple pipelines is a potential solution, but sharing state requires multi-ported
memory and locking. Multi-ported memory is expensive, while locking degrades performance.

Performance queries. Because the groupby operator in Marple maintains and update state in the
data plane, performance queries share the same limitations as Domino when it comes to multi-
pipeline routers. The reason is the same: multi-pipeline routers have a separate instance of state for
every pipeline that needs to be efficiently combined into a global router-wide state value without
losing accuracy.

PIFOs. A multi-pipeline router has multiple ingress and egress pipelines that share access to the
scheduler subsystem alone. The scheduler subsystem is common to all pipelines and consists of the
data buffer to store packet payloads and the scheduling logic for different scheduling algorithms. To
support enqueues and dequeues from multiple pipelines into the data buffer every clock cycle, the
data buffer memory in a multi-pipeline router is multi-ported to support multiple writes/reads from
multiple ingress/egress pipelines every clock cycle.

In multi-pipeline routers, each PIFO block needs to support multiple enqueue and dequeue
operations per clock cycle (as many as the number of ingress and egress pipelines). This is because
packets can be enqueued from any of the input ports every clock cycle, and each input port could
reside in any of the ingress pipelines. Similarly, each egress pipeline requires a new packet every
clock cycle, resulting in multiple dequeues every clock cycle.

We leave a full fledged PIFO design for multi-pipeline routers to future work, but observe
that our current PIFO design facilitates a multi-pipeline implementation. A rank store supporting
multiple pipelines is similar to the data buffers of multi-pipeline routers today, which already support
multiple enqueues and dequeues. Building a flow scheduler to support multiple enqueues/dequeues
per clock cycle is relatively easy because the flow scheduler is maintained in flip flops. A flip-flop-
based implementation makes it simpler to add multiple ports, relative to an implementation using
SRAM.

7.2 Domino limitations

The Domino compiler doesn’t aggressively optimize, instead focusing on generating sub-optimal,
but correct, pipeline configurations. For instance, it is possible to fuse two stateful codelets
incrementing two independent counters into the same instance of the Pairs atom. However, by
carrying out a one-to-one mapping from codelets to the atoms implementing them, our compiler
precludes these optimizations. One practical implication of this is that we have had to manually
rewrite programs to make them compile (Table 4.6), instead of a compiler rewriting such programs
automatically.

Supporting multiple packet transactions in Domino also requires further work. This is especially
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important because any real program running on a router is likely to execute multiple transactions,
each on a subset of the packets seen by the router. When a router executes multiple transactions, there
may be opportunities for inter-procedural analysis [63], which goes beyond compiling individual
transactions and looks at multiple transactions together. For instance, the compiler could detect
computations common to multiple transactions and execute them only once.

7.3 PIFO limitations
Our programming model for scheduling based on PIFOs is a scheduling tree with scheduling
and shaping transactions. While a scheduling tree makes it possible to program new scheduling
algorithms using PIFOs, it does not make it easy. We have found that it requires considerable
effort to program new scheduling algorithms using scheduling trees. In other words, scheduling
trees are still a low-level abstraction. We need to raise the level of abstraction if we hope to make
programmable scheduling more broadly accessible to network operators.

Our current PIFO design scales to 2048 flows. If these 2048 flows are allocated evenly across
64 ports in a 64-port 10G router, we could program scheduling across 32 flows at each port. This
permits per-port scheduling across traffic aggregates (e.g., fair queueing across 32 VMs/tenants
within a server), but not at a finer granularity (e.g., 5-tuples). Ideally, to schedule at the finest
granularity, our flow scheduler would realize the ideal PIFO where each packet in the PIFO belongs
to a different flow. We currently support only 2048 flows, while we can support up to 60K packets.
More design work is required to close this gap between the number of flows and the number of
packets and realize an idealized PIFO.

7.4 Marple limitations
The most important limitation of performance queries is the fact that the latest value of the aggregated
state is not available in the data plane, and is only accessible to software reading the backing store.
This manifests itself most when using the emit() statement in our programs, which requires access
to the latest value of the aggregated state in the data plane. Currently, we handle such queries by not
evicting entries from a key-value store if the state stored in those entries is emitted to another query
downstream. But not evicting keys severely limits the scalability of the key-value store because all
keys must fit within the small on-chip cache. Unfortunately, this is unavoidable if we want access to
the latest value of state during emit()s.

A similar scalability limitation affects queries that are not linear-in-state because there is no way
to evict key-value pairs while still guaranteeing correctness if the query is not linear-in-state. In
practice, we have found (§6.2.4) that it is possible to rewrite measurement functionality in such a
way that the resulting query is linear-in-state, at some cost to measurement fidelity.
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Chapter 8

Conclusion

To conclude this dissertation, we mention broader impact that this dissertation has had, outline areas
for future work, and discuss the broader implications of this dissertation.

8.1 Broader impact

Several ideas from Domino have now found their way into P4 [85], an emerging language for
programming network devices with considerable industry interest [38]. We describe changes to the
P4 specification informed by Domino below.

1. When we began work on Domino in 2015, P4 was still relatively low-level in the sense of
being close to the targets it was programming. For instance, to match the underlying router
pipeline, P4 expected programmers to specify a packet-processing program as a sequence of
lookups in a set of match-action tables. Each action within a match-action table was made up
of a set of primitive actions, defined by the P4 language. These primitive actions within an
action were expected to execute in parallel to mirror the execution model of the underlying
hardware.
This caused considerable confusion to programmers [39] because the P4 program had serial
semantics between table lookups, while it had parallel semantics within the action half of a
table lookup. Based on Domino’s sequential semantics, P4 adopted a more uniform semantics,
where primitive actions within a larger action also executed sequentially [46, 49].

2. The version of P4 released in 2016 [36] adopted many high-level language constructs intro-
duced in Domino such as C-style expressions and the C-style conditional operator.

3. The 2016 version of P4 also allows programmers to specify atomic blocks of code [15, 13],
which have the same transactional semantics as packet transactions. This is especially useful
when writing P4 code for algorithms similar to the ones considered by Domino, which
manipulate router state on a per-packet basis.

The impact of PIFOs and performance queries remains to be seen. We have talked to hardware
engineers in industry about the possibility of adding PIFOs to a router’s scheduler. Many of
them seem interested in a programmable scheduler because they can now expressing scheduling
algorithms as firmware, and not hardware. However, one major concern expressed by them is
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whether the PIFO hardware would scale to a multi-Tbit/s router, which typically features multiple
ingress and egress pipelines sharing the packet buffer and scheduling logic (§7.1.4).

We have also talked to hardware engineers about the possibility of adding a multiply-accumulate
instruction to support linear-in-state measurement queries efficiently. Based on our conversations,
we understand that this is well within reach, although there might be limitations on the bit width of
the operands and outputs of the multiply-accumulate instruction.

8.2 Future work
Besides addressing the limitations described earlier (§7), there are a number of avenues for future
work, described below.

Instruction set design for routers. The first generation of programmable router instruction sets,
whether those in commercial chips [60, 25, 3, 86] or those proposed by Domino, were designed
manually through a process of trial and error.

In particular, when designing atoms for Domino, we use trial and error to first guess atoms that
we think might be useful and then use our compiler to check if those atoms can actually support
useful algorithms. Formalizing this design process and automating it into an atom-design tool
would be useful when designing router instruction sets. For instance, given a corpus of data-plane
algorithms, this tool would automatically mine the corpus for recurring motifs of state and packet
header modification. A router hardware engineer could then design hardware for atoms that capture
these motifs.

Once programmers start writing P4 programs more broadly, we have the opportunity to design
these instruction sets in a more empirical manner, optimizing instruction sets for actual use cases,
as opposed to what a router engineer thinks the use cases will be. The continued evolution of the
x86 instruction set over the last four decades suggests that there is considerable opportunity for
workload-driven instruction set design.

Understanding the x86 tax1 of networking. This dissertation has focused entirely on routers, which
have historically been architected as fixed-function hardware devices. It leaves out a large number of
networking devices with lower aggregate speeds that are built on top of commodity x86 processors
(e.g., network interface cards, the Linux kernel, middleboxes, proxies, and front-end servers). Until
now, the steady improvement in x86 performance has allowed these devices to be programmable,
while still providing sufficient forwarding performance for their needs.

Going forward, as processor clock frequencies and core counts stall [105], it seems natural to
turn to specialized hardware [199] for such devices. Can we profile repeatedly used and relatively
mature networking motifs that run on x86 chips today and measure their “x86 tax” relative to a
pure silicon implementation? Such motifs (e.g., SSL encryption and data compression) can be
hardened as accelerators in silicon, providing energy and performance benefits over running on a
general-purpose processor.

Approximate semantics for packet processing. Domino provides transactional semantics for packet
processing. These semantics are straightforward, but end up rejecting programs for which trans-

1We thank Adam Belay for coming up with this expression.
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actional semantics are not feasible while running at the router’s line rate. Are weaker semantics
sensible?

One possibility is approximating transactional semantics by only processing a sampled packet
stream. This provides an increased time budget for each packet in the sampled stream, potentially
allowing the packet to be recirculated through the pipeline for further packet processing. An example
of such a use case is a measurement algorithm that needs a considerable amount of processing for
each packet, but can still function if run on a sampled stream of packets.

A middle plane for networking. There will always be algorithms that cannot run in the data plane
because the algorithms cannot sustain packet processing at the router’s line rate. Today, such
algorithms can only run on the much slower control plane, leading to a performance cliff once an
algorithm crosses a threshold of complexity. Can we develop a programmable “middle plane” that
sits between the control and data planes? This middle plane would provide greater programmability
than the data plane, but at lower performance. It could be used to run algorithms either on a sample
of packets across all ports or at full line rate on a subset of ports. For instance, an operator might
require programmable measurement on a sample of all packets or line-rate scheduling support only
on the congested ports.

Average case designs for routers. Routers have historically been designed to handle worst-case
traffic patterns, i.e., the smallest packet size at 100% utilization on all ports. This worst-case design
mindset has several advantages. For instance, it obviates the need for performance profiling because
routers guarantee line-rate performance regardless of packet size or utilization. It also guards routers
against denial-of-service attacks that flood the router with small packets.

But it also leads to overengineering. A recent study found that the average packet size in
datacenters is around 850 bytes (relative to a minimum packet size of 64 bytes) [78], while the
utilization can be as low as 30% [78]. Factoring both average packet size and utilization, this implies
that routers are designed to handle as much as 44 × more traffic than the average. Clearly, there are
substantial gains to be had from adopting an average case mindset.

Software engineering for programmable routers. The development environment for programmable
router chips is still quite rudimentary. This gives us an opportunity to revisit many traditional soft-
ware engineering questions in the context of programmable routers. To name a few, developing
better verifiers, debuggers, test generators, and exception handling mechanisms.

Evaluating ideas end-to-end on programmable router chips. Programmable router chips are just
becoming available [3]. While they do not directly support the kinds of programmability described in
this dissertation, they provide a platform to program different router algorithms on a physical router
within a real network at aggregate speeds exceeding a Tbit/s. They also allow us to evaluate the
benefits of our ideas end-to-end. For instance, if we could program a new active queue management
scheme on a programmable router, what would be the effect on the completion time of a data
analytics job?

Design-space exploration of router architectures. To evaluate the additional area of our hardware
designs in this dissertation, we have relied on anecdotal estimates of the area of a baseline router
chip based on private conversations with engineers in industry [115]. Ideally, we would have an
open-source hardware design for a router chip that is competitive with industry-standard router
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chips. We could then run synthesis experiments on this open-source hardware design to provide a
rigorous baseline area estimate for our evaluations. When adding new hardware functionality, we
could add it to this open-source chip, and rerun synthesis to estimate the new area of the chip. An
open-source chip would also enable design-space exploration of router architectures. For instance,
given an overall silicon budget, what is the Pareto frontier that trades off exact-match table capacity
for ternary-match table capacity? How does this Pareto frontier move with changes in transistor
size (e.g., moving from 32 nm to 16 nm)?

Network architecture in the age of programmable routers. We have shown that it is technically
feasible to build fast and programmable routers, allowing us to program routers with functionality
that was traditionally on end hosts (e.g., congestion control, measurement, and load balancing).
Now that we have this capability to program the network’s internals, and assuming we want to push
our networks to the limits of their performance, what functionality belongs on the end hosts and
what belongs within the network? Does this answer change if we only want basic correctness (and
not optimal performance) from our networks?

8.3 Towards a world of programmable networks
The results in this dissertation point towards a world of programmable networks, where network
operators tell routers what to do, without being told that this is all that the router can do. In such a
setting, operators could customize networks as they see fit. They could program additional features
that give them performance benefits or better visibility into their networks. More interestingly, they
could remove needless features from their router, allowing them to simplify their routers’ feature
sets, which in turn could ease troubleshooting when things go wrong.

Besides the benefits to network operators, a programmable router chip has benefits for router
vendors as well. Router vendors (e.g., Arista and Dell) can now add new features in firmware and
sell different versions of the firmware to different market segments. Further, when bugs arise, it is
much easier to fix these bugs in firmware, as opposed to redoing the hardware design for the router,
which could easily take years. It also allows vendors to respond to new requests from network
operators in a period of days instead of years.

Whether the classes of router programmability described here will be sufficient remains to be
seen, but we are encouraged by the fact that the hardware designs proposed here support a wide
range of existing use cases and some new use cases that we had not anticipated initially. We hope the
results of this dissertation provide guidance to router chip manufacturers when designing hardware
for programmable routers.
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Appendix A

The Merge Procedure for Linear-in-state
Functions

For queries that are linear in state, the state update takes the form S = 𝐴(p) · S+𝐵(p), where S is
a vector of state, and 𝐴 and 𝐵 are functions of the previous 𝑘 packets (denoted by p). Here 𝑘 is an
arbitrary integer.

A.1 Single packet history
Consider the case where 𝑘 = 1. If the state is S at any point in time, then after 𝑁 packets,
SN = 𝐴𝑁 · S+ terms independent of S. Here, 𝐴𝑁 is shorthand for 𝐴(𝑝𝑁) · 𝐴(𝑝𝑁−1) · . . . · 𝐴(𝑝1)
Therefore to merge an evicted value SN with the existing value S𝑏𝑎𝑐𝑘𝑖𝑛𝑔 in the backing store, we
need to replace S with S𝑏𝑎𝑐𝑘𝑖𝑛𝑔 in the expression for SN by computing:

SN − 𝐴𝑁 · S+ 𝐴𝑁 · S𝑏𝑎𝑐𝑘𝑖𝑛𝑔 = SN + 𝐴𝑁(S𝑏𝑎𝑐𝑘𝑖𝑛𝑔 − S)

The merge procedure is straightforward: the router keeps 𝐴𝑁 as auxiliary state and passes it with
SN to the backing store to complete the merge. The backing store already knows S, since it is the
default starting value for the state, which does not change.

A.2 Bounded packet history
The required auxiliary state is more complex for larger values of 𝑘. If 𝑘 = 1, 𝐴(𝑝) and 𝐵(𝑝) are
known to the router for every packet. However, for larger values of 𝑘, the router needs access to
older packet fields to compute 𝐴(p) and 𝐵(p). This means the values of 𝐴 and 𝐵 are themselves
incorrect for the first 𝑘 − 1 packets after an eviction, an issue that must be addressed by the merge
procedure.

Consider Figure A-1 for 𝑘 = 3. Once the router performs an eviction at 𝑇1, the router cannot
properly update its state for the next two packets (first packets of the subsequent epoch). It thus
starts updating its state from the third packet onwards and entrusts the backing store to fill the “hole”
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caused by missing the first two state updates.

Packet
stream

T1

Exit Log Entry Log

...

Exit Log
Previous Epoch

T2

Eviction Eviction

Figure A-1: Entry and exit log for an eviction, with 𝑘 = 3.

To perform the merge successfully, the backing store needs two additional pieces of information,
in addition to the query-specific state 𝐴𝑁 discussed in the previous section:

• The last 𝑘 − 1 packets from the previous epoch, called the exit log 𝑅 of the previous epoch.
• The first 𝑘 − 1 packets from the current epoch, called the entry log 𝑋 of the current epoch.
Upon merging, the backing store receives S, 𝑅, and 𝑋 , and must merge them with 𝑆𝑏𝑎𝑐𝑘𝑖𝑛𝑔.

First, the backing store runs the actual aggregation function over 𝑅 starting from 𝑆𝑏𝑎𝑐𝑘𝑖𝑛𝑔: 𝑆 ′ =
𝑔(𝑆𝑏𝑎𝑐𝑘𝑖𝑛𝑔, 𝑅). Doing this requires the backing store to use the exit log of the previous epoch. The
backing store then performs a standard merge 𝑆 ′′ = 𝑚(𝑆 ′, 𝑆) and stores 𝑋 for use in the next
epoch’s merge.
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