Duke CS, Fall 2019

CompSci 516
Database Systems

Lecture 1
Introduction
and

SQL

Instructor: Sudeepa Roy

Course Website

e http://www.cs.duke.edu/courses/fall19/compsci516/

* Please check frequently for updates!

Duke CS, Fall 2019 2

http://www.cs.duke.edu/courses/spring16/compsci516/

Instructor

e Sudeepa Roy
— sudeepa@cs.duke.edu
— https://users.cs.duke.edu/~sudeepa/

— office hour: Tuesdays 2:45 pm — 3:45 pm, LSRC D325
and by appointments

— No office hour today, instead on Friday 8/30 2-3 pm

e About myself
— Assistant Professor in CS
— PhD: UPenn, Postdoc: Univ. of Washington
— Joined Duke CS in Fall 2015

— Research interests:

e Data Analysis, causality, query optimization, data science,
database theory, applications of data, uncertain data,...

Duke CS, Fall 2019

mailto:sudeepa@cs.duke.edu
https://users.cs.duke.edu/~sudeepa/

* Offering you full help!

Yuchao Tao
— yuchao.tao@duke.edu

Yanlin Yu
— vanlin.yu@duke.edu

Tianrui Zhang
— tanrui.zhang@duke.edu

All CompSci 516 veterans!
— office hours: TBD

Duke CS, Fall 2019 4

mailto:yuchao.tao@duke.edu
mailto:yanlin.yu@duke.edu
mailto:tanrui.zhang@duke.edu

Logistics

 Discussion forum: Piazza

— All enrolled students (by yesterday) are already there

— Send me an email if you have not received a welcome
email from Piazza

* To reach course staff:
— compsci516-staff@cs.duke.edu
— Please use piazza as much as possible

* Lecture slides will be uploaded before the class as
incomplete notes

— but will be updated after the class

Duke CS, Fall 2019 5

mailto:compsci516-staff@cs.duke.edu

Grading

* Three Homework: 30%
* Project: 10%
 Midterm: 20%

* Final: 30%

e C(Class participation: 10%

— In-class quizzes: 5%
— In-class labs: 5%

Duke CS, Fall 2019

Grading Strategy

* Relative grading

— The actual grade distribution at the end will depend on the
performance of the entire class on all the components.

— Topper of the class gets A+ irrespective of the number, and
all and only “above expectation” performances get A+.

— No fixed lowest grade or grade distribution.
— Everyone can get good grade by working hard!

Homework

* Duein about 2 weeks after they are posted/previous hw is due
— ALWAYS start early!
— Part of the homework may be due in 1 week

* Two *late days™ with penalty
— For the take-home part (not the in-class lab part) of each homework
— 25% penalty on the entire assignment if you submit within the next 24 hours after the deadline
— 50% penalty on the entire assignment if you submit within the next 24 hours after the deadline
— No credit after 48 hours

— No credit after solutions are posted (even if within the first 48 hours)
— Start early and do not count on late days!

* contact the instructor if you have a *valid* reason to be late
— Another exam, project, hw is NOT a valid reason — we will always be fair to all

* To be done strictly individually

* PLEASE READ WHAT IS ALLOWED/NOT ALLOWED (will be repeated in class next
week)

* https://www2.cs.duke.edu/courses/fall19/compsci516/Lectures/CompSci
516-HonorCode.pdf

Duke CS, Fall 2019

https://www2.cs.duke.edu/courses/fall19/compsci516/Lectures/CompSci516-HonorCode.pdf

Homework Overview

 You will learn how to use traditional and new database
systems in the homework

— Have to learn them mostly on your own following tutorials available
online and with some help from the TA

e HWI1: Traditional DBMS
— SQL and Postgres (and some XML too!)

« HWS2: Distributed data processing
— Spark and AWS

* HW3: NOSQL
— MongoDB

Duke CS, Fall 2019

Exams

 Midterm — Oct 15 (Tues)
* Final— Dec 14 (Sat)

* Inclass
* Closed book, closed notes, no electronic devices
e Total weight: 20+ 30 % =50 %

* Exams will test your understanding of the
material

* Both exams are comprehensive
— would include every lecture up to the exams

Duke CS, Fall 2019 10

Projects

10% weight

In groups of 3-4

— Groups of smaller and larger sizes need instructor’s permission
— Each group member should do approx. equal work

Very flexible in terms of topic!
Show your creativity and researcher-side!
Work done should be at least equivalent to

— one hw * no. of group members

All group members will get the same grade
More information and ideas for projects will be posted later

Duke CS, Fall 2019

11

Project Deliverables

1. Project proposal
— problem selection is part of the project

2. Midterm progress report
3. Final project report
4. A final 5-10 mins project presentation and/or demonstration

* Due dates will be posted (about 1 month time for all three
reports)

Duke CS, Fall 2019 12

Class Participation

* 5% for quizzes, 5% for in-class labs

* Please bring laptops every day!
* Pop-up quiz
— Participation (50%) + correct answering (50%)
— lowest score will be dropped
* In-class labs
— Attending the lab and submitting some solutions (50%)

— Submitting correct solutions : within 24 hours after class ends
(50%)

— “Extra credit” 10% for submitting *all* correct solutions in class!

Duke CS, Fall 2019 13

Please ask questions in class!

* |n general, actively participate in the class!

— Ask questions in class and on piazza
— Stop me as many times as you need to understand the lectures
— Answer each other’s questions on piazza

e Also send (anonymous or not) feedback, suggestions, or
concerns on Piazza or by email

Duke CS, Fall 2019 14

Reading Material

Database Management &
= DATABASE

BOOK

Ramakrishnan + Gehrke

Will mostly follow the “cowbook” by Ramakrishnan-Gehrke
— The chapter numbers will be posted

You do not have to buy the books, but it will be good to consult
them from time to time

You should be prepared to do quite a bit of reading from
various books and papers

Duke CS, Fall 2019 15

A Quick Survey

* Have you taken an undergrad database course earlier
— CS 316/equivalent?

e Are you familiar with

sQL?

RA? (o, I, x, D, p, U, N, -)
Keys, foreign keys?

Index in databases?

Logic: A, V,V,3,~, €, =
Transactions?
Map-reduce/Spark?

NOSQL?

* Have you ever worked with a dataset?

— relational database, text, csv, XML

 Have you ever used a database system?

PostGres, MySQL, SQL Server, SQL Azure

Duke CS, Fall 2019

16

What is this course about?

e This is a graduate-level database course in CS

— We will cover principles, internals, and applications of database
systems in depth

* Database concepts
— Data Models, SQL, Views, Constraints, RA, Normalization

* Principles and internals of database management systems (DBMS)

— Indexing, Query Execution-Algorithms-Optimization, Transactions,
Parallel and Distributed Query Processing, Map Reduce

* Advanced and research topics in databases
— e.g. Datalog, NOSQL, Data mining, ...

Duke CS, Fall 2019 17

What this course is NOT about

e Spark, AWS, cluster computing...

— Partially covered in a HW and a lecture
* Machine learning based analytics
 Statistical methods for data analytics
 Python, R, ...

Duke CS, Fall 2019 18

Why should we care about databases?

_ Google
* We are in a data-driven world N ebav
: 7
* Data = Currency, Data = Power, Data = Fun F Fiomne
p L 9. 4 L5

 “Big Data” is supposed to change the mode of operation for almost every
single field

— Science, Technology, Healthcare, Business, Manufacturing, Journalism,
Government, Education, ...

 We must know how to collect, store, process, and analyze such data

e Storing data in flat files and writing python or C code would fail at some
point!

 And hundreds of jobs on data science, data analysis, data engineer, ...!

Duke CS, Fall 2019 19

This week’s plan

 Today
— Relational Data Model and SQL
* Lecture-2:
— First In-class lab on SQL (conducted by Yanlin and Tianrui)

— You will install postgres, work on MovieLens data on movie reviews,
and then write some queries

— Will be graded
* You will submit solutions on Gradescope (auto-graded instantaneously!)

— Do not forget your laptop!
* Any platform should be fine

— Feel free to attend even if you are on the waitlist and would like to
enroll in this class

 Next week:
— Data model and data independence, more SQL

Duke CS, Fall 2019 20

Relational Data Model

* Proposed by Edward (Ted) Codd in 1970

— won Turing award for it!

* Motivation:
— Simplicity
— Easy query optimizations
— Separation of abstraction and operations
* More next week

Relational Data Model

Students
53666 Jones jones@cs
53688 Smith smith@ee 18 3.2
53650 Smith smithl@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0
 The data description construct is a Relation
— Represented as a “table” Bag:{1,1,2,2,3,2,
— Basically a “set” of records (set semantic) Set: {1, 2, 3,5, 6}

— order does not matter
— and all records are distinct
* however, it is true for the relational model, not for standard DBM

— allow duplicate rows (bag semantic)
— unless restricted by key constraints. Why?

Duke CS, Fall 2019

Bag vs. Set

Students
mmm--
53666 Jones jones@cs

53688 Smith smith@ee 18 3.2
53650 Smith smithl@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

 Why “bag semantic” and not “set semantic” in standard
DBMSs?
— Primarily performance reasons
— Duplicate elimination is expensive (requires sorting)

— Some operations like “projection”s are much more efficient on bags
than sets

Duke CS, Fall 2019 23

Relational Data Model

Students

53666
Tuple/ 53688
Row/ 53650
Record

53831

53832

What is a poorly chosen attribute in this relation?

Jones
Smith
Smith
Madayan
Guldu

jones@cs
smith@ee
smithl@math
madayan@music

guldu@music

18
19
11
12

3.2
3.8
1.8
2.0 -

 Relational database = a set of relations
* A Relation : made up of two parts

1. Schema

2. Instance

Duke CS, Fall 2019

Attribute/
Column/
Field

Value

24

Schema and Instance

One schema can have multiple instances

Schema:
— Atemplate for describing an entity/relationship (e.g. students)
— specifies name of relation + name and type of each column

e.g. Students(sid: string, name: string, login: string, age: integer, gpa: real).

Instance:

— When we fill in actual data values in a schema
— atable, has rows and columns

— each row/tuple follows the schema and domain constraints
— #HRows = cardinality, #fields = degree or arity
— example below

53666 Jones jones@cs 18 Cardinality = 3, degree =5
53688 Smith smith@ee 18 3.2
53650 Smith smithl@math 19 3.8

Duke CS, Fall 2019

SQL
(Structured Query Language)

Relational Query Languages

* A major strength of the relational model: supports
simple, powerful querying of data.

* Queries can be written intuitively, and the DBMS is
responsible for an efficient evaluation

— The key: precise semantics for relational queries
— Based on a sound theory!

— Allows the optimizer to extensively re-order operations,
and still ensure that the answer does not change.

Duke CS, Fall 2019 27

The SQL Query Language

* Developed by IBM (systemR) in the 1970s based on
Ted Codd’s relational model
— First called “SEQUEL” (Structured English Query Language)

* First commercialized by Oracle (then Relational
Software)in 1979

e Standards by ANSI and ISO since it is used by many
vendors

-~ SQL-86, -89 (minor revision), -92 (major revision), -96, -99
(major extensions), -03, -06, -08, -11, -16

Duke CS, Fall 2019

28

Purposes of SQL

* Data Manipulation Language (DML)
— Querying: SELECT-FROM-WHERE
— Modifying: INSERT/DELETE/UPDATE (next week)

* Data Definition Language (DDL)
— CREATE/ALTER/DROP (next week)

Duke CS, Fall 2019 29

The SQL Query Language

* To find all 18 year old students, we can write:

v
SELECT * sid |name | login age gpa
FROM Students S 53666 |Jones |jones@cs |18 3.4

WHERE S.age=18 53688 |Smith |smith@ee |18 |3.2

*To find just names and logins, replace the first line:

SELECT S.name, S.login

Duke CS, Fall 2019

Querying Multiple Relations

 What does the following SELECT S.name, E.cid
guery compute? FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade="A"
Enrolled
Given the following instances of sid cid grade
Enrolled and Students: 53831 |Carnaticl101

53831 Reggae203

Students
3 oo oo 53650 Topologyll2
sid name ogm ge | gpa 53666 |History105

> O

53666 |Jones |jones@cs 18 34
53688 Smith smith@ecs 18 3.2
53650 Smith smith@math 19 | 3.8

we get: 77

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

Querying Multiple Relations

 What does the following
guery compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade="A"

Enrolled
Given the following instances of sid cid grade
Enrolled and Students: 53831 |Carnaticl101 C
Students 53831 Reggae203 B
q looi 53650 |Topologyll2 | A
SI | Tatre gt 45t &M 53666 |History105 B
53666 |Jones |jones@cs 18 34
. . t:
53688 Smith smith@eecs 18 32 | 5
53650 Smith |smith@math = 19 3.8 S.name | E.cid
Smith | Topologyl12

Duke CS, Fall 2016

CompSci 516: Data Intensive Computing Systems

Read yourself, after reading the next few slides first
Basic SQL Query

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

relation-list A list of relation names

— possibly with a “range variable” after each name
target-list A list of attributes of relations in relation-list
qgualification Comparisons

— (Attr op const) or (Attrl op Attr2)
— where opis one of =, <, >, <=, >= combined using AND, OR and NOT

DISTINCT is an optional keyword indicating that the answer should not
contain duplicates
— Default is that duplicates are not eliminated!

Duke CS, Fall 2019 33

Read yourself, after reading the next few slides first

Conceptual Evaluation Strategy

SELECT |[DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

 Semantics of an SQL query defined in terms of the following
conceptual evaluation strategy:

— Compute the cross-product of <relation-list>

— Discard resulting tuples if they fail <qualifications>
— Delete attributes that are not in <target-list>

— If bisTineT is specified, eliminate duplicate rows

This strategy is probably the least efficient way to compute a
query!

— An optimizer will find more efficient strategies to compute the
same answers

Duke CS, Fall 2019 34

Example of Conceptual Evaluation

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

Sailor

22 dustin

31 lubber 8 55

58 rusty 10 35
Reserves

sid [bid day

22 101 10/10/96
58 103 11/12/96

What does this query return?

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

22
22
31
31
58
58

Example of Conceptual Evaluation

SELECT S.sname
FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND R.bid=103

Step 1: Form “cross product” of Sailor and Reserves

dustin
dustin
lubber
lubber
rusty

rusty

Duke CS, Fall 2016

45
45
55
55
35
35

22
58
22
58
22
58

101
103
101
103
101
103

Sailor

sid | sname | rating | age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
Reserves

10/10/96
11/12/96
10/10/96
11/12/96
10/10/96
11/12/96

sid [bid day

22
58

CompSci 516: Data Intensive Computing Systems

101 10/10/96
103 11/12/96

Example of Conceptual Evaluation

Sailor

SELECT S.sname

FROM Sailors S, Reserves R mmm age

WHERE S.sid=R.sid AND R.bid=103 22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

Step 2: Discard tuples that do not satisfy <qualification>
Reserves

sid [bid day

22 dustin 7 45 22 101 16/106/96 22 101 10/10/96
22 dustin 7 45 58 103 13A2/96 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/42/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

Example of Conceptual Evaluation

Sailor
SELECT S.sname
FROM Sailors S, Reserves R mmm age
WHERE S.sid=R.sid AND R.bid=103 22 dustin 7 45
31 lubber 8 55
58 rusty 10 35
Step 3: Select the specified attribute(s)
Reserves

sid [bid day

22 dustin 7 45 22 101 16/106/96 22 101 10/10/96
22 dustin 7 45 58 103 13A2/96 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/42/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

Recap

3 SELECT S.sname
1 FROM Sailors S, Reserves R
5, WHERE S.sid=R.sid AND R.bid=103

Always start from “FROM” -- form cross product
Apply “WHERE” -- filter out some tuples (rows)
Apply “SELECT” --filter out some attributes (columns)

Ques. Does this get evaluated this way in practice in a Database Management System (DBMS)’

No! This is conceptual evaluation for finding what is correct!
We will learn about join and other operator algorithms later

A Note on “Range Variables”

e Sometimes used as a short-name

* The previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

OR
SELECT sname

FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
AND bid=103

Duke CS, Fall 2019

It is good style,
however, to use
range variables
always!

40

A Note on “Range Variables”

* Really needed only if the same relation appears twice
in the From clause (called self-joins)

* Find pairs of Sailors of same age

SELECT Sl.sname, S2. name
FROM Sailors S1, Sailors S2
WHERE S1.age = S2.age AND S1.sid < S2.sid

Why do we need the 2" condition?

Duke CS, Fall 2019 41

Find sailor ids who’ve reserved
at least one boat

Sailor
SELECT 2222 mmm-
FROM Sailors S, Reserves R 22 dustin
WHERE S.sid=R.sid
31 lubber 8 55
58 rusty 10 35
Reserves

sid [bid day

22 101 10/10/96
58 103 11/12/96

Duke CS, Fall 2019 42

Find sailor ids who’ve reserved
at least one boat

Sailor

SELECT Sasid @mm-

FROM Sailors S, Reserves R 22 dustin 7

WHERE S.sid=R.sid
31 |ubber 8 55
58 rusty 10 35

 Would adding pisTincT to this Reserves
guery make a difference? sid | bid | day

22 101 10/10/96
58 103 11/12/96

Duke CS, Fall 2019 43

Find sailors who’ve reserved at least one boat

Sailor
EaET T
FROM Sailors S, Reserves R 22 dustin
WHERE S.sid=R.sid
31 lubber 8 55
* Would adding pistincT to this query make a 58 rusty 10 35
difference?
Reserves

— Note that if there are multiple bids for the
same sid, you get multiple output tuples for mm day

the same sid
— Without distinct, you get them multiple 22 101 10/10/96
times 58 103 11/12/96

 What is the effect of replacing S.sid by
S.sname in the seLecT clause?

— Would adding oistinet to this variant of the
guery make a difference even if one sid
reserves at most one bid?

Duke CS, Fall 2019 44

Simple Aggregate Operators

Check yourself:
What do these queries compute?

SELECT COUNT (*)
FROM Sailors S

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)
\ single column

SELECT S.sname
SELECT AVG (S.age) FROM Sailors S

FROM Sailors S WHERE S.rating= (SELECT MAX(S2.rating)

WHERE S.rating=10

FROM Sailors S2)

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname="Bob’

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

Next: different types of joins

* Theta-join
* Equi-join

* Natural join
* Quter Join

Duke CS, Fall 2019 46

Condition/Theta Join

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age >= 40

22 dustin
31 lubber 8 55
58 rusty 10 35

Form cross product, discard rows that do not satisfy the condition

sid [bid day

10/10/96 22 101 10/10/96

un
ob

¥4/42/96— 58 103 11/12/96

7
——
o
%—

N)
N)

22 dustin

ZZdustin
31 Tubber

37 fubber
58 rusty

Ul
(0)e]

_ 58 rusty

10
10

Duke CS, Fall 2019

47

Equi Join
SELECT * mmm-

FROM Sailors S, Reserves R 29 dustin
WHERE S.sid=R.sid and age = 45
31 lubber 8 55
A special case of theta join 58 rusty 10 35

Join condition only has equality predicate =

sid [bid day

dustin 45 22 101 10/10/96 22 101 10/10/96

7
dustim—7" 45 58—103—11/42/96 58 103 11/12/96
lubber 3 557 22 +0+—36/46/96—
fUbber—8" 55 58 +63—34+H2/96

rusty 10 35 22 1071

rusty 10 35 58 103 _11/12/96

Duke CS, Fall 2019 48

Natural Join
SELECT * mmm-

FROM Sailors S NATURAL JOIN Reserves R 22 dustin
31 lubber 8 55
A special case of equi join 58 rusty 10 35

Equality condition on ALL common predicates (sid)
Duplicate columns are eliminated

s bia Ly

22 dustin 7/ 45 101 10/10/96 22 101 10/10/96
22 dustin 7 45 163—11/42/96 58 103 11/12/96
37 Tubber 8 —55—+0+—36/16/96———

31 fubber—38 55 +63—34H2/96

58 rusty 10 35 10T —10/10/96—
58 rusty 10 35 103 11/12/96

Duke CS, Fall 2019 49

End of Lecture-1

Outer Join
SELECT S.sid, R. bid mmm-

FROM Sailors S LEFT OUTER JOIN Reserves R 22 dustin

ON S.sid=R.sid
31 lubber 8 55
58 rusty 10 35

Preserves all tuples from the left table whether or not there is a match
if no match, fill attributes from right with null

Similarly RIGHT/FULL outer join mm

22 101 10/10/96
58 103 11/12/96

22 101
31 null
58 103

Duke CS, Fall 2019 50

Expressions and Strings

SELECT S.age, agel=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

* |llustrates use of arithmetic expressions and string pattern matching

* Find triples (of ages of sailors and two fields defined by expressions)
for sailors
— whose names begin and end with B and contain at least three characters

e LIKE is used for string matching. =’ stands for any one character
and "%’ stands for O or more arbitrary characters

— You will need these often

Duke CS, Fall 2019 51

Find sid’s of sailors who’ve reserved a red or a

green boat Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)

Boats(bid, bname, color)

e UNION: Can be used to SELECT S..sid
compute the union of any FROM Gailors S, Boats B, Reserves R

: tib| ts of WHERE S.sid=R.sid AND R.bid=B.bid
tWOI union-compatibie sets o AND (B.color="red” OR B.color="green’)
tuples

— cah themselves be the result of
SQL queries

. SELECT S.sid
hf were p.Iace OR by AND in the FROM Sailors S, Boats B, Reserves R
first version, what do we get? | wHERE S.sid=R.sid AND R.bid=B.bid

* Also available: EXCEPT (What AND B.color="red’

. UNION
do we ge’;lf we replace UNION SELECT S.sid
by EXCEPT?) FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

. -1 . , Sailors (sid, sname, rating, age)
Find sid’s of sailors who've reserved | pcerves(sid, bid, day)

a red and a green boat Boats(bid, bname, color)

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

. - . , Sailors (sid, sname, rating, age)
Find sid’s of sailors who've reserved | pocerves(sid, bid, day)

a red and a green boat Boats(bid, bname, color)

SELECT S.sid

FROM Sailors S, Boats B1, Reserves R1,

INTERSECT: Can be used to Boats B2, Reserves R2 .

compute the intersection of WHERE 8:51d=R1:51d AND Rl..b1d=B1..b1d
: . AND S.sid=R2.sid AND R2.bid=B2.bid

any two union-compatible

AND (B1.color="red” AND B2.color="green’)
sets of tuples.

— Included in the SQL/92 SELECT S.sid
standard, but s-ome systems FROM 6Sailors S, Boats B, Reserves R
don’t support it WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="red’
INTERSECT

SELECT S.sid

FROM 6Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

Nested Queries

Find names of sailors who've reserved boat #103:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

FROM Reserves R
WHERE R.bid=103)

* A very powerful feature of SQL:

— a WHERE/FROM/HAVING clause can itself contain an SQL query

 To find sailors who’ve not reserved #10

3, USe NOTIN.

* To understand semantics of nested queries, think of a

nested loops evaluation

— For each Sailors tuple, check the qualificati

subquery

Duke CS, Fall 2019

ion by computing the

55

Nested Queries with Correlation

Find names of sailors who've reserved boat #103:

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid

- EXISTS is another set comparison operator, like In

* [llustrates why, in general, subquery must be re-
computed for each Sailors tuple

Duke CS, Fall 2019

56

Nested Queries with Correlation

Find names of sailors who've reserved boat #103
at most once:;

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

* |f uniQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103

— uNlquE checks for duplicate tuples

Duke CS, Fall 2019 57

More on Set-Comparison Operators

We’ve already seen IN, ExisTs and uNIQuE
Can also use NoT IN, NOT EXISTS and NOT UNIQUE.
Also available: op any, op ALL, op N

— whereop : >, <, =, <=, >=

Find sailors whose rating is greater than that of some
sailor called Horatio

— similarly ALL SELECT *
FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio’)

Duke CS, Fall 2019 58

Summary

e Relational Data
e SQL

— Semantic

— Join

— Simple Aggregates
— Nested Queries

* You will learn these further and run yourself on
PostGres on Thursday in the in-class lab on SQL!

Duke CS, Fall 2019 CompSci 516: Database Systems

59

